1. 中国环境科学研究院,北京 100012 2. 河北工业大学能源与环境工程学院,天津 300401 3. 山西省环境规划院,山西 太原 030002
收稿日期:
2019-04-10修回日期:
2019-05-31出版日期:
2019-06-28发布日期:
2019-06-10通讯作者:
黄家玉基金资助:
国家重点研发计划 :大气污染防治技术评价方法和指标体系研究;国家自然科学青年基金Research progress on emission and control of SO3 and mercury in oxy-fuel combustion flue gas
Shiyao LIU1,2, Jiayu HUANG1*, Jinhong LUO3, Shuang DENG1*, Fengyan GUO11. Chinese Research Academy of Environmental Sciences, Beijing 100012, China 2. School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China 3. Shanxi Academy for Environmental Planning, Taiyuan, Shanxi 030002, China
Received:
2019-04-10Revised:
2019-05-31Online:
2019-06-28Published:
2019-06-10摘要/Abstract
摘要: 富氧燃烧技术可有效控制温室气体排放,是一种具有应用潜力的节能减排技术。本工作系统总结分析了富氧燃烧方式下关键烟气组分(SOx, NOx, H2O, Cl2/HCl等)对SO3和Hg排放规律的影响及飞灰对烟气中SO3吸附去除和Hg富集规律的影响,提出了富氧燃烧方式下较优的具可行性的污染物协同控制技术建议,为富氧燃烧技术工业应用面临的污染物协同控制提供重要参考。分析了目前富氧燃烧方式下SO3和Hg排放规律及优化控制研究存在的问题,对未来的研究方向提出了建议。
引用本文
刘仕尧 黄家玉 罗锦洪 邓双 郭凤艳. 富氧燃烧方式下烟气中SO3和Hg的排放及控制研究进展[J]. 过程工程学报, 2019, 19(S1): 115-122.
Shiyao LIU Jiayu HUANG Jinhong LUO Shuang DENG Fengyan GUO. Research progress on emission and control of SO3 and mercury in oxy-fuel combustion flue gas[J]. Chin. J. Process Eng., 2019, 19(S1): 115-122.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.219176
http://www.jproeng.com/CN/Y2019/V19/IS1/115
参考文献
[1]郑楚光, 赵永椿, 郭欣.中国富氧燃烧技术研发进展[J].中国电机工程学报, 2014, 34(23):3856-3864 [2]Zheng CH G, Zhao Y CH, Guo X.Research and development of oxy-fuel combustion in china[J].Proceedings of the CSEE, 2014, 34(23):3856-3864 [3]刘典福, 周超群, 孙雍春.燃烧技术的研究现状及进展[J].广州化工, 2017, 45(24):2- [4]Liu D F, Zhou CH Q, S Y CH.Research progress and expectation of O2C02 combustion technology[J].Guangzhou Chemical Industry, 2017, 45(24):28-30 [5]Fuel Research, New Fuel Research Study Results Reported from University of Stuttgart (High-Temperature Conversion of SO3 to SO3: Homogeneous Experiments and Catalytic Effect of Fly Ash from Air and Oxy-fuel Firing) [J].Energy Weekly News, 2015. [6]Sp?Rl R, Belo L, Shah K, et al.Mercury Emissions and Removal by Ash in Coal-Fired Oxy-fuel Combustion[J].Energy & Fuels, 2014, 28(1):123-135 [7]Sp?Rl R, Maier J, Belo L, et al.Mercury and SO3 Emissions in Oxy-fuel Combustion [J]. Energy Procedia, 2014, 63: 386-402. [8]Sp?Rl R, Maier J, Scheffknecht, Günter.Sulphur Oxide Emissions from Dust-fired Oxy-fuel Combustion of Coal [J]. Energy Procedia, 2013, 37: 1435-1447. [9]吴辉, 邱勇, 刘豪, 等.O2/CO2气氛中SO2和NO对HCl均相氧化Hg的影响研究 [J]. 工程热物理学报, 2013(12): 2418-2422. [10]Wu H, Qiu Y, Liu H, et al.Experimental study about NO and S02 influence on homogeneous mercury oxidation by HCl under 02/C02 atmosphere [J]. Journal Of Engineeging Thermophysics, 2013(12): 2418-2422. [11]王卉, 段钰锋, 李雅宁, 等.煤在富氧流化床燃烧条件下汞的析出及形态分布 [J]. 化工进展, 35(10). [12]Wang H, Duan Y F, Li Y N, et al.Mercury emission and speciation distribution under oxy coal combustion in fluidized bed [J]. Chemical Industry and Engineerning Progress, 35(10). [13]李雅宁, 段钰锋, 王卉, 等.O2/CO2气氛下煤中汞的释放特性[J]. 化工进展, 2017(1). [14]Li Y N,Duan Y F,Wang H,et al.Release characteristics of mercury in coal under 02/C02 atmosphere [J]. ChemicalL Industry and Engineerning Progress, 2017(1). [15]Yang J, Ma S, Zhao Y, et al.Mercury emission and speciation in fly ash from a 35 MWth large pilot boiler of oxyfuel combustion with different flue gas recycle [J]. Fuel, 2017, 195: 174-181. [16]Wang H, Duan Y, Li Y N, et al.Investigation of mercury emission and its speciation from an oxy-fuel circulating fluidized bed combustor with recycled warm flue gas [J]. Chemical Engineering Journal, 2016, 300: 230-235. [17]代维, 文军红, 羊东明, 等.铝合金换热器汞腐蚀与防护[J].石油化工腐蚀与防护, 2009, 26(6):36-38 [18]Dai W, Wen J H, Yang D M, et al.Mercury corrosion and protection of aluminum alloy heat exchanger[J].Corrosion & Protection in Petrochemical Industry, 2009, 26(6):36-38 [19]Alzueta U.Measurement and modeling of sulfur trioxide formation in a flow reactor under post-flame conditions[J].Combustion & Flame, 2013, 160(6):1142-1151 [20]Fleig D, Andersson K, Normann F, et al.SO3 Formation under Oxyfuel Combustion Conditions[J].Industrial & Engineering Chemistry Research, 2011, 50(50):8505-8514 [21]Wang H, Duan Y, Li Y N, et al.Experimental Study on Mercury Oxidation in a FluidizedBed under O2CO2 and O2N2Atmospheres[J].Energy & Fuels, 2016, 30(6):5065-5070 [22]肖海平, 韩高岩, 董琳, 等.烟气循环方式对生成的影响[J].动力工程学报, 2015, 35(11):918-922 [23]Xiao H P, Han G Y, Dong L, et al.Influence of flue gas circulation mode on the formation of SO3[J].Journal of Chinese Society of Power Engineering, 2015, 35(11):918-922 [24]Sarbassov Y, Duan L, Jeremias M, et al.SO3 formation and the effect of fly ash in a bubbling fluidised bed under oxy-fuel combustion conditions [J]. Fuel Processing Technology, 2017, 167: 314-321. [25]SO3 formation under oxy-CFB combustion conditions [J].International Journal of Greenhouse Gas Control, 2015, 43: 172-178. [26]Wang F, Shen B, Yang J, et al.Review of Mercury Formation and Capture from CO2-Enriched Oxy-Fuel Combustion Flue Gas[J].Energy & Fuels, 2017, 31(2):1053-1064 [27]Wu H, Liu H, Wang Q, et al.Experimental study of homogeneous mercury oxidation under O2CO2 atmosphere[J].Proceedings of the Combustion Institute, 2013, 34(2):2847-2854 [28]Alzueta U.Measurement and modeling of sulfur trioxide formation in a flow reactor under post-flame conditions[J].Combustion & Flame, 2013, 160(6):1142-1151 [29]Han B, Kim H J, Kim Y J.Fine particle collection of an electrostatic precipitator in CO2-rich gas conditions for oxy-fuel combustion[J].Science of the Total Environment, 2010, 408(21):5158-5164 [30]Mitsui Y, Imada N, Kikkawa H, et al.Study of Hgand SO3 behavior in flue gas of oxy-fuel combustion system [J]. International Journal of Greenhouse Gas Control, 2011, 5(supp-S1). [31]Wang X, Liu X, Li D, et al.Effect of steam and sulfur dioxide on sulfur trioxide formation during oxy-fuel combustion [J]. International Journal of Greenhouse Gas Control, 2015, 43: 1-9. [32]杭的强, 胡长兴, 郭瑞堂, 等.富氧燃烧气氛中H2O和HCl对HgO氧化的影响 [J]. 热力发电, 2016, 45(7). [33]Hang D Q, Hu CH X, Guo R T, et al.Effect of H2O and HCl on in oxygen-enriched oxidation of elementary mercury combustion atmosphere [J]. Thermal Power Generation, 2016, 45(7). [34]Wang H, Duan Y, Li Y N, et al.Prediction of Synergic Effects of H2O,SO2,and HCl on Mercury and Arsenic Transformation underOxy-Fuel Combustion Conditions[J].Energy & Fuels, 2016, 30(10):8463-8468 [35]Fernández-Miranda, Nuria, Lopez-Anton M A, Díaz-Somoano, Mercedes, et al.Effect of Oxy-Combustion Flue Gas on Mercury Oxidation[J].Environmental Science & Technology, 2014, 48(12):7164-7170 [36]Fleig D, Andersson K, Johnsson F.Influence of Operating Conditions on SO\r,3\r,Formation during Air and Oxy-Fuel Combustion[J].Industrial & Engineering Chemistry Research, 2012, 51(28):9483-9491 [37]Armitage J W, Cullis C F.Studies of the reaction between nitrogen dioxide and sulfur dioxide[J].Combustion & Flame, 1971, 16(2):125-130 [38]Ting T, Stanger R, Wall T.Laboratory investigation of high pressure NO oxidation to NO2 and capture with liquid and gaseous water under oxy-fuel CO2 compression conditions[J].International Journal of Greenhouse Gas Control, 2013, 18(Complete):15-22 [39]Winkler F, Schoedel N, Zander H J, et al.Cold DeNOx development for oxyfuel power plants [J]. International Journal of Greenhouse Gas Control, 2011, 5(supp-S1). [40]Li X, Huang Q, Luo C, et al.Effect of acid gases on elemental mercury removal in oxy-fuel CO2 compression process [J]. Energy & Fuels, 2017, 32(4). [41]Status review of mercury control options for coal-fired power plants [J].Fuel Processing Technology, 2003, 82(2): 89-165. [42]Wall T, Liu Y, Spero C, et al.An overview on oxyfuel coal combustion—State of the art research and technology development[J].Chemical Engineering Research & Design, 2009, 87(8):1003-1016 [43]Izquierdo M T, de las Obras-Loscertales M, de Diego L F, et al.Mercury emissions from coal combustion in fluidized beds under oxy-fuel and air conditions: Influence of coal characteristics and O2 concentration [J]. Fuel Processing Technology, 2017, 167: 695-701. [44]Galbreath K C, Zygarlicke C J.Mercury transformations in coal combustion flue gas[J].Fuel Processing Technology, 2000, 65-66(none):289-310 [45]Belo L P, Elliott L K, Stanger R J, et al.Impacts of Sulfur Oxides on Mercury Speciation andCapture by Fly Ash during Oxy-fuel Pulverized Coal Combustion[J].Energy & Fuels, 2016, 30(10):8658-8664 [46]Granite E J, Presto A A.Comment on the“Role of SO2 for Elemental Mercury Removal from Coal Combustion Flue Gas by Activated Carbon”[J].Energy & Fuels, 2008, 22(5):3557-3558 [47]Duan L, Zhou W, Li H, et al.Sulfur fate during bituminous coal combustion in an oxy-fired circulating fluidized bed combustor[J].Korean Journal of Chemical Engineering, 2011, 28(9):1952-1955 [48]Galloway B D, Sasmaz E, Padak B Binding of SO3 to fly ash components: CaO, MgO, Na_2 Oand K_2 O [J].Fuel, 2015, 145(1): 79-83. [49]J?Rgensen T L, Livbjerg H, Glarborg P.Homogeneous and heterogeneously catalyzed oxidation of SO2[J].Chemical Engineering Science, 2007, 62(16):4496-4499 [50]AndrzejUrbanek, MarekTrela.Catalytic Oxidation of Sulfur Dioxide[J].Catalysis Reviews, 1980, 21(1):61- [51]Kim K H, Choi J S.Kinetics and mechanism of the oxidation of sulfur dioxide onalpha.-Fe2O3[J].Carcinogenesis, 1981, 85(17):2447-2450 [52]M.Antonia Lopez-Antona,Ron Perrya,Patricia Abad-Valleb,Mercedes Díaz-Somoanob,MRos. Speciation of mercury in fly ashes by temperature programmed decomposition[J].Fuel Processing Technology, 2011, 92(3):707-711 [53]Zhuang Y, Pavlish J H.Fate of Hazardous Air Pollutants in Oxygen-Fired Coal Combustion with Different Flue Gas Recycling[J].Environmental Science & Technology, 2012, 46(8):4657-4665 [54]Jew A D, Rupp E C, Geatches D L, et al.Mercury Interaction with the Fine Fraction of Coal-Combustion Fly Ash in a Simulated Coal Power Plant Flue Gas Stream[J].Energy & Fuels, 2015, 29(9):6025-6038 [55]Kostova I, Vassileva C, Dai S, et al.Influence of surface area properties on mercury capture behaviour of coal fly ashes from some Bulgarian power plants[J].International Journal of Coal Geology, 2013, 116-117(Complete):227-235 [56]Fernández-Miranda, Nuria, Rumayor M, Lopez-Anton M A, et al.Mercury Retention by Fly Ashes from Oxy-fuel Processes[J].Energy & Fuels, 2015, 29(4):2227-2233 [57]Bhardwaj R, Chen X, Vidic R D.Impact of Fly Ash Composition on Mercury Speciation in Simulated Flue Gas[J].Journal of the Air & Waste Management Association, 2009, 59(11):1331-1338 [58]He P, Zhang X B, Peng X L, et al.Effect of fly ash composition on the retention of mercury in coal-combustion flue gas [J]. Fuel Processing Technology, 2016, 142: 6-12. [59]Wang F, Wang S, Meng Y, et al.Mechanisms and roles of fly ash compositions on the adsorption and oxidation of mercury in flue gas from coal combustion [J]. Fuel, 2016, 163: 232-239. [60]Abad-Valle P, Lopez-Anton M A, Diaz-Somoano M, et al.Influence of iron species present in fly ashes on mercury retention and oxidation[J].Fuel, 2011, 90(8):2808-2811 [61]Toftegaard M B, Brix J, Jensen P A, et al.Oxy-fuel combustion of solid fuels[J].Progress in Energy & Combustion Science, 2010, 36(5):581-625 [62]Abad-Valle P, Lopez-Anton M A, Diaz-Somoano M, et al.The role of unburned carbon concentrates from fly ashes in the oxidation and retention of mercury[J].Chemical Engineering Journal, 2011, 174(1):86-92 [63]Quirós-álvarez, Margarita, Diaz Somoano M, Bongartz W, et al.Mercury interaction on modified activated carbons under oxyfuel combustion conditions [J]. Energy & Fuels, 2018: acs.energyfuels.8b00468. [64]Hower J C, Senior C L, Suuberg E M, et al.Mercury capture by native fly ash carbons in coal-fired power plants[J].Progress in Energy and Combustion Science, 2010, 36(4):510-529 [65]Wilcox J, Rupp E, Ying S C, et al.Mercury adsorption and oxidation in coal combustion and gasification processes [J]. International Journal of Coal Geology, 2012, 90: 4-20. [66]Ren J, Chen J, Luo Y, et al.Research on vapor mercury adsorption by Ca-based sorbents[C]//2009 International Conference on Energy and Environment Technology. IEEE, 2009, 3: 504-508. [67]Deng S, Shu Y, Li S, et al.Chemical forms of the fluorine, chlorine, oxygen and carbon in coal fly ash and their correlations with mercury retention [J]. Journal of hazardous materials, 2016, 301: 400-406. [68]Yang J, Zhao Y, Chang L, et al.Mercury adsorption and oxidation over cobalt oxide loaded magnetospheres catalyst from fly ash in oxyfuel combustion flue gas[J].Environmental science & technology, 2015, 49(13):8210-8218 [69]Zhang C, Song W, Zhang X, et al.Synthesis,characterization and evaluation of resin-based carbon spheres modified by oxygen functional groups for gaseous elemental mercury capture[J].Journal of materials science, 2018, 53(13):9429-9448 [70]杨用龙, 苏秋凤, 张杨, 等.燃煤电站典型超低排放工艺的SO3脱除性能及排放特性 [J/OL]. 中国电机工程学报: (2016?3?11)/[2019-04-08]. https://doi.org/10.13334/j.0258-8013.pcsee.172356. [71]Yang Y L, Su Q F, Zhang Y, et al.Removal Performance and Emission Characteristics of SO3 by Typical Ultra-low Emission [72]Technologies in Coal-fired Power Plants.[J/OL]. Proceedings of the CSEE: (2016?3?11)/[2019-04-08]. https://doi.org/10.13334/j.0258-8013.pcsee.172356. [73]李高磊, 郭沂权, 张世博, 等.超低排放燃煤电厂生成及控制的试验研究[J].中国电机工程学报, 2019, 39(04):1079-1086 [74]Li G L, Guo X Q, Zhang S B, et al.Experimental Research on SO3 Generation and Control in Ultra-low Emission Coal-fired Power Plant[J].Proceedings of the CSEE, 2019, 39(04):1079-1086 [75]华晓宇, 章良利, 宋玉彩, 等.燃煤机组超低排放改造对汞排放的影响[J].热能动力工程, 2016, 31(07):110-116 [76]Hua X Y, Zhang L L, Song Y C, et al.Influence of the Ultra Low Emission Modification of a Coal-fired Unit on the Mercury Emissions[J].Journal of Engineering for Thermal Energy & Power, 2016, 31(07):110-116 [77]崔立明, 黄志杰, 莫华, 等.不同超低排放技术路线的协同脱汞实测与研究[J].中国电力, 2017, 50(10):136-139 [78]Cui L M, Huang Z J, Mo H, et al.Test and Study on Synergic Mercury Removal Performance of Environmental Protection Facilities at Ultra-Low Pollutants Emission[J].Gas & Heat, 2017, 50(10):136-139 [79]赵毅, 韩立鹏.超低排放燃煤电站汞分布特征研究[J].环境科学学报, 2019, 39(03):853-858 [80]Zhao Y, Han L P.Distribution Characteristics of Mercury in 660MW Coal-fired PowerPlant with Ultra-low Emission[J].Acta Scientiae Circumstantiae, 2019, 39(03):853-858 |
相关文章 7
[1] | 任昕 张引弟 刘畅 王珂. O2/CO2气氛中水蒸气预混CH4燃烧特性与烟气余热梯级利用方案[J]. 过程工程学报, 2019, 19(5): 1047-1056. |
[2] | 于荆鑫 王菁 杨凤玲 郝艳红 程芳琴. 基于Aspen Plus的燃煤电厂烟气污染控制单元模拟[J]. 过程工程学报, 2019, 19(2): 329-337. |
[3] | 曹文健 任飞 相龙凯 冯艳 楚化强 顾明言. 富氧气氛下碳氢燃料同轴射流扩散火焰的形态特性[J]. 过程工程学报, 2017, 17(3): 632-639. |
[4] | 赵荣 杨舒萍 卿山 王明悦 梁美玲 桂兆. 响应曲面法评价与优化混煤富氧燃烧特性 [J]. , 2017, 17(1): 110-118. |
[5] | 陈彦广张雷韩洪晶赵哲吉闫伟宁宋华. 钙钛矿类混合离子电子导体在污染物处理中应用的研究进展[J]. 过程工程学报, 2015, 15(5): 892-900. |
[6] | 左霜林金清孙亚飞方国阳. SO3H-功能化季铵盐离子液体催化酯交换制备生物柴油[J]. , 2011, 11(1): 153-157. |
[7] | 鲁冠军;赵黛青;杨浩林;杨卫斌. 甲烷/富氧射流扩散火焰NOx的排放特性[J]. , 2007, 7(1): 29-33. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3266