删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

耦合粗粒化离散颗粒法和多相物质点法的气固两相流模拟

本站小编 Free考研考试/2022-01-01

陈飞国1*,葛蔚1,2
1. 中国科学院过程工程研究所多相复杂系统国家重点实验室,北京 100190 2. 中国科学院大学化工学院,北京 100049
收稿日期:2018-12-21修回日期:2019-01-21出版日期:2019-08-22发布日期:2019-08-15
通讯作者:陈飞国

基金资助:国家自然科学基金项目;国防基础科研挑战计划;中国科学院前沿科学重点研究项目

Coupling of coarse-grained discrete particle method and particle-in-cell method for simulation of gas-solid flow

Feiguo CHEN1*, Wei GE1,2
1. State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China 2. School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Received:2018-12-21Revised:2019-01-21Online:2019-08-22Published:2019-08-15
Contact:Fei-guo CHEN

Supported by:;Science Challenge Project




摘要/Abstract


摘要: 在气固两相流动的模拟中严格处理颗粒运动和颗粒相互作用时,欧拉?拉格朗日(EL)方法比欧拉?欧拉(EE)方法更具优势。但传统的EL方法仅能处理少量颗粒。将颗粒群作为单个计算颗粒处理可扩大模拟规模,粗粒化离散颗粒法(CG-DPM)和多相物质点法(MP-PIC)是其中两种主要方法,分别更适用于稠密和稀疏的颗粒流体系统。将两种方法耦合建立了更通用、准确和有效的EL方法,比较了不同耦合参数下流型、固相分率分布等定量信息,确定了最佳耦合参数。

引用本文



陈飞国 葛蔚. 耦合粗粒化离散颗粒法和多相物质点法的气固两相流模拟[J]. 过程工程学报, 2019, 19(4): 651-660.
Fei-guo CHEN Wei GE. Coupling of coarse-grained discrete particle method and particle-in-cell method for simulation of gas-solid flow[J]. Chin. J. Process Eng., 2019, 19(4): 651-660.



使用本文




0
/ / 推荐

导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218338
http://www.jproeng.com/CN/Y2019/V19/I4/651







[1]Tsuji Y, Tanaka T, Ishida T.Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe[J].Powder Technology, 1992, 71(3):239-250 [2]Kafui K D, Thornton C, Adams M J.Discrete particle-continuum fluid modelling of gas–solid fluidised beds[J].Chemical Engineering Science, 2002, 57(13):2395-2410 [3]Chiesa M, Mathiesen V, Melheim J A, et al.Numerical simulation of particulate flow by the Eulerian–Lagrangian and the Eulerian–Eulerian approach with application to a fluidized bed[J].Computers & Chemical Engineering, 2005, 29(2):291-304 [4]Patankar N A, Joseph D D.Modeling and numerical simulation of particulate flows by the Eulerian–Lagrangian approach[J].International Journal of Multiphase Flow, 2001, 27(10):1659-1684 [5] Wang S, Luo K, Hu C, et al.Impact of operating parameters on biomass gasification in a fluidized bed reactor: An Eulerian-Lagrangian approach[J].Powder Technology, 2018, 333:304-316 [6]Zahari N M, Zawawi M H, Sidek L M, et al.Introduction of discrete phase model (DPM) in fluid flow: A review[J].AIP Conference Proceedings, 2018, 2030(1):020234- [7]Xie J, Zhong W, Jin B, et al.Eulerian–Lagrangian method for three-dimensional simulation of fluidized bed coal gasification[J].Advanced Powder Technology, 2013, 24(1):382-392 [8]Durst F, Miloievic D, Sch?nung B.Eulerian and Lagrangian predictions of particulate two-phase flows: a numerical study[J].Applied Mathematical Modelling, 1984, 8(2):101-115 [9] van Wachem B G M, Schouten J C, Krishna R, et al.Eulerian simulations of bubbling behaviour in gas-solid fluidised beds[J].Computers & Chemical Engineering, 1998, 22:S299-S306 [10] Wu Y, Liu D, Ma J, et al.Effects of gas-solid drag model on Eulerian-Eulerian CFD simulation of coal combustion in a circulating fluidized bed[J]. Powder Technology, 2018, 324: 48-61. [11]Wang J, Ge W, Li J.Eulerian simulation of heterogeneous gas–solid flows in CFB risers: EMMS-based sub-grid scale model with a revised cluster description[J].Chemical Engineering Science, 2008, 63(6):1553-1571 [12] Cammarata L, Lettieri P, Micale Giorgio D M, et al.2D and 3D CFD Simulations of Bubbling Fluidized Beds Using Eulerian-Eulerian Models, in International Journal of Chemical Reactor Engineering. 2003. [13]Yang N, Wang W, Ge W, et al.CFD simulation of concurrent-up gas–solid flow in circulating fluidized beds with structure-dependent drag coefficient[J].Chemical Engineering Journal, 2003, 96(1):71-80 [14]Wang W, Li J.Simulation of gas–solid two-phase flow by a multi-scale CFD approach—of the EMMS model to the sub-grid level[J].Chemical Engineering Science, 2007, 62(1):208-231 [15]Sakano M, Yaso T, Nakanishi H.Numerical simulation of two-dimensional fluidized bed using discrete element method with imaginary sphere model[J].Japanese Journal of Multiphase Flow, 2000, 14(1):66-73 [16] Washino K, Hsu C, Kawaguchi T, et al.Similarity model for DEM simulation of fluidized bed[J]. Journal of the Society of Powder Technology, Japan, 2007, 44: 198-205. [17]Mokhtar M A, Kuwagi K, Takami T, et al.Validation of the similar particle assembly (SPA) model for the fluidization of Geldart's group A and D particles[J].AIChE Journal, 2012, 58(1):87-98 [18] Kuwagi K, Takeda H, Horio M.The similar particle assembly (SPA) model: an approach to large-scale discrete element (DEM) simulation[J]. Fluidization IX, 2004, 160: 243-250. [19]Sakai M, Takahashi H, Pain C C, et al.Study on a large-scale discrete element model for fine particles in a fluidized bed[J].Advanced Powder Technology, 2012, 23(5):673-681 [20]Sakai M, Koshizuka S.Large-scale discrete element modeling in pneumatic conveying[J].Chemical Engineering Science, 2009, 64(3):533-539 [21] Sakai M, Abe M, Shigeto Y, et al.Verification and validation of a coarse grain model of the DEM in a bubbling fluidized bed[J]. Chemical Engineering Journal, 2014, 244: 33-43. [22] Lu L, Xu J, Ge W, et al.EMMS-based discrete particle method (EMMS–DPM) for simulation of gas–solid flows[J]. Chemical Engineering Science, 2014, 120: 67-87. [23] Li J, Kwauk M.Particle-Fluid Two-Phase Flow: The Energy-Minimization Multi-Scale Method[M]. 1994, Beijing: Metallurgical Industry Press. [24]Andrews M J, O' Rourke P J.The multiphase particle-in-cell (MP-PIC) method for dense particulate flows[J].International Journal of Multiphase Flow, 1996, 22(2):379-402 [25]Snider D M.An Incompressible Three-Dimensional Multiphase Particle-in-Cell Model for Dense Particle Flows[J].Journal of Computational Physics, 2001, 170(2):523-549 [26] Evans M W, Harlow F H, Bromberg E.The particle-in-cell method for hydrodynamic calculations. 1957, DTIC Document. [27]Harlow F H.The particle-in-cell computing method for fluid dynamics[J].Methods in computational physics, 1964, 3(3):319-343 [28]Greengard L, Rokhlin V.A fast algorithm for particle simulations[J].Journal of Computational Physics, 1987, 73(2):325-348 [29] Karimipour S, Pugsley T.Application of the particle in cell approach for the simulation of bubbling fluidized beds of Geldart A particles[J]. Powder Technology, 2012, 220: 63-69. [30] Solnordal C B, Kenche V, Hadley T D, et al.Simulation of an internally circulating fluidized bed using a multiphase particle-in-cell method[J]. Powder Technology, 2015, 274: 123-134. [31]Snider D, Banerjee S.Heterogeneous gas chemistry in the CPFD Eulerian-Lagrangian numerical scheme (ozone decomposition)[J].Powder Technology, 2010, 199(1):100-106 [32] Zhang W, You C.Numerical approach to predict particle breakage in dense flows by coupling multiphase particle-in-cell and Monte Carlo methods[J]. Powder Technology, 2015, 283: 128-136. [33] Wang Q, Yang H, Wang P, et al.Application of CPFD method in the simulation of a circulating fluidized bed with a loop seal Part II—Investigation of solids circulation[J]. Powder Technology, 2014, 253: 822-828. [34]Abbasi A, Islam M A, Ege P E, et al.CPFD flow pattern simulation in downer reactors[J].AIChE Journal, 2013, 59(5):1635-1647 [35]Xiong Q, Li B, Chen F, et al.Direct numerical simulation of sub-grid structures in gas–solid flow—GPU implementation of macro-scale pseudo-particle modeling[J].Chemical Engineering Science, 2010, 65(19):5356-5365 [36] Harris S, Crighton D.Solitons, solitary waves, and voidage disturbances in gas-fluidized beds[J]. Journal of Fluid Mechanics, 1994, 266: 243-276. [37] Chen X, Wang J.A comparison of two-fluid model, dense discrete particle model and CFD-DEM method for modeling impinging gas–solid flows[J]. Powder Technology, 2014, 254: 94-102. [38]Wang W, Li J.Simulation of gas-solid two-phase flow by a multi-scale CFD approach--Extension of the EMMS model to the sub-grid level[J].Chemical Engineering Science, 2007, 62(1-2):208-231 [39]Lu B, Wang W, Li J.Eulerian simulation of gas–solid flows with particles of Geldart groups A,B and D using EMMS-based meso-scale model[J].Chemical Engineering Science, 2011, 66(20):4624-4635 [40]Issa R I.Solution of the implicitly discretised fluid flow equations by operator-splitting[J].Journal of Computational Physics, 1986, 62(1):40-65 [41] Rapaport D C.The art of molecular dynamics simulation[M]. 2nd Edition ed. 2004, Cambridge: Cambridge University Press. 549. [42] NVIDIA.NVIDIA CUDA Compute Unified Device Architecture Programming Guide[M]. 1.0 ed. 2007, Santa Clara, CA. 112. [43] Lu L, Xu J, Ge W, et al.Computer virtual experiment on fluidized beds using a coarse-grained discrete particle method—EMMS-DPM[J]. Chemical Engineering Science, 2016, 155: 314-337. [44]Horio M, Ishii H, Nishimuro M.On the nature of turbulent and fast fluidized beds[J].Powder Technology, 1992, 70(3):229-236




[1]马树辉 王若瑾 王德武 刘燕 张少峰. Geldart A类颗粒节涌床气固流动特性的实验及模拟[J]. 过程工程学报, 2019, 19(5): 967-974.
[2]郑晓野蒲文灏岳晨何伟峰韩东. 采用改进的曳力模型模拟2D鼓泡流化床的流化特性[J]. 过程工程学报, 2015, 15(5): 737-743.
[3]严超宇卢春喜郭荣绵. 气固环流反应器内颗粒返混特性[J]. , 2009, 9(6): 1048-1054.
[4]金学伟王长松张玉宝薛建国裴红星曹军民. 板坯连铸凝固过程动态耦合数值模拟[J]. , 2009, 9(2): 233-237.
[5]谭宏涛;董干国;魏耀东;时铭显. g射线衰减技术在提升管内颗粒浓度测量上的应用[J]. , 2007, 7(5): 895-899.
[6]魏耀东;刘仁桓;孙国刚;时铭显. 负压差立管气固流动的不稳定性实验分析[J]. , 2003, 3(6): 493-497.
[7]鄂承林;卢春喜;高金森;徐春明;时铭显. 气固两相流中颗粒时均速度的测量新方法[J]. , 2003, 3(6): 505-511.
[8]魏耀东;刘仁桓;孙国刚;时铭显. 负压差立管内气固两相流的流态特性及分析[J]. , 2003, 3(5): 0-0.
[9]欧阳洁; 孙国刚; YU Ai-bing. 垂直管道中塞状流的模拟[J]. , 2003, 3(3): 0-0.





PDF全文下载地址:

http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3297
相关话题/过程 工程 中国科学院 实验 系统

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 直接接触沸腾换热过程连续相特征提取及分布规律
    熊文真1,徐建新2,黄峻伟3*1.信阳职业技术学院,河南信阳4640002.昆明理工大学复杂有色金属资源清洁利用国家重点实验室,云南昆明6500933.云南农业大学机电工程学院,云南昆明650100收稿日期:2018-05-30修回日期:2018-08-18出版日期:2019-08-22发布日期:2 ...
    本站小编 Free考研考试 2022-01-01
  • LF精炼废渣水热浸出过程中主要矿相的溶解行为
    何环宇1,2,3,侯巍巍1,2,3,刘虹灵1,2,3,李杨1,2,3*1.武汉科技大学钢铁冶金及资源利用省部共建教育部重点实验室,湖北武汉4300812.湖北省冶金二次资源工程技术研究中心,湖北武汉4300813.武汉科技大学省部共建耐火材料与冶金国家重点实验室,湖北武汉430081收稿日期:201 ...
    本站小编 Free考研考试 2022-01-01
  • 带钢保护气氛循环喷射冷却热工过程的数值模拟
    陈平安1,2,戴方钦1,2*,郭悦1,2,潘卢伟1,2,柯江军3,巫嘉谋4,雷远胜3,李运成41.武汉科技大学钢铁冶金及资源利用省部共建教育部重点实验室,湖北武汉4300812.高温材料与炉衬技术国家地方联合工程研究中心,湖北武汉4300813.黄石山力兴冶薄板有限公司,湖北黄石4351004.黄石 ...
    本站小编 Free考研考试 2022-01-01
  • MoSi2和(Mo,W)Si2涂层的宽温域氧化过程
    毛绍宝1,2,杨英2,李海庆3,张世宏1,2*1.安徽工业大学材料科学与工程学院,安徽马鞍山2430022.安徽工业大学现代表界面工程研究中心,安徽马鞍山2430023.中国运载火箭技术研究院航天材料及工艺研究所,北京100076收稿日期:2018-11-10修回日期:2019-01-18出版日期: ...
    本站小编 Free考研考试 2022-01-01
  • “过程工程学”的由来及对“不可逆循环过程”的研究
    李佐虎*中国科学院过程工程研究所,北京100190收稿日期:2019-05-30出版日期:2019-06-28发布日期:2019-06-10通讯作者:李佐虎OriginofprocessengineeringandstudyontheirreversiblecircularprocessesZuoh ...
    本站小编 Free考研考试 2022-01-01
  • 转炉一次除尘新OG系统高效喷淋塔喷嘴布置方式对喷淋特性的影响
    钱付平1,黄小萍1,曹博文1,夏勇军2,胡笳2,史德明2,韩云龙11.安徽工业大学建筑工程学院,安徽马鞍山2430022.安徽欣创节能环保科技股份有限公司,安徽马鞍山243071收稿日期:2018-07-25修回日期:2018-11-09出版日期:2019-06-22发布日期:2019-06-20通 ...
    本站小编 Free考研考试 2022-01-01
  • 电渣重熔结晶器旋转对M2高速钢凝固过程的影响
    陈佳顺,常凯华,郑福舟,张章,常立忠*安徽工业大学冶金工程学院,安徽马鞍山243032收稿日期:2018-08-13修回日期:2018-10-26出版日期:2019-06-22发布日期:2019-06-20通讯作者:常立忠基金资助:国家自然科学基金;安徽省高校优秀青年人才支持计划Effectofel ...
    本站小编 Free考研考试 2022-01-01
  • 碳化锆陶瓷有机前驱体的热解过程
    孔玮佳1,2,于守泉1,戈敏1,张伟刚1*,杜令忠11.中国科学院过程工程研究所多相复杂系统国家重点实验室,北京1001902.中国科学院大学化学工程学院,北京100049收稿日期:2018-10-11修回日期:2018-11-20出版日期:2019-06-22发布日期:2019-06-20通讯作者 ...
    本站小编 Free考研考试 2022-01-01
  • 活性炭混合钢渣烧结烟气脱硫脱硝实验研究
    杨小白1,韩云龙1,2*,李迎根1,张浩1,钱付平1,胡永梅11.安徽工业大学建筑工程学院,安徽马鞍山2430322.东南大学能源热转换及其过程测控教育部重点实验室,江苏南京210096收稿日期:2018-07-27修回日期:2018-09-18出版日期:2019-04-22发布日期:2019-04 ...
    本站小编 Free考研考试 2022-01-01
  • 离心场强化晶硅切割废料Si/SiC分离过程油水分相
    王占奎1,2,王东2*,王志2,马文会1,万小涵11.昆明理工大学冶金与能源工程学院,云南昆明6500932.中国科学院过程工程研究所绿色过程与工程重点实验室,湿法冶金清洁生产技术国家工程实验室,北京100190收稿日期:2018-04-10修回日期:2018-07-13出版日期:2019-02-2 ...
    本站小编 Free考研考试 2022-01-01