1. 安徽工业大学建筑工程学院,安徽 马鞍山 243032 2. 安徽工业大学能源与环境学院,安徽 马鞍山 243032
收稿日期:
2018-09-17修回日期:
2018-10-30出版日期:
2019-06-22发布日期:
2019-06-20通讯作者:
鲁进利基金资助:
国家自然科学基金;安徽省自然科学基金Preparation and properties characterization of microencapsulated phase change materials using acrylic resin copolymers/n-dodecanol
Jinli LU1*, Yang LI2, Yafang HAN1, Fuping QIAN11. School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, Anhui 243032, China 2. School of Energy and Environment, Anhui University of Technology, Ma'anshan, Anhui 243032, China
Received:
2018-09-17Revised:
2018-10-30Online:
2019-06-22Published:
2019-06-20Contact:
LU Jin-li 摘要/Abstract
摘要: 微胶囊化相变材料具有储能密度高、相变温度近似恒定、便于储存和输运等特点,在热能储存、输运和利用领域具有广泛的应用前景。本工作采用悬浮聚合法辅以超声辐照手段合成了以正十二烷醇为芯材、丙烯酸树脂为壳材的新型高相变潜热相变微胶囊(MEPCM)颗粒。用扫描电子显微镜(SEM)、傅里叶红外光谱仪(FT-IR)、差式扫描量热仪(DSC)、热重分析仪(TGA)和激光粒度仪(LPSA)等设备对微胶囊性能进行了表征。结果表明,所制相变微胶囊呈较规则球体,粒径为638.14~1478.65 nm,中位径d50为933.91 nm。冷却过程中微胶囊芯呈两种不同的结晶过程,囊芯含量为43%,与设计值50%较接近,包覆率达86%,熔化相变潜热为93.31 kJ/kg;包覆后的相变材料融化温度为22.26℃,过冷度从4.61℃降至2.13℃。壳材不与芯材反应。MEPCM质量降低起始温度略高于纯正十二烷醇,封装可改善相变材料的热稳定性,该相变微胶囊具有良好的潜热储存能力和较快的温度变化响应速度。
引用本文
鲁进利 李洋 韩亚芳 钱付平. 丙烯酸树脂-正十二烷醇相变微胶囊制备及性能表征[J]. 过程工程学报, 2019, 19(3): 617-622.
Jinli LU Yang LI Yafang HAN Fuping QIAN. Preparation and properties characterization of microencapsulated phase change materials using acrylic resin copolymers/n-dodecanol[J]. Chin. J. Process Eng., 2019, 19(3): 617-622.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218282
http://www.jproeng.com/CN/Y2019/V19/I3/617
参考文献
[1]Kenisarin M,Mahkamov K.Passive thermal control in residential buildings using phase change materials[J].Renewable and Sustainable Energy Reviews, 2016, 55:371-398, 2016, 55:371-398 [2]鲁进利,张汪林,韩亚芳,等.细小圆管内-紊流对流传热特性的-模拟[J].过程工程学报, 2015, 15(5):758-763 [3]Lu J L, Zhang W L, Han Y F, et al.CFD-DPM simulation on characteristics of turbulent flow and heat transfer for micro-PCMS in mini-pipe[J].Chin. J. Process Eng., 2015, 15(5):758-763 [4]吴炳洋,郑帼,孙玉,等.石墨烯/正十八烷微胶囊的制备与及其热性能研究[J].高分子学报, 2016, (2):242-249 [5].Wu B Y,ZHENG G,SUN Y,et al.Preparation and Thermal Performance of Microcapsules with Graphene/n-Octadecane as Core Material [J].Acta Polymerica Sinica,2016(2) : 242-249. [6]Cui H,Feng T,Yang H,et al.Experimental study of carbon fiber reinforced alkali-activated slag composites with micro-encapsulated PCM for energy storage [J]. Construction & Building Materials, 2018, 161: 442-451. [7]鲁进利,吕勇军,韩亚芳,等.细小槽道换热器内相变微胶囊悬浮液对流传热模拟[J].过程工程学报, 2018, 18(5):951-956 [8]Lu J L, Lü Y J, Han Y F, et al.Simulation on convective heat transfer of MPCMS in minichannel heat exchanger based on DPM model[J].Chin. J. Process Eng., 2018, 18(5):951-956 [9]Alva G,Lin Y,Liu L,et al.Synthesis,characterization and applications of microencapsulated phase change materials in thermal energy storage:A review [J]. Energy and Buildings, 2017, 144:276-294. [10]Wang K,Shi L,Zhang J,et al.Preparation of paraffin @ melamine-formaldehyde resin microcapsules coated with silver nano-particles [C]//Materials for Renewable Energy and Environment (ICMREE),2013 International Conference on. IEEE,2014,2:508-512. [11]Fei X,Zhao H,Zhang B,et al.Microencapsulation mechanism and size control of fragrance microcapsules with melamine resin shell [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2015,469:300-306. [12]Chai Y Q,Zhao T B,Gao X,et al.Low cracking ratio of paraffin microcapsules shelled by hydroxyl terminated polydimethylsiloxane modified melamine-formaldehyde resin [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2018,538:86-93. [13]Zhang X X,Fan Y F,Tao X M,et al.Fabrication and properties of microcapsules and nanocapsules containing n-octadecane[J].Materials Chemistry and Physics, 2004, 88(2-3):300-307 [14]Li W,Wang J,Wang X,et al.Effects of ammonium chloride and heat treatment on residual formaldehyde contents of melamine-formaldehyde microcapsules[J].Colloid and Polymer Science, 2007, 285(15):1691-1697 [15]Chang C C,Tsai Y L,Chiu J J,et al.Preparation of phase change materials microcapsules by using PMMA network‐silica hybrid shell via sol‐gel process[J].Journal of Applied Polymer Science, 2009, 112(3):1850-1857 [16]Abhat A.Low temperature latent heat thermal energy storage: heat storage materials[J].Solar Energy, 1983, 30(4):313-332 [17]Liu C,Rao Z,Li Y.Composites enhance heat transfer in paraffinmelamine resin microencapsulated phase change materials[J].Energy Technology, 2016, 4(4):496-501 [18]Zhang L,Yang W,Jiang Z,et al.Graphene oxide-modified microencapsulated phase change materials with high encapsulation capacity and enhanced leakage-prevention performance[J].Applied Energy, 2017,197:354-363., 197:354-363 [19]Suslick K S.Sonochemistry[J].Science, 1990, 247(4949):1439-1445 [20]Suslick K S,Choe S B,Cichowlas A A,et al.Sonochemical synthesis of amorphous iron[J].Nature, 1991, 353(6343):414-416 [21]Zhang X X,FAN Y F,TAO X M,et al.Crystallization and prevention of supercooling of microencapsulated n-alkanes[J].Journal of Colloid and Interface Science, 2005, 281(2):299-306 [22]Su J F,WANG S B,ZHOU J W,et al.Fabrication and interfacial morphologies of methanol–melamine–formaldehyde (MMF) shell microPCMsepoxy composites[J].Colloid and Polymer Science, 2011, 289(2):169-177 [23]Chen Z H,Yu F,Zeng X R,et al.Preparation,characterization and thermal properties of nanocapsules containing phase change material n-dodecanol by miniemulsion polymerization with polymerizable emulsifier[J].Applied Energy, 2012, 91(1):7-12 [24]张浩.基于光催化性能的-湿性能[J].材料工程, 2018, 46(1):114-118 [25]Zhang H.Cu-CeTiO2 Moisture Performance Based on Photocatalytic Performance[J].Journal of Materials Engineering, 2018, 46(1):114-118 |
相关文章 15
[1] | 宋春雨 聂普选 马守涛 任国瑜. 典型过程强化技术在纳米材料制备中的应用进展[J]. 过程工程学报, 2021, 21(4): 373-382. |
[2] | 王燕 黄云 姚华 徐祥贵 黄巧 王君雷 马普生 王军生. 太阳盐/钢渣定型复合相变储热材料的制备与性能研究[J]. 过程工程学报, 2021, 21(3): 332-340. |
[3] | 鲁进利 吴丽 韩亚芳 李洋. 氧化石墨烯改性的正十二烷醇相变微胶囊的制备及性能测试[J]. 过程工程学报, 2021, 21(2): 202-209. |
[4] | 张宇 田丽亭 岳小棚 王坤. 槽式太阳能集热管内相变微胶囊悬浮液的热力性能分析[J]. 过程工程学报, 2020, 20(3): 276-284. |
[5] | 项厚政 权峰 李文超 刘晓磊 冒爱琴 俞海云 . 高熵氧化物的制备及应用研究进展[J]. 过程工程学报, 2020, 20(3): 245-253. |
[6] | 权峰 项厚政 杨磊 吴其辉 冒爱琴 俞海云. 高熵合金粉体制备及应用研究进展[J]. 过程工程学报, 2019, 19(3): 447-455. |
[7] | 孙克宁 马茜茜 侯瑞君 李敏香 张春刚. 氧化铝载体改性及其应用研究进展[J]. 过程工程学报, 2019, 19(3): 465-472. |
[8] | 张浩 徐远迪 方圆. 改性多孔钢渣基橡胶复合材料制备机理[J]. 过程工程学报, 2019, 19(2): 387-392. |
[9] | 韩伟伟 汪鹏 卫言 楚化强 孙勇 曹文健. 火焰法制备碳纳米管研究进展[J]. 过程工程学报, 2019, 19(1): 3-13. |
[10] | 张浩 徐远迪 刘秀玉. 优化制备粒度均匀分布的Ce-Cu/TiO2空心微球及其光–湿性能[J]. 过程工程学报, 2019, 19(1): 195-201. |
[11] | 赵永锋 张海涛. 高纯六氟磷酸锂晶体产业化制备工艺研究进展[J]. 过程工程学报, 2018, 18(6): 1160-1166. |
[12] | 张浩 高青 刘秀玉 刘影. 基于BP神经网络优化制备化学改性脱硫灰/丁苯橡胶复合材料[J]. 过程工程学报, 2018, 18(5): 1088-1092. |
[13] | 鲁进利 吕勇军 韩亚芳 钱付平. 细小槽道换热器内相变微胶囊悬浮液对流传热DPM模拟[J]. 过程工程学报, 2018, 18(5): 951-956. |
[14] | 吴东强 马培勇 胡淞 邢献军 张贤文. 污泥-锯末混合ZnCl2活化制备活性炭[J]. 过程工程学报, 2018, 18(4): 792-798. |
[15] | 张浩 朱大有 刘秀玉. 基于均匀设计优化制备静电纺丝相变储湿纤维[J]. 过程工程学报, 2018, 18(4): 839-844. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3292