内蒙古工业大学机械学院,内蒙古 呼和浩特 010051
收稿日期:
2018-09-26修回日期:
2019-02-21出版日期:
2019-10-22发布日期:
2019-10-22通讯作者:
张勇基金资助:
国家自然科学基金项目Effects of air velocity on emission characteristics of aggregate drying pulverized coal burner
Haiying CHENG, Jianxin LI, Yong ZHANG*, Jing WANG, Zhiyong HUCollege of Mechanical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China
Received:
2018-09-26Revised:
2019-02-21Online:
2019-10-22Published:
2019-10-22Supported by:
National Natural Science Foundation of China摘要/Abstract
摘要: 基于煤粉燃烧机理,结合骨料烘干工艺,建立了骨料烘干煤粉燃烧器内部场的控制模型,采用Fluent软件模拟煤粉燃烧器内部燃烧状况,考察了一、二、三次风的风速对煤粉燃烧器中心轴线处CO, CO2, NO和SO2浓度的影响。结果表明,在研究的风速范围内,一、二、三次风风速越大燃烧越充分,一、二、三次风风速越小,产生的NO越少;三次风风速为40 m/s时,SO2浓度最低;较合理的控制参数为一次风风速30~35 m/s,二次风风速45~50 m/s,三次风风速30~40 m/s。
引用本文
程海鹰 李建新 张勇 王京 胡志勇. 风速对骨料烘干煤粉燃烧器排放特性的影响[J]. 过程工程学报, 2019, 19(5): 1037-1046.
Haiying CHENG Jianxin LI Yong ZHANG Jing WANG Zhiyong HU. Effects of air velocity on emission characteristics of aggregate drying pulverized coal burner[J]. Chin. J. Process Eng., 2019, 19(5): 1037-1046.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218293
http://www.jproeng.com/CN/Y2019/V19/I5/1037
参考文献
[1] 李超慈. 基于SO2、NOx、CO2排放总量控制的电力系统管理规划模型研究[D]. 华北电力大学(北京), 2015. Li Chaoci. Study on Power System Management Planning Model Based on Total Emission Control of SO2、NOx and CO2[D]. North China Electric Power University (Bei Jing) North China Electric Power University, 2015. [2] 郑阳. 大型煤粉燃烧锅炉NOx排放控制系统的运行特性及其优化[D].东南大学,2017. Zheng Yang. Operational Characteristics of NOx Emission Control System of a Large-scale Pulverized Coal-fired Utility Boiler and the Optimization [D]. Southeast University, 2017. [3] 梅振锋, 王飞飞, 张健鹏, 等. 一次风风速对高温预热空气下的煤粉MILD燃烧的影响[J]. 工程热物理学报, 2014, 35(04):782-786. Mei Zhenfeng, Wang feifei, Zhang Jianpeng, et al. Effect of Primary Air Stream Velocity on MILD Combustion of Pulverized Coal in High TemperaturePreheated Air[J]. Journal of Engineering Thermophysics, 2014,35(04): 782-786. [4] 陈立军, 宫永立, 崔俊洁, 等. 火电厂一次风速及煤粉浓度的数据采集系统设计[J]. 计算机测量与控制, 2015, 23(11):3842-3845. Chen Lijun, Gong Yongli, Cui Junjie, et al. Design of Data Acquisition System of Primary Air Velocity and Coal Dust Concentration in Thermal Power Plant[J]. Computer Measurement & Control, 2015, 23(11):3842-3845. [5] 徐顺生, 李罗军, 黄日升, 等. 分解炉内混煤燃烧最佳三次风速的模拟研究[J]. 过程工程学报, 2013, 13(2):181-185. Xu Shunsheng, Li Luojun, Huang Risheng, et al. Simulation Study on The Best Tertiary Air Velocity of Coal Blend Combustion in a Calciner[J]. The Chinese Journal of Process Engineering, 2013, 13(2):181-185. [6] 周志军, 周丛丛, 邵杰,等. 旋流燃烧器中二次直流风速对NOx生成的影响[J]. 热力发电, 2010, 39(3):23-29. Zhou Zhijun, Zhou Congcong, Sao Jie, et al. Influence of Secondary Air Straight Flow Velocity in the swirl Burner upon Formation of NOx[J]. Thermal Power Generation, 2010, 39(3):23-29. [7] 张文学, 郭彩, 武建新. 三次风速对煤粉燃烧器燃烧效率的影响[J]. 热力发电, 2015(4):39-43. Zhang Wenxue, Guo Cai, Wu Jianxin. Effect of Tertiary Air Speed on Combustion Efficiency of Pulverized Coal Burners[J]. Thermal Power Generation, 2015(04): 39-43. [8] 吕太,王泽民,吴红峰,吴昱.600MW机组锅炉分层掺烧神华煤的混煤燃烧数值模拟[J].电站系统工程,2015,31(01):29-31. LV Tai, WANG Zemin, WU Hongfeng, et al. Numerical Simulation of Layered-combustion Shenhua Coal in 600MW Boiler[J]. Power System Engineering, 2015,31(01):29-31. [9] Cui Kai, Liu Bing, Wu Yuxin, et al. Numerical Simulation of Oxy-coal Combustion for a Swirl Burner with EDC Model[J]. Chinese Journal of Chemical Engineering, 2014, 22(2): 193-201. [10] Behnam Rahmanian, Mohammad Reza Safaei, S.N.Kazi. Investigation of pollutant reduction by simulation of turbulent non-premixed pulverized coal combustion[J]. Applied Thermal Engineering, 2014(73): 1222-1235. [11] 刘喜宁. 基于SIMPLE方法下的三维湍流流场数值分析[D]. 西北工业大学, 2005. Liu Xining. Numerical Study of Three-Dimension Turbulent Flow Based on SLMPLE Method[D]. Northwestern Polytechnical University, 2005. [12] Cui K, Zhang H, Wang W L, et al. Comparison between Realizable κ-ε and RSM model in the simulation for a swirl burner[J]. Journal of Engineering Thermophysics, 2012, 33(11): 2006-2009. [13] Zhou L. Advances in Studies on Turbulent Dispersed Multiphase Flows[J]. 中国化学工程学报:英文版, 2010, 18(6):889-898. [14] Guan X Y, Dong Z G, Cheng D L. Experimental Study and Numerical Simulation of the Single- phase Flow Field in a Louver Coal Concentrator[J]. Science Technology & Engineering, 2014, 5(13): 49- 55. [15] Cui K, Liu B, Zhang H, et al. Modeling of Pulverized Coal Combustion in Turbulent Flow with the Consideration of Intermediate Reactions of Volatile Matter[J]. Energy & Fuels, 2013, 27(4):2246-2254. [16] 李振山,张志,陈登高,等.煤粉燃烧中NOx的预测:模型开发及Fluent实现[J]. 煤炭学报, 2016,41(10):2426-2433. LI Zhenshan,ZHANG Zhi,CHEN Denggao,et al. Prediction of NO x during pulverized coal combustion:Model development and its implementation with Fluent [J]. Journal of China Coal Society, 2016,41(10):2426-2433. [17] St?llinger M, Naud B, Roekaerts D, et al. PDF modeling and simulations of pulverized coal combustion–Part 2: Application[J]. Combustion & Flame, 2013, 160(2): 396-410. |
相关文章 15
[1] | 何星晨 王娟 张佳 万加亿 王江云 毛羽. 多组扭曲片排布方式对乙烯裂解炉管内产物收率的影响[J]. 过程工程学报, 2021, 21(4): 401-409. |
[2] | 周小宾 彭世恒 刘勇 王多刚. 废钢对转炉熔池流体流动影响研究[J]. 过程工程学报, 2021, 21(4): 410-419. |
[3] | 郭栋 梁海峰. 气液混合式撞击流反应器流场特性数值模拟[J]. 过程工程学报, 2021, 21(3): 277-285. |
[4] | 王珂 张引弟 王城景 辛玥. CH4掺混H2的燃烧数值模拟及掺混比合理性分析[J]. 过程工程学报, 2021, 21(2): 240-250. |
[5] | 史怡坤 李瑞江 朱学栋 方海灿 朱子彬. 真空变压吸附制氧径向流吸附器的流动特性模拟[J]. 过程工程学报, 2021, 21(1): 18-26. |
[6] | 杨会 朱辉 陈永平 付海明. 滑移效应下纤维绕流场及过滤阻力的数值计算与分析[J]. 过程工程学报, 2021, 21(1): 36-45. |
[7] | 岳高伟 万重重 王路 李彦兵. 玻璃钢化淬冷降温特征及影响因素[J]. 过程工程学报, 2020, 20(8): 947-958. |
[8] | 王志敏 谢峻林 梅书霞 何峰 金明芳. 浮法玻璃熔窑火焰空间石油焦部分替代重油燃烧的数值模拟[J]. 过程工程学报, 2020, 20(6): 737-744. |
[9] | 王娟 何星晨 李军 万加亿 邹槊 徐皓晗. 开口扭曲片圆管强化传热与流动阻力特性模拟[J]. 过程工程学报, 2020, 20(5): 510-520. |
[10] | 王志奇 邹玉洁 刘柏希 张振康. 热风循环隧道烘箱的流场模拟及结构优化[J]. 过程工程学报, 2020, 20(5): 531-539. |
[11] | 张宇 田丽亭 岳小棚 王坤. 槽式太阳能集热管内相变微胶囊悬浮液的热力性能分析[J]. 过程工程学报, 2020, 20(3): 276-284. |
[12] | 王娟 李军 高助威 何星晨 邹槊 万加亿. 热风混合器内部流场的数值模拟与结构改进[J]. 过程工程学报, 2020, 20(2): 148-157. |
[13] | 吴仲达 游永华 王盛 张壮 周思凯 戴方钦 易正明. 扩缩方孔蜂窝蓄热体强化传热的数值模拟[J]. 过程工程学报, 2020, 20(12): 1416-1423. |
[14] | 卢金霖 张东升 罗志国 邹宗树. 旋流中间包夹杂物碰撞去除的数值模拟[J]. 过程工程学报, 2020, 20(12): 1432-1438. |
[15] | 南文光 顾益青. 基于离散元方法的金属粉末铺粉动力学研究[J]. 过程工程学报, 2020, 20(11): 1313-1320. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3335