1. 中国科学院过程工程研究所多相复杂系统国家重点实验室,北京 100190 2. 中国科学院大学化工学院,北京 100049
收稿日期:
2018-12-21修回日期:
2019-01-21出版日期:
2019-08-22发布日期:
2019-08-15通讯作者:
陈飞国基金资助:
国家自然科学基金项目;国防基础科研挑战计划;中国科学院前沿科学重点研究项目Coupling of coarse-grained discrete particle method and particle-in-cell method for simulation of gas-solid flow
Feiguo CHEN1*, Wei GE1,21. State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China 2. School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Received:
2018-12-21Revised:
2019-01-21Online:
2019-08-22Published:
2019-08-15Contact:
Fei-guo CHEN Supported by:
;Science Challenge Project摘要/Abstract
摘要: 在气固两相流动的模拟中严格处理颗粒运动和颗粒相互作用时,欧拉?拉格朗日(EL)方法比欧拉?欧拉(EE)方法更具优势。但传统的EL方法仅能处理少量颗粒。将颗粒群作为单个计算颗粒处理可扩大模拟规模,粗粒化离散颗粒法(CG-DPM)和多相物质点法(MP-PIC)是其中两种主要方法,分别更适用于稠密和稀疏的颗粒流体系统。将两种方法耦合建立了更通用、准确和有效的EL方法,比较了不同耦合参数下流型、固相分率分布等定量信息,确定了最佳耦合参数。
引用本文
陈飞国 葛蔚. 耦合粗粒化离散颗粒法和多相物质点法的气固两相流模拟[J]. 过程工程学报, 2019, 19(4): 651-660.
Fei-guo CHEN Wei GE. Coupling of coarse-grained discrete particle method and particle-in-cell method for simulation of gas-solid flow[J]. Chin. J. Process Eng., 2019, 19(4): 651-660.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218338
http://www.jproeng.com/CN/Y2019/V19/I4/651
参考文献
[1]Tsuji Y, Tanaka T, Ishida T.Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe[J].Powder Technology, 1992, 71(3):239-250 [2]Kafui K D, Thornton C, Adams M J.Discrete particle-continuum fluid modelling of gas–solid fluidised beds[J].Chemical Engineering Science, 2002, 57(13):2395-2410 [3]Chiesa M, Mathiesen V, Melheim J A, et al.Numerical simulation of particulate flow by the Eulerian–Lagrangian and the Eulerian–Eulerian approach with application to a fluidized bed[J].Computers & Chemical Engineering, 2005, 29(2):291-304 [4]Patankar N A, Joseph D D.Modeling and numerical simulation of particulate flows by the Eulerian–Lagrangian approach[J].International Journal of Multiphase Flow, 2001, 27(10):1659-1684 [5] Wang S, Luo K, Hu C, et al.Impact of operating parameters on biomass gasification in a fluidized bed reactor: An Eulerian-Lagrangian approach[J].Powder Technology, 2018, 333:304-316 [6]Zahari N M, Zawawi M H, Sidek L M, et al.Introduction of discrete phase model (DPM) in fluid flow: A review[J].AIP Conference Proceedings, 2018, 2030(1):020234- [7]Xie J, Zhong W, Jin B, et al.Eulerian–Lagrangian method for three-dimensional simulation of fluidized bed coal gasification[J].Advanced Powder Technology, 2013, 24(1):382-392 [8]Durst F, Miloievic D, Sch?nung B.Eulerian and Lagrangian predictions of particulate two-phase flows: a numerical study[J].Applied Mathematical Modelling, 1984, 8(2):101-115 [9] van Wachem B G M, Schouten J C, Krishna R, et al.Eulerian simulations of bubbling behaviour in gas-solid fluidised beds[J].Computers & Chemical Engineering, 1998, 22:S299-S306 [10] Wu Y, Liu D, Ma J, et al.Effects of gas-solid drag model on Eulerian-Eulerian CFD simulation of coal combustion in a circulating fluidized bed[J]. Powder Technology, 2018, 324: 48-61. [11]Wang J, Ge W, Li J.Eulerian simulation of heterogeneous gas–solid flows in CFB risers: EMMS-based sub-grid scale model with a revised cluster description[J].Chemical Engineering Science, 2008, 63(6):1553-1571 [12] Cammarata L, Lettieri P, Micale Giorgio D M, et al.2D and 3D CFD Simulations of Bubbling Fluidized Beds Using Eulerian-Eulerian Models, in International Journal of Chemical Reactor Engineering. 2003. [13]Yang N, Wang W, Ge W, et al.CFD simulation of concurrent-up gas–solid flow in circulating fluidized beds with structure-dependent drag coefficient[J].Chemical Engineering Journal, 2003, 96(1):71-80 [14]Wang W, Li J.Simulation of gas–solid two-phase flow by a multi-scale CFD approach—of the EMMS model to the sub-grid level[J].Chemical Engineering Science, 2007, 62(1):208-231 [15]Sakano M, Yaso T, Nakanishi H.Numerical simulation of two-dimensional fluidized bed using discrete element method with imaginary sphere model[J].Japanese Journal of Multiphase Flow, 2000, 14(1):66-73 [16] Washino K, Hsu C, Kawaguchi T, et al.Similarity model for DEM simulation of fluidized bed[J]. Journal of the Society of Powder Technology, Japan, 2007, 44: 198-205. [17]Mokhtar M A, Kuwagi K, Takami T, et al.Validation of the similar particle assembly (SPA) model for the fluidization of Geldart's group A and D particles[J].AIChE Journal, 2012, 58(1):87-98 [18] Kuwagi K, Takeda H, Horio M.The similar particle assembly (SPA) model: an approach to large-scale discrete element (DEM) simulation[J]. Fluidization IX, 2004, 160: 243-250. [19]Sakai M, Takahashi H, Pain C C, et al.Study on a large-scale discrete element model for fine particles in a fluidized bed[J].Advanced Powder Technology, 2012, 23(5):673-681 [20]Sakai M, Koshizuka S.Large-scale discrete element modeling in pneumatic conveying[J].Chemical Engineering Science, 2009, 64(3):533-539 [21] Sakai M, Abe M, Shigeto Y, et al.Verification and validation of a coarse grain model of the DEM in a bubbling fluidized bed[J]. Chemical Engineering Journal, 2014, 244: 33-43. [22] Lu L, Xu J, Ge W, et al.EMMS-based discrete particle method (EMMS–DPM) for simulation of gas–solid flows[J]. Chemical Engineering Science, 2014, 120: 67-87. [23] Li J, Kwauk M.Particle-Fluid Two-Phase Flow: The Energy-Minimization Multi-Scale Method[M]. 1994, Beijing: Metallurgical Industry Press. [24]Andrews M J, O' Rourke P J.The multiphase particle-in-cell (MP-PIC) method for dense particulate flows[J].International Journal of Multiphase Flow, 1996, 22(2):379-402 [25]Snider D M.An Incompressible Three-Dimensional Multiphase Particle-in-Cell Model for Dense Particle Flows[J].Journal of Computational Physics, 2001, 170(2):523-549 [26] Evans M W, Harlow F H, Bromberg E.The particle-in-cell method for hydrodynamic calculations. 1957, DTIC Document. [27]Harlow F H.The particle-in-cell computing method for fluid dynamics[J].Methods in computational physics, 1964, 3(3):319-343 [28]Greengard L, Rokhlin V.A fast algorithm for particle simulations[J].Journal of Computational Physics, 1987, 73(2):325-348 [29] Karimipour S, Pugsley T.Application of the particle in cell approach for the simulation of bubbling fluidized beds of Geldart A particles[J]. Powder Technology, 2012, 220: 63-69. [30] Solnordal C B, Kenche V, Hadley T D, et al.Simulation of an internally circulating fluidized bed using a multiphase particle-in-cell method[J]. Powder Technology, 2015, 274: 123-134. [31]Snider D, Banerjee S.Heterogeneous gas chemistry in the CPFD Eulerian-Lagrangian numerical scheme (ozone decomposition)[J].Powder Technology, 2010, 199(1):100-106 [32] Zhang W, You C.Numerical approach to predict particle breakage in dense flows by coupling multiphase particle-in-cell and Monte Carlo methods[J]. Powder Technology, 2015, 283: 128-136. [33] Wang Q, Yang H, Wang P, et al.Application of CPFD method in the simulation of a circulating fluidized bed with a loop seal Part II—Investigation of solids circulation[J]. Powder Technology, 2014, 253: 822-828. [34]Abbasi A, Islam M A, Ege P E, et al.CPFD flow pattern simulation in downer reactors[J].AIChE Journal, 2013, 59(5):1635-1647 [35]Xiong Q, Li B, Chen F, et al.Direct numerical simulation of sub-grid structures in gas–solid flow—GPU implementation of macro-scale pseudo-particle modeling[J].Chemical Engineering Science, 2010, 65(19):5356-5365 [36] Harris S, Crighton D.Solitons, solitary waves, and voidage disturbances in gas-fluidized beds[J]. Journal of Fluid Mechanics, 1994, 266: 243-276. [37] Chen X, Wang J.A comparison of two-fluid model, dense discrete particle model and CFD-DEM method for modeling impinging gas–solid flows[J]. Powder Technology, 2014, 254: 94-102. [38]Wang W, Li J.Simulation of gas-solid two-phase flow by a multi-scale CFD approach--Extension of the EMMS model to the sub-grid level[J].Chemical Engineering Science, 2007, 62(1-2):208-231 [39]Lu B, Wang W, Li J.Eulerian simulation of gas–solid flows with particles of Geldart groups A,B and D using EMMS-based meso-scale model[J].Chemical Engineering Science, 2011, 66(20):4624-4635 [40]Issa R I.Solution of the implicitly discretised fluid flow equations by operator-splitting[J].Journal of Computational Physics, 1986, 62(1):40-65 [41] Rapaport D C.The art of molecular dynamics simulation[M]. 2nd Edition ed. 2004, Cambridge: Cambridge University Press. 549. [42] NVIDIA.NVIDIA CUDA Compute Unified Device Architecture Programming Guide[M]. 1.0 ed. 2007, Santa Clara, CA. 112. [43] Lu L, Xu J, Ge W, et al.Computer virtual experiment on fluidized beds using a coarse-grained discrete particle method—EMMS-DPM[J]. Chemical Engineering Science, 2016, 155: 314-337. [44]Horio M, Ishii H, Nishimuro M.On the nature of turbulent and fast fluidized beds[J].Powder Technology, 1992, 70(3):229-236 |
相关文章 9
[1] | 马树辉 王若瑾 王德武 刘燕 张少峰. Geldart A类颗粒节涌床气固流动特性的实验及模拟[J]. 过程工程学报, 2019, 19(5): 967-974. |
[2] | 郑晓野蒲文灏岳晨何伟峰韩东. 采用改进的曳力模型模拟2D鼓泡流化床的流化特性[J]. 过程工程学报, 2015, 15(5): 737-743. |
[3] | 严超宇卢春喜郭荣绵. 气固环流反应器内颗粒返混特性[J]. , 2009, 9(6): 1048-1054. |
[4] | 金学伟王长松张玉宝薛建国裴红星曹军民. 板坯连铸凝固过程动态耦合数值模拟[J]. , 2009, 9(2): 233-237. |
[5] | 谭宏涛;董干国;魏耀东;时铭显. g射线衰减技术在提升管内颗粒浓度测量上的应用[J]. , 2007, 7(5): 895-899. |
[6] | 魏耀东;刘仁桓;孙国刚;时铭显. 负压差立管气固流动的不稳定性实验分析[J]. , 2003, 3(6): 493-497. |
[7] | 鄂承林;卢春喜;高金森;徐春明;时铭显. 气固两相流中颗粒时均速度的测量新方法[J]. , 2003, 3(6): 505-511. |
[8] | 魏耀东;刘仁桓;孙国刚;时铭显. 负压差立管内气固两相流的流态特性及分析[J]. , 2003, 3(5): 0-0. |
[9] | 欧阳洁; 孙国刚; YU Ai-bing. 垂直管道中塞状流的模拟[J]. , 2003, 3(3): 0-0. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3297