1. 昆明理工大学冶金与能源工程学院,云南 昆明 6500932. 中国科学院过程工程研究所绿色过程与工程重点实验室,湿法冶金清洁生产技术国家工程实验室,北京 100190
收稿日期:
2019-04-17修回日期:
2019-05-13出版日期:
2020-01-22发布日期:
2020-01-14通讯作者:
张盼基金资助:
锂电/光伏新兴无机固废全组分循环利用技术及示范;基于电场调控熔渣结构强化硅合金熔渣精炼除硼The regulation of electric field on CaO-SiO2-Al2O3 slag structure
Pan ZHANG1,2, Junhao LIU2*, Kuixian WEI1*, Zhi WANG2, Wenhui MA11. Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China2. Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner ProductionTechnology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
Received:
2019-04-17Revised:
2019-05-13Online:
2020-01-22Published:
2020-01-14摘要/Abstract
摘要: 针对硅中硼难去除的问题,从熔渣结构层面进行研究,通过观察熔渣不同部位在不同电场条件下熔渣结构的变化,分析不同电场条件下高温骤冷所得熔渣结构变化,探索引入电场对熔渣结构影响。结果表明,引入电场会引起熔渣中离子定向移动与重新分配,改变熔渣结构。熔渣上部结构在电场作用下解聚更彻底,远离渣金界面处熔渣结构变化较小。电场增强有利于熔渣解聚,电场强度达10 V时,熔渣中结构单元会转变为聚合度更低的Q0结构单元。熔渣上部结构对电场变化更敏感,电场改变,熔渣下部结构变化较小。
引用本文
张盼 刘俊昊 魏奎先 王志 马文会. 电场对CaO-SiO2-Al2O3熔渣的结构调控[J]. 过程工程学报, 2020, 20(1): 67-73.
Pan ZHANG Junhao LIU Kuixian WEI Zhi WANG Wenhui MA. The regulation of electric field on CaO-SiO2-Al2O3 slag structure[J]. Chin. J. Process Eng., 2020, 20(1): 67-73.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.219182
http://www.jproeng.com/CN/Y2020/V20/I1/67
参考文献
[1]Islam M S, Rhamdhani M A, Brooks G A.Electrically Enhanced Boron Removal from Silicon Using Slag[J].Metallurgical and Materials Transactions B, 2013, 45(1):1-5 [2]Wang Zh, Ge Zh, Liu J H, Qian G Y, Du B.The Mechanism of Boron Removal from Silicon Alloy by Electric Field Using Slag Treatment[J].Separation and Purification Technology, 2018, 199(1):134-139 [3]Li Q H, Yang Sh F, Zhang Y L, An Zh Q, Guo Zh Ch.the Viscosity and Structure of Cr2O3 -bearing CaO–SiO2–Al2O3 Slags[J].ISIJ International, 2017, 57(4):689-696 [4]Joo H P.Structure–Property Correlations of CaO–SiO2 –MnO Slag Derived from Raman Spectroscopy[J].ISIJ International, 2012, 52(9):1627-1636 [5]McMillan P.Structural Studies of Silicate Glasses and Melts-Applications and Limitations of Raman Spectroscopy[J].American Mineralogist, 1984, 69(6):622-644 [6]Frantz J D, Mysen B O.Raman spectra and structure of BaO-SiO2-SrO-SiO2 and CaO-SiO2 melts to 1600°C[J].Chemical Geology, 1995, 121(1-4):155-176 [7]Mysen B O, Neuville D R.Effect of temperature and TiO2 content on the structure of Na2Si2O5-Na2Ti2O5 melts and glasses[J].Geochimica et Cosmochimica Acta, 1995, 59(2):325-342 [8]Neuville D R, Ligny D D, Henderson G S.Neuville D R,Ligny D D,Henderson G SAdvances in Raman spectroscopy applied to Earth and Material Sciences[J].Reviews in Mineralogy & Geochemistry, 2014, 78: 509-541[J]. Reviews in Mineralogy & Geochemistry, 2014, 78(1):509-541 [9]Tsunawaki Y, Iwamoto N, Hattori T, Mitsuishi A.Analysis of CaO-SiO2 and CaO-SiO2-CaF2 glasses by Raman spectroscopy[J].Journal of Non-crystalline Solids, 1981, 44(s 2-3):369-378 [10]Sun Y Q, Zhang Z T.Structural Roles of Boron and Silicon in the CaO-SiO2-B2O3 Glasses Using FTIR,Raman,and NMR Spectroscopy[J].Metallurgical and Materials Transactions B, 2015, 46(B):1549-1554 [11] Seifert F A, Mysen B O, Virgo D.Three-dimensional network structure of quenched melts (glass) in the systems SiO2-NaAlO2, SiO2 -CaAl2O4 and SiO2 -MgAl2O4[J].American Mineralogist, 1982, 67: 696-717., 1982, 67(1):696-717 [12]Tan T, Zhao S R, Wang W F, Davies G, Mo X X.The effect of cooling rate on the structure of sodium silicate glass[J].Materials Science and Engineering B, 2004, 106(3):295-299 [13]Matson D W, Sharma S K, Philpotts J A.The structure of high-silica alkali-silicate glassesA Raman spectroscopic investigation[J].Journal of Non-crystalline Solids, 1983, 58(2-3):353-352 [14]Fukumi K, Hayakawa J, Komiyama T.Intensity of raman band in silicate glasses[J].Journal of Non-crystalline Solids, 1990, 119(3):297-302 [15]Mysen B O, Frantz J D.Structure of silicate melts at high temperature: In-situ measurements in the system BaO-SiO2 to 1669 °C[J].American Mineralogist, 1993, 78(7-8):699-709 [16]You J L, Jiang G C, Xu K D.High temperature Raman spectra of sodium disilicate crystal,glass and its liquid[J].Journal of Non-crystalline Solids, 2001, 282(1):125-131 [17]Mysen B O, Frantz J D.Silicate melts at magmatic temperatures: in-situ structure determination to 1651°C and effect of temperature and bulk composition on the mixing behavior of structural units[J].Contrib Mineral Petr, 1994, 117(1):1-14 [18]Mysen B O, Finger L W, Virgo D, Seifert F A.Curve-fitting of Raman spectra of silicate glasses[J].American Mineralogist, 1982, 67(7):686-695 [19] Kline J, Tangstad M, and Tranell G.A Raman Spectroscopic Study of the Structural Modifications Associated with the Addition of Calcium Oxide and Boron Oxide to Silica [J].Metallurgical and Materials Transactions B, 2014, 46(1):62-73 |
相关文章 5
[1] | 孙治谦 周衍涛 刘伯川 蒋燕 王振波. 操作参数对W/O乳状液水滴静电迁移聚并的影响[J]. 过程工程学报, 2019, 19(3): 597-602. |
[2] | 潘泽昊陈家庆张龙李峰王春升谢日彬李平. 流花油田老化油高频/高压脉冲交流电场破乳脱水研究[J]. 过程工程学报, 2015, 15(6): 969-975. |
[3] | 李锐锋陈家庆李风春刘文黄松涛刘鹏. 中原油田老化油回掺电破乳脱水[J]. , 2012, 12(4): 596-601. |
[4] | 洪鹏王海川李新李杰廖直友钱章秀. 脉冲电场对Fe-C-P系合金熔体凝固过程的影响研究[J]. , 2011, 11(1): 79-84. |
[5] | 金卫华;刘铮;丁富新. 电脱水技术应用于发酵产品固液分离的基础及特性[J]. , 2002, 2(3): 0-0. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3374