1. 安徽工业大学建筑工程学院,安徽 马鞍山 2430322. 冶金减排与资源综合利用教育部重点实验室(安徽工业大学),安徽 马鞍山 243002
收稿日期:
2019-02-10修回日期:
2019-03-31出版日期:
2019-12-22发布日期:
2019-12-22通讯作者:
张浩基金资助:
中国博士后科学基金资助项目;高校优秀青年骨干人才国外访学研修项目;安徽省博士后研究人员科研活动经费资助项目;安徽省级大学生创新创业训练计划项目;国家级大学生创新创业训练计划项目Preparation of steel slag modified activated carbon and its formaldehyde degradation performance
Hao ZHANG1,2*, Yuandi XU1, Lei ZHANG1, Xiuyu LIU11. School of Civil Engineering and Architecture, Anhui University of Technology, Ma?anshan, Anhui 243032, China2. Key Laboratory of Metallurgical Emission Reduction and Resources Recycling (Anhui University of Technology), Ministry of Education, Ma?anshan, Anhui 243002, China
Received:
2019-02-10Revised:
2019-03-31Online:
2019-12-22Published:
2019-12-22Contact:
ZHANG Hao 摘要/Abstract
摘要: 以钢渣和助磨剂(乙二醇、三乙醇胺和无水乙醇按体积比1:1:1混合)制备钢渣超细粉,用其对活性炭进行改性处理,获得钢渣改性活性炭,研究了钢渣种类、助磨剂用量和钢渣超细粉用量对钢渣改性活性炭降解甲醛性能的影响,分析了钢渣的化学成分、钢渣超细粉的粒度分布及结构、钢渣改性活性炭的微观结构。结果表明,450 g热闷渣与6 g助磨剂制备的钢渣超细粉用量10 g、活性炭30 g、无水乙醇50 g制备的钢渣改性活性炭具有良好的降解甲醛性能,12 h后甲醛降解率为60.9%。热闷渣中Fe2O3和MnO含量高,有利于甲醛在具有孔结构的活性炭中富集与催化降解;适量的助磨剂可显著减小钢渣超细粉的粒径,改善其粒度分布均匀程度,有利于增加钢渣超细粉与活性炭、甲醛的接触面积;可抵消由于活性炭孔隙率与比表面积降低导致的吸附性能下降,提高钢渣改性活性炭降解甲醛的性能。
引用本文
张浩 徐远迪 张磊 刘秀玉. 钢渣改性活性炭的制备及其降解甲醛性能[J]. 过程工程学报, 2019, 19(6): 1228-1233.
Hao ZHANG Yuandi XU Lei ZHANG Xiuyu LIU. Preparation of steel slag modified activated carbon and its formaldehyde degradation performance[J]. Chin. J. Process Eng., 2019, 19(6): 1228-1233.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.219132
http://www.jproeng.com/CN/Y2019/V19/I6/1228
参考文献
[1] Chen L, Yin S F, Luo S L, et al. Bi2O2CO3/BiOI photocatalysts with heterojunctions highly efficient for visible-light treatment of dye-containing wastewater [J]. Ind. Eng. Chem. Res., 2012, 51(19): 6760?6768. [2] Jing L Q, Xin B F, Yuan F L, et al. Effects of surface oxygen vacancies on photophysical and photochemical processes of Zn-doped TiO2 nanoparticles and their relationships [J]. J. Phys. Chem. B, 2006, 110(36): 17860?17865. [3] Tojo S, Tachikawa T, Fujtsuka M, et al. Iodine-doped TiO2 photocatalysts: correlation between band structure and mechanism [J]. J. Phys. Chem. C, 2008, 112(38): 14948?14954. [4] Zhao D, Peng T Y, Liu M, et al. Fabrication, characterization and photocatalytic activity of Gd3+-doped titania nanoparticles with mesostructure [J]. Microporous Mesoporous Mater., 2008, 114: 166?174. [5] Hsu N Y, Chen P Y, Chang H W, et al. Changes in profiles of airborne fungi in flooded homes in southern Taiwan after Typhoon Morakot [J]. Science of the Total Environment, 2011, 409(9): 1677?1682 [6] 张浩,黄新杰,宗志芳,等. 基于吸附性能的生物质基多孔活性炭制备方案的响应面法优化[J]. 材料工程, 2017, 45(6): 67?72 Zhang H, Huang X J, Zong Z F, et al. Optimization of preparation program for biomass based porous active carbon by response surface methodology based on adsorptive property [J]. Journal of Materials Engineering, 2017, 45(6): 67?72 [7] 张浩. 基于傅里叶红外光谱的生物质环境协调功能材料制备机理及性能研究[J]. 光谱学与光谱分析, 2017, 37(2): 412?415 Zhang H. Study on preparation mechanism and property of biomass environmental coordination function material with fourier transform infrared spectrum [J]. Spectroscopy and Spectral Analysis, 2017, 37(2): 412?415 [8] Fang N J, Guo J X, Shu S, et al. Influence of textures, oxygen-containing functional groups and metal species on SO2, and NO removal over Ce-Mn/NAC [J]. Fuel, 2017, 202: 328?337 [9] Yao G H, Gui K T, Wang F. Low-temperature De-NOX by selective catalytic reduction based on iron-based catalysts [J]. Chemical Engineering & Technology, 2010, 33(7): 1093?1098 [10] Jie D, Qin Z, Zhang S. Catalytic efficiency of iron oxides in decomposition of H2O2, for simultaneous NOX, and SO2, removal: Effect of calcination temperature [J]. Journal of Molecular Catalysis A Chemical, 2014, 393(18): 222?231 [11] Kumar S, Kumar R, Bandopadhyay A, et al. Mechanical activation of granulated blast furnace slag and its effect on the properties and structure of portland slag cement [J]. Cement and Concrete Composites, 2008, 30(8): 679?685 [12] Ramezanianpour A A, Kazemian A, Moghaddam M A, et al. Studying effects of low-reactivity GGBFS on chloride resistance of conventional and high strength concretes [J]. Materials & Structures, 2016, 49(7): 2597?2609 [13] Morel F, Bounor-Legaré V, Espuche E, et al. Surface modification of calcium carbonate nanofillers by fluoro- and alkyl-alkoxysilane: Consequences on the morphology, thermal stability and gas barrier properties of polyvinylidene fluoride nanocomposites [J]. European Polymer Journal, 2012, 48(5): 919?929 [14] 张浩. 基于光催化性能的Cu-Ce/TiO2湿性能[J]. 材料工程, 2018, 46(1): 114?118 Zhang H. Cu-Ce/TiO2 moisture performance based on photocatalytic performance [J]. Journal of Materials Engineering, 2018, 46(1): 114?118 [15] Zhang H. Fang Y. Temperature dependent photoluminescence of surfactant assisted electrochemically synthesized ZnSe nanostructures [J]. Journal of Alloys and Compounds. 2019, 781: 201?208 |
相关文章 15
[1] | 王燕 黄云 姚华 徐祥贵 黄巧 王君雷 马普生 王军生. 太阳盐/钢渣定型复合相变储热材料的制备与性能研究[J]. 过程工程学报, 2021, 21(3): 332-340. |
[2] | 郭成 高翔鹏 李明阳 郝军杰 龙红明 赵卓. 海藻酸钠基吸附材料去除水中重金属离子的研究进展[J]. 过程工程学报, 2021, 21(1): 3-17. |
[3] | 马雅倩 孔艳丽 丁磊 陈忠林 沈吉敏. 改性沸石耦合活性炭强化混凝处理微污染源水[J]. 过程工程学报, 2020, 20(7): 860-869. |
[4] | 张浩 于先坤 龙红明. 钢渣复合取代矿粉、砂和石用作混凝土掺合料与骨料及其性能分析[J]. 过程工程学报, 2020, 20(4): 432-439. |
[5] | 张浩 陈华 张磊 刘秀玉. 不锈钢渣用于制备泡沫混凝土的安全性分析[J]. 过程工程学报, 2020, 20(3): 347-353. |
[6] | 沈文豪 张亚新 宋江. 基于CFD-DEM方法的净化器流场模拟与结构优化[J]. 过程工程学报, 2020, 20(10): 1147-1155. |
[7] | 王爽 郭宏飞 赵斌 刘秀伍 曹吉林. 聚丙烯酸复合铝改性膨润土制备及其对Cr(VI)的吸附[J]. 过程工程学报, 2020, 20(1): 44-51. |
[8] | 白宜灵 范立闯 李涛 陈会民 张怀科 杨勇 张光晋. Zn改性对Ni/ZSM-22催化剂费托重柴油异构降凝性能的影响[J]. 过程工程学报, 2020, 20(1): 116-122. |
[9] | 罗文梅 万里强 朱帅帅 付超 韩心悦 黄发荣. 基于含硅多芳炔化合物制备新型聚三唑树脂[J]. 过程工程学报, 2019, 19(5): 1022-1029. |
[10] | 刘剑 黄莉 彭钢 易正戟. 颗粒活性炭载纳米零价铁去除水中的Cr(VI)[J]. 过程工程学报, 2019, 19(4): 714-720. |
[11] | 魏汝飞 陈龙智 龙红明 王毅璠 李家新 李亚飞 宣明. 铁矿烧结烟气半干法脱硫灰亚临界水热非均相氧化[J]. 过程工程学报, 2019, 19(3): 603-608. |
[12] | 曹仁强 冯占立 李玉娇 赵志娟 石绍渊. 阴离子交换膜改性及抗污染性能研究进展[J]. 过程工程学报, 2019, 19(3): 473-482. |
[13] | 杨小白 韩云龙 李迎根 张浩 钱付平 胡永梅. 活性炭混合钢渣烧结烟气脱硫脱硝实验研究[J]. 过程工程学报, 2019, 19(2): 440-446. |
[14] | 马培勇 王田 武晋州 邢献军 张贤文. 响应面法优化制备塑料-锯末活性炭[J]. 过程工程学报, 2019, 19(2): 377-386. |
[15] | 张浩 徐远迪 方圆. 改性多孔钢渣基橡胶复合材料制备机理[J]. 过程工程学报, 2019, 19(2): 387-392. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3357