冶金节能减排教育部工程研究中心,昆明理工大学冶金与能源学院,云南 昆明 650093
收稿日期:
2018-09-14修回日期:
2018-11-05出版日期:
2019-06-22发布日期:
2019-06-20通讯作者:
李博基金资助:
国家自然科学基金项目;国家自然科学基金项目Dilution of copper slag under reduction of rubber seed oil
He ZHENG, Bo LI*, Hao ZHOU, Yonggang WEI, Hua WANGEngineering Research Center of Metallurgical Energy Conservation & Emission Reduction, Ministry of Education, School of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
Received:
2018-09-14Revised:
2018-11-05Online:
2019-06-22Published:
2019-06-20Contact:
LI Bo 摘要/Abstract
摘要: 针对铜渣贫化过程碳排放问题,以橡胶籽油取代柴油作为铜渣贫化的还原剂,研究铜渣贫化过程中的热力学,分析橡胶籽油贫化铜渣机理。在不同温度和时间条件下进行喷吹橡胶籽油贫化实验,分析铜渣磁性铁含量和粘度的变化,用XRD和SEM对贫化后炉渣进行分析。结果表明,喷吹还原过程中主要还原剂是裂解产生的碳单质、H2和CO。贫化过程中磁性铁被橡胶籽油在高温下的裂解产物(H2, CO, C)还原成FeO,与渣中的SiO2结合生成铁橄榄石(Fe2SiO4);随贫化温度升高,相同喷吹时间内铜渣的磁性铁含量和粘度逐渐降低,使渣中的Cu相互碰撞聚集,最终沉降到坩埚底部。随贫化进行铜渣中的铁橄榄石相增多,磁性铁相减少。在坩埚底部聚集的铜颗粒粒度由1 cm增至3 cm,铜回收率达86%。
引用本文
郑贺 李博 周浩 魏永刚 王华. 橡胶籽油还原作用下铜渣的贫化[J]. 过程工程学报, 2019, 19(3): 589-596.
He ZHENG Bo LI Hao ZHOU Yonggang WEI Hua WANG. Dilution of copper slag under reduction of rubber seed oil[J]. Chin. J. Process Eng., 2019, 19(3): 589-596.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218284
http://www.jproeng.com/CN/Y2019/V19/I3/589
参考文献
[1]Li L, Hu J H, Wang H.Smelting Oxidation Desulfurization of Copper Slags[J].Journal of Iron and Steel Research(International), 2012, 19(12):14-20 [2]Guo Z, Zhu D, Pan J, et al.Improving Beneficiation of Copper and Iron from Copper Slag by Modifying the Molten Copper Slag[J].Metals - Open Access Metallurgy Journal, 2016, 6(4):86-86 [3]Long T V, Palacios J, Sanches M, et al.Recovery of Molybdenum from Copper Slag[J].ISIJ International, 2012, 98(2):48-54 [4]Coruh S, Ergun O N, Cheng T W.Treatment of copper industry waste and production of sintered glass-ceramic[J].Waste Management & Research the Journal of the International Solid Wastes & Public Cleansing Association Iswa, 2006, 24(3):234-234 [5]Murari K, Siddique R, Jain K K.Use of waste copper slag,a sustainable material[J].Journal of Material Cycles & Waste Management, 2015, 17(1):13-26 [6]Khanzadi M, Behnood A.Mechanical properties of high-strength concrete incorporating copper slag as coarse aggregate[J].Construction & Building Materials, 2009, 23(6):2183-2188 [7]Wu W, Zhang W, Ma G.Optimum content of copper slag as a fine aggregate in high strength concrete[J].Materials & Design, 2010, 31(6):2878-2883 [8]Shi C, Meyer C, Behnood A.Utilization of copper slag in cement and concrete[J].Resources Conservation & Recycling, 2008, 52(10):1115-1120 [9]李磊,胡建杭,王华.铜渣熔融还原炼铁过程研究[J].过程工程学报, 2011, 11(1):65-65 [11]Banda W, Morgan N, Eksteen J J.The role of slag modifiers on the selective recovery of cobalt and copper from waste smelter slag ☆[J].Minerals Engineering, 2002, 15(11):899-907 [12]R.R Moskalyk,AM Alfantazi. Review of copper pyrometallurgical practice: today and tomorrow[J].Minerals Engineering, 2003, 16(10):893-919 [13]Bruckard W J, Somerville M, Hao F.The recovery of copper,by flotation,from calcium-ferrite-based slags made in continuous pilot plant smelting trials[J].Minerals Engineering, 2004, 17(4):495-504 [14]杨涛, 胡建杭, 王华, 等.铜电炉冶炼贫化渣焙烧富集[J].过程工程学报, 2011, 11(4):613-619 [16])张怀伟.基于直流电场和碳—氢复合还原改性的铜渣贫化过程的试验研究[D]. 上海大学, 2014. [18]Vaisburd S, Berner A, Brandon D G, et al.Slags and mattes in vanyukov’s process for the extraction of copper[J].Metallurgical & Materials Transactions B, 2002, 33(4):551-559 [19]Li K Q, Ping S, Wang H Y, et al.Recovery of iron from copper slag by deepreduction and magnetic beneficiation[J].Journal of Mineral Metallurgy and Materials, 2013, 20(11):1035-1041 [20]Fan Y, Shibata E, Iizuka A, et al.Crystallization Behavior of Copper Smelter Slag During Molten Oxidation[J].Metallurgical & Materials Transactions B, 2015, 46(5):2158-2164 [21]Zhang H W, Shi X Y, Zhang B, et al.Behaviors of the Molten Copper Slags in theVertical Electric Field[J].Isij International, 2013, 53(10):1704-1708 [22]Zhang L N, Zhang L, Wang M Y, et al.Thermodynamics of Phase Transformations in Oxidation Process of CaO-FeOx-SiO2 Systemwith High Iron Content[J].Acta Physico-Chimica Sinica, 2008, 24(9):1540-1546 [23]张林楠, 张力, 王明玉, 等.铜渣贫化的选择性还原过程[J].有色金属工程, 2005, 57(3):44-47 [25]傅崇说.有色冶金原理(第2版)[M]. 冶金工业出版社, 2007. [27]Matousek J.Thermodynamics of Iron Oxidation in Metallurgical Slags[J].JOM, 2012, 64(11):1314-1320 [28]Nagasaka T, Hino M, Ban-Ya S. Interfacial kinetics of hydrogen with liquid slag containing iron oxide[J]. Metallurgical & Materials Transactions B, 2000, 31(5):945-955.. [29]黄希祜.钢铁冶金原理, (第3版)[M]. 冶金工业出版社, 1981. [31]孙财.地沟油生物柴油喷吹还原转炉渣中磁性铁的实验研究[D]. 昆明理工大学, 2016. |
相关文章 15
[1] | 戴广平 石瑀 周世伟 李博 魏永刚. 铜熔渣喷吹地沟油还原贫化[J]. 过程工程学报, 2019, 19(4): 759-766. |
[2] | 石瑀 李博 戴广平 周世伟 王华 魏永刚. 硼酸钙对铜渣中夹杂铜沉降效果的影响[J]. 过程工程学报, 2019, 19(3): 553-559. |
[3] | 王昊 罗中秋 周新涛 李娜秋 张建辉 和森. 铜渣基草酸盐水泥的制备及其性能[J]. 过程工程学报, 2019, 19(2): 427-433. |
[4] | 杨双平 魏起书 王琛 杨波 庞锦琨. CaO-SiO2-FeO-B2O3-MnO脱磷渣熔化温度和粘度特性[J]. 过程工程学报, 2018, 18(5): 1013-1019. |
[5] | 钟源 杜海存 张莹 彭慧颖. 单向温度梯度下异质液滴的热毛细迁移[J]. 过程工程学报, 2018, 18(4): 697-703. |
[6] | 佟志芳乔家龙陈涛. 炉渣组分对CaO-Al2O3-SiO2-TiO2-MgO-Na2O渣系粘度的影响[J]. 过程工程学报, 2016, 16(2): 189-196. |
[7] | 杜冰王志孙丽媛马文会葛治陈杭. 复合熔析精炼去除工业硅中的非金属杂质硼[J]. 过程工程学报, 2015, 15(3): 393-399. |
[8] | 谢晓峰李磊王飞蔚俊强邱士伟张仁杰. 铜渣氯化烟尘中铜的湿法回收[J]. 过程工程学报, 2015, 15(3): 424-429. |
[9] | 梁珂艳陶秀祥惠鹏岳. 用落球法研究气固浓相流化床表观粘度[J]. , 2014, 14(6): 901-906. |
[10] | 张旭升吕庆刘小杰郄亚娜. 添加剂对中钛炉渣性能的影响[J]. , 2014, 14(5): 809-815. |
[11] | 袁骧张建良毛瑞刘征建朱广跃. 高炉低钛渣粘度和熔化性能[J]. , 2014, 14(4): 664-670. |
[12] | 李法社李明包桂蓉王华杜威苏成帅王峥. 添加剂对橡胶籽油生物柴油氧化稳定性的改进[J]. , 2014, 14(1): 145-150. |
[13] | 高永建于得江韩伟张光晋. 长碳链二元酸酯的合成及其物化性能[J]. , 2013, 13(5): 831-835. |
[14] | 黄娟鲍杰戴干策. 螺带型搅拌槽内异物性液体的混合性能[J]. , 2013, 13(4): 548-554. |
[15] | 李娟琴胡建杭王华邓双辉胡威. 高温铜渣催化木屑水蒸气气化的实验研究[J]. , 2012, 12(5): 876-881. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3276