删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

细颗粒物凝并技术机理的研究进展

本站小编 Free考研考试/2022-01-01

吴 湾1,2, 王 雪1*, 朱廷钰1
1. 中国科学院过程工程研究所,湿法冶金清洁生产技术国家工程实验室,北京市过程污染控制工程技术研究中心,北京 1001902. 中国科学院大学化工学院,北京 100049
收稿日期:2019-01-02修回日期:2019-04-10出版日期:2019-12-22发布日期:2019-12-22
通讯作者:王雪

基金资助:复杂气氛下PM1.0交变电凝并机理研究

Mechanism research status of agglomeration technology for fine particles removal

Wan WU1,2, Xue WANG1*, Tingyu ZHU1
1. Beijing Engineering Research Center of Process Pollution Control, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China 2. School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Received:2019-01-02Revised:2019-04-10Online:2019-12-22Published:2019-12-22
Contact:WANG Xue






摘要/Abstract


摘要: 凝并技术是提高烟气中细颗粒物(PM2.5)去除效率的关键技术之一。凝并机理的研究有利于加深对细颗粒物凝并过程的理解,最大限度地提高PM2.5的凝聚速度,使PM2.5在较短的时间内团聚成大颗粒。本工作对电凝并、化学凝并和声凝并3种凝并效果显著的凝并技术机理进行概述,分别介绍了电凝并机理的核心电凝并系数方程,不同化学添加剂对颗粒的作用机制,同向运动、流体力学和声致湍流作用下的声凝并机理的发展现状。阐述了现有研究的不足,并提出在后续凝并机理的研究中,可利用高速显微摄像技术实时观测颗粒的凝并过程,对已有凝并机理进行验证及修正。同时还需考虑实际烟气成分对颗粒凝并的影响,进一步完善颗粒的凝并机理。

引用本文



吴湾 王雪 朱廷钰. 细颗粒物凝并技术机理的研究进展[J]. 过程工程学报, 2019, 19(6): 1057-1065.
Wan WU Xue WANG Tingyu ZHU. Mechanism research status of agglomeration technology for fine particles removal[J]. Chin. J. Process Eng., 2019, 19(6): 1057-1065.



使用本文




0
/ / 推荐

导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.219106
http://www.jproeng.com/CN/Y2019/V19/I6/1057







[1]Wang Y S, Yao L, Wang L, et al.Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China[J].Science China Earth Sciences, 2014, 5(1):14-21
[2] 向晓东.电凝聚除尘理论与应用技术研究 [D]. 沈阳:东北大学, 2002: 1-2.
[3]Xiang X D.Study on theory and application technology of electric condensation [D]. Shenyang: Northeastern University, 2002: 1-2.
[4] 靳星.静电除尘器内细颗粒物脱除特性的技术基础研究 [D]. 北京:清华大学, 2013: 1-24.
[5]Jing X.Technical basic research on fine particle removal characteristics in Electrostatic Precipitator [D]. Beijing: Tsinghua University, 2013: 1-24.
[6]竹涛,陈锐,王晓佳,等.电凝并技术脱除 的研究现状及发展方向[J].Clean Coal Technology, 2015, 21(2):6-9
[7]Zhu T, Chen R, Wang X J, et al.Research status and development direction of electric agglomeration technology for PM 25 removal[J].Clean Coal Technology, 2012, 21(2):6-9
[8]Mizuno A.Electrostatic precipitation[J].IEEE Trans Dielectr Electr Insul, 2000, 7(5):615-24
[9]Jaworek A, Krupa A, Czech T.Modern electrostatic devices and methods for exhaust gas cleaning: a brief review[J].J Electrostic, 2007, 65(3):133-55
[10]Chen T M, Tsai C J, Yan S Y, Li S N.An efficient wet electrostatic precipitator for removing nanoparticles,submicron and micron-sized particles[J].Separation and Purification Technology, 2014, 136(5):27-35
[11]刘建平.燃煤烟气细颗粒物团聚技术研究进展[J].山东化工, 2014, 43(2):36-39
[12]Liu J P.Research progress on fine particle agglomeration technology of coal-fired flue gas[J].SHANDONG CHEMICAL INDUSTRY, 2014, 43(2):36-39
[13]陈浩,骆仲泱,江建平,等.燃煤排放 及其控制脱除技术[J].科学, 2013, 65(6):34-37
[14]Chen H, Luo Z Y, Jiang J P, et al.Coal-fired emission PM 25 and its control removal technology[J].Science, 2013, 65(6):34-37
[15]颜金培,陈立奇,杨林军,等.声波与相变联合作用下细颗粒脱出的实验研究[J].中国电机工程学报, 2014, 34(20):3282-3288
[16]Yan J P, Chen L Q, Yang L J, et al.Experimental Study on Removal of Fine Particles Under the Combined Effect of Acoustic and Vapor Condensation[J].Proceedings of the CSEE, 2014, 34(20):3282-3288
[17]耿建新,王丽萍,王瑞,等.颗粒物的凝并作用分类初探[J].中国资源综合利用, 2008, 26(5):35-37
[18]Gen J X, Wang L P, Wang R, et al.Preliminary Classification of Coagulation[J].China Resources Comprehensive Utilization, 2008, 26(5):35-37
[19]Chen H, Luo Z Y, Jiang J P, et al.Effect of simultaneous acoustic and electric fields on removal of fine particles emitted from coal combustion[J].Powder Technology, 2015, 281(11):12-19
[20]Fuehs N A.Mechanics of Aerosol[J].New York:Pergamon Press, 1964, 1(2):11-13
[21]Eliasson B, Egli W, Feguson J R, et al.Coagulation of bipolarly charged aerosols in a stack coagulator[J].J Aerosol Sci., 1987, 18(6):869-872
[22]Eliasson B, Egli W.Bipolar coagulation-modeling and application[J].J Aerosol Sci., 1991, 22(4):429-440
[23]Watanabe T, et al.Submicron particle agglomeration by an electrostatic agglomerator[J].Journal of Electrostatics, 1995, 34(4):367-383
[24]Zukeran, YIkeda, Y.Ehara,TIto,T. Takahashi,H. Kawakami,T. Takamatsu.Zukeran,YIkeda,Y. Ehara,T. Ito,T. Takahashi,H. Kawakami,T. Takamatsu,Agglomeration of particles by ac corona discharge[J].Electr. Eng. Japan, 2000, 130(1):30-37
[25]J.ZhuXZhangW.ChenY.ShiK.Yan.Electrostatic precipitation of fine particles with a bipolar pre-charger[J].Journal of Electrostatics, 2010, 68(2):174-178
[26]Bai M D, Wang S L, Chen Z G, Leng H, Mao S L, The effects of sub-micrometer dust charging and coagulation on ESP efficiency by using alternating electric field [J.IEEE Trans Plasma Sci[J].IEEE Transactions on Plasma Science, 2010, 38(2):127-132
[27]J Hautanen, M Kilpel?inen, EI Kauppinen.Electrical Agglomeration of Aerosol Particles in an Alternating Electric Field[J].Aerosol Science and Technology, 1995, 22(2):181-189
[28]Laitinen, JHautanen, J.Keskinen,EKauppinen,J. Jokiniemi,K. Lehtinen,.Laitinen,JHautanen,J. Keskinen,E. Kauppinen,J. Jokiniemi,K. Lehtinen,Bipolar charged aerosol agglomeration with alternating electric field in laminar gas flow[J].J Electrostic, 1996, 38(4):303-315
[29]J Kildes?, V K Bhatia, L Lind.An Experimental Investigation for Agglomeration of Aerosols in Alternating Electric Fields[J].Aerosol Science and Technology, 2007, 23(4):603-610
[30]Hwang, Ba G N, Kim Y G.Particle charging and agglomeration in DC and AC electric fields[J].Journal of Electrostatics, 2004, 61(1):57-68
[31]Kanazawa S, et al.Submicron particle agglomeration and precipitations by using a bipolar charging method[J].Journal of Electrostatics, 1993, 29(3):193-209
[32]Zebel G.Zur theorie des verh altens elektrisch geladener aerosole t,,157: 37-50.[J].Kolloid -Zeitschrif, 1958, 158(3):37-50
[33] Fuchs N A.The Mechanics of Aerosols [M]. Oxford: Pergamon Press, 1964.
[34]Smoluchowski M V.Versuch einer mathematischen theorieder koagulationskinetik kolloider losungen[J].Zeitschrift für physikalische Chemie, 1917, 92(5):129-168
[35] 常倩云.细颗粒物荷电凝并脱除多过程强化机理研究 [D]. 浙江:浙江大学 2017.
[36]Chang Q Y.Multi-process enhancement mechanism of fine particle charging, agglomeration and removal [D]. Zhejiang: Zhejiang University.
[37]Wang L, Zhang X.An analytical for the coagulation coefficient of bioplay charged particles by an external electric field with the effect of Coulomb force[J].Journal of Aerosol Science, 2005, 36(36):1050-1055
[38]张向荣, 王连泽, 朱克勤.外电场对荷电颗粒静电凝聚的影响[J].清华大学学报, 2005, 45(8):1107-1109
[39]Zhang X R, Wang L Z, Zhu K Q.Influence of external electric field on the coagulation of electrically charged particles[J].J Tsinghua Univ. (Sci. & Tech), 2005, 45(8):1107-1109
[40]向晓东,陈旺生,幸福堂等.交变电场中电凝并收尘理论与试验研究[J].环境科学学报, 2000, 20(2):187-191
[41]Xiang X D, Chen W S, Xing F D, et al.Theory and experiment of bipolar charged particles coagulation in AC electric field[J].ACTA SCIENTIAE CIRCUMSTANTIAE, 2000, 20(2):187-191
[42] Williams M R, Loyalka S K.Aerosol Science Theory and Practice [M]..New York: Pergamon Press, 1991, :212-215
[43]Koizumi Y, Kawamura M, Tochikubo F, Watanabe T.Estimation of the agglomeration coefficient of bipolar-charged aerosol particles[J].Journal of Electrostatics, 2000, 48(48):93-101
[44]Baihe Tan, Lianze Wang, Ziniu Wu.An approximate for the coagulation coefficient of bioplay charged particles in an alternating electric field[J].Journal of Aerosol Science, 2008, 39(39):793-800
[45]谭百贺, 王连泽, 吴子牛.双极荷电颗粒在外加交变电场中的静电凝聚[J].清华大学学报, 2009, 49(2):301-304
[46]Tan B H, Wang L Z, Wu Z N.Electrostatic coagulation of bipolar-charged particles in an external AC electric field[J].Tsinghua Science and Technology, 2009, 49(2):301-304
[47]Ninomiya Y, Wang Q, Xu S, et al.Effect of additives on the reduction of PM 25 emissions during pulverized coal combustion[J].Energy & Fuels, 2009, 23(7):3412-3417
[48]Takuwa T, Naruse I.Emission control of sodium compounds and their formation mechanisms during coal combustion[J].Proceed-ings of the Combustion Institute, 2007, 31(2):2863-2870
[49] Durham M D, Schlager R D, Ebner T G, et al.Method for removing undesired particles from gas streams: US, US5833736A [P]. 1998, 10-11.
[50]Rajniak P.Experiment study of wet granulation in fluidized bed: Impact of the binder properties on the granule morphology[J].Inter-national Journal of Pharmaceutics, 2007, 334(2):92-102
[51]Mao D M, Edwards J R, Kuznetsov A V, et al.Three-dimensional numerical simulation of a circulating fluidized bed reactor for multi-pollutant control[J].Chemical Engineering Science, 2004, 59(20):4279-4289
[52]Gao Jihui, Liu Jiaxun, Gao Jianmin, et al.Modelling and experimental study on agglomeration of particles from coal combustion in multistage spouted fluidized tower[J].Advanced Powder Technology, 2009, 20(4):375-382
[53]Ye Zhuang, Biswas P.Sub-micrometer Particle Formation and Control in a Bench-scale Pulverized Coal Combustor[J].American Chemical Society, 2001, 27(3):510-516
[54]Torben Sch?fer.Growth mechanisms in melt agglomeration in high shear mixers[J].Powder Technology, 2001, 117(s12):68-82
[55]赵永椿,张军营,魏凤 等.燃煤超细颗粒物团聚促进机制的实验研究[J].化工学报, 2007, 58(11):2876-2881
[56]Zhao Y C, Zhang J Y, Wei F, et al.Experimental study on agglomeration of submicron particles from coal combustion[J].Journal of Chemical Industry and Engineering (China), 2007, 58(11):2876-2881
[57] 刘加勋.燃煤飞灰化学团聚实验研究及机理分析 [D]. 哈尔滨:哈尔滨工业大学, 2008.哈尔滨工业大学, 2008, 1(2):11-16
[58]Liu J X.Experimental study and mechanism analysis on particle spray agglomeration [D]. Harbin: Harbin Institute of Technology, 2008.
[59]Fahnoe F, Lindroos A, Abelson R.Aerosol build-up techniques[J].Industrial and Engineering Chemistry, 1951, 43(6):1336-1346
[60]Shaw D T, Tu K W.Acoustic particle agglomeration due to hydrodynamic interaction between monodisperse aerosols[J].Journal of Aerosol Science, 1979, 10(3):317-328
[61]Liu S Y, Huang H B, Yan W G.Experimental research on enhanced cyclone separation of acoustic agglomerated particles[J].Journal of Beijing Institute of Technology, 2000, 9(1):61-65
[62]姚刚,赵兵,沈湘林.燃煤可吸入颗粒物声波团聚效果的实验研究和数值分析[J].热能动力工程, 2006, 21(2):175-216
[63]Yao G, Zhao B, Shen X L.Experimental Study and Numerical Analysis of the Acoustic Agglomeration Effectiveness of Inhalable Particles of Burned Coal[J].JOURNAL OF ENGINEERING FOR THERMAL ENERGY AND POWER, 2006, 21(2):175-178
[64]张明俊,凡凤仙.细颗粒物的声凝并数值模拟研究进展[J].化工进展, 2012, 31(8):1671-1676
[65]Zhang M J, Fan F X.Progress and prospect in numerical simulation on acoustic agglomeration of fine particles[J].CHEMICAL INDUSTRY AND ENGINEERING PROGRESS, 2012, 31(8):1671-1676
[66] Cheng M T.Sonic agglomeration of ammonium-chloride aerosols in intense sound fields[D].Phd Thesis: State University of New York at Buffalo, 1981..Phd Thesis: State University of New York at Buffalo, 1981, 2(5):162-165
[67] Mednikov E P.Acoustic coagulation and precipitation of aerosols [M].New York: Consultants Bureau, 1965.
[68]Temkin S.Gasdynamic agglomeration of aerosols IAcoustic waves[J].Physics of Fluid, 1994, 6(7):294-2303
[69]Song L, Koopmann G H, Hoffmann T L.An improved theoretical model of acoustic agglomeration[J].Journal of Vibration and Acoustics, 1994, 116(2):208-214
[70]Chen C.Study on the effect of acoustic agglomeration of monodispersed standard-Size aerosols[J].Feng Chia University, Taiwan, 2004, 3(-):89-91
[71]Hoffmann T L, Koopmann G H.Visualization of acoustic particle interaction and agglomeration: Theory and experiments[J].The Journal of the Acoustical Society of America, 1996, 99(4):2130-2141
[72]Hoffmann T L, Koopmann G H.Visualization of acoustic particle interaction and agglomeration: Theory evaluation[J].The Journal of the Acoustical Society of America, 1997, 101(6):3421-3429
[73]Hoffmann T L.An extended kernel for acoustic agglomeration simulation based on the acoustic wake effect[J].Journal of Aerosol Science, 1997, 28(6):919-936
[74]King L V.On the acoustic radiation pressure on spheres[J].Proceedings of the Royal Society of London: Series A, 1934, 147(861):212-240
[75]Danilov S D.Average force on a small sphere in a travelling wave field in a viscous fluid[J].Soviet Physics-Acoustics, 1985, 31(1):26-28
[76] 陈厚涛.声波团聚增强燃烧源细颗粒物排放控制的研究[D]. 南京:东南大学, 2009.
[77]Chen H T.Study on Acoustic Agglomeration Enhancing Emission Control of Fine Particles in Combustion Sources [D]. Nanjing: Southeast University, 2009.




[1]张贺杰 陈兴 邹兴 刘文科 郑诗礼 张懿 李平. 废旧锂离子电池正极材料除铝技术研究进展[J]. 过程工程学报, 2020, 20(5): 503-509.
[2]韩伟伟 汪鹏 卫言 楚化强 孙勇 曹文健. 火焰法制备碳纳米管研究进展[J]. 过程工程学报, 2019, 19(1): 3-13.





PDF全文下载地址:

http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3369
相关话题/技术 过程 工程 清华大学 北京

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 电喷雾质谱法示踪钨回收过程离子的转化路径
    蔺淑洁1,2,温嘉玮1,曹宏斌1,宁朋歌1*,张懿11.北京市过程污染控制工程技术研究中心,中国科学院过程工程研究所湿法冶金清洁生产技术国家工程实验室,北京1001902.中国科学院大学化学工程学院,北京100049收稿日期:2019-03-18修回日期:2019-04-07出版日期:2019-12 ...
    本站小编 Free考研考试 2022-01-01
  • 基于超声衰减和声速动态监测石蜡的相变过程
    胡子健,苏明旭*,李俊峰上海理工大学颗粒与两相流测量技术研究所,上海市动力工程多相流动与传热重点实验室,上海200093收稿日期:2018-11-27修回日期:2019-03-24出版日期:2019-12-22发布日期:2019-12-22通讯作者:苏明旭基金资助:国家自然科学基金项目Dynamic ...
    本站小编 Free考研考试 2022-01-01
  • 电渣重熔过程结晶器旋转对钢中夹杂物的影响
    常立忠1*,常凯华1,朱雄明2,陈佳顺1,高岗1,31.安徽工业大学冶金工程学院,安徽马鞍山2430022.湖州久立永兴特种合金材料有限公司,浙江湖州3130033.中钢集团马鞍山矿山研究院有限公司,安徽马鞍山243000收稿日期:2019-02-26修回日期:2019-04-17出版日期:2019 ...
    本站小编 Free考研考试 2022-01-01
  • 废钢对转炉熔池混匀过程的影响
    刘勇1,2,邓南阳1,周小宾1,2*,王多刚3,彭世恒1,21.安徽工业大学冶金工程学院,安徽马鞍山2430022.冶金减排与资源综合利用教育部重点实验室,安徽马鞍山2430023.中国钢研科技集团有限公司钢铁研究总院,北京100081收稿日期:2019-02-01修回日期:2019-04-16出版 ...
    本站小编 Free考研考试 2022-01-01
  • 生物质制甲醇系统CO2捕集过程的设计模拟及技术经济性分析
    杨时颖*,郑经纬,李宝霞华侨大学化工学院,福建厦门361021收稿日期:2019-03-29修回日期:2019-05-26出版日期:2019-12-22发布日期:2019-12-22通讯作者:杨时颖基金资助:华侨大学高层次人才科研启动基金Simulationandtechno-economicana ...
    本站小编 Free考研考试 2022-01-01
  • 废锂离子电池中锂提取技术研究进展
    徐平1,2,陈钦1,张西华1,2*,曹宏斌2,王景伟1,张懿2,孙峙2*1.上海第二工业大学电子废弃物研究中心,资源循环科学与工程中心,上海电子废弃物资源化协同创新中心,上海2012092.中国科学院过程工程研究所环境技术与工程研究部,绿色过程与工程重点实验室,北京市过程污染控制工程技术研究中心,北 ...
    本站小编 Free考研考试 2022-01-01
  • 基于智能高分子材料的灵敏检测技术研究进展
    彭寒雨1,汪伟1,2,褚良银1,2*1.四川大学化学工程学院,四川成都6100652.四川大学高分子材料工程国家重点实验室,四川成都610065收稿日期:2019-06-03修回日期:2019-07-22出版日期:2019-10-22发布日期:2019-10-22通讯作者:褚良银基金资助:国家自然科 ...
    本站小编 Free考研考试 2022-01-01
  • 全固态锂离子电池技术进展及现状
    刘鲁静,贾志军,郭强,王毅*,齐涛中国科学院过程工程研究所湿法冶金清洁生产技术国家工程实验室,北京100190收稿日期:2018-11-25修回日期:2019-02-22出版日期:2019-10-22发布日期:2019-10-22通讯作者:王毅基金资助:钯基双金属催化剂的设计制备及其在氧气电还原过程 ...
    本站小编 Free考研考试 2022-01-01
  • 滚筒端面对颗粒物料轴向混合过程影响的离散模拟
    侯全勋1,2,董世杰2,3,张泉5,冯勇进5,王晓宇5,刘晓星2,4*1.中国矿业大学(北京)化学与环境工程学院,北京1000832.中国科学院过程工程研究所多相复杂系统国家重点实验室,北京1001903.中国石油大学(北京)重质油国家重点实验室,北京1022494.中国科学院大学化学与化工学院,北 ...
    本站小编 Free考研考试 2022-01-01
  • 非线性光学晶体3BiCl3.7SC(NH2)2的合成及其转化过程
    白云鹤1,裴铁柱1,张良1,张宁2,马得佳1,尹秋响1,3,4,谢闯1,3,4*1.天津大学化工学院,天津3000722.山东益丰生化环保股份有限公司,山东滨州2565003.天津大学国家工业结晶工程技术研究中心,天津3000724.天津化学化工协同创新中心,天津300072收稿日期:2019-01 ...
    本站小编 Free考研考试 2022-01-01