1. 合肥工业大学汽车与交通工程学院,安徽 合肥 2300092. 合肥工业大学先进能源技术与装备研究院,安徽 合肥 2300093. 安徽建筑大学机械与电气工程学院,安徽 合肥 2306014. 国家城市能源计量中心(安徽),安徽 合肥 230051
收稿日期:
2018-09-06修回日期:
2018-10-20出版日期:
2019-06-22发布日期:
2019-06-20通讯作者:
邢献军基金资助:
安徽省重点研究与开发计划项目;安徽省科技重大专项;安徽省科技计划项目Co-combustion characteristics and kinetic analyses of rice straw and pulverized coal
Xianjun XING1,2,4*, Zeyu CHEN1,2, Yongling LI3, Chengcheng ZHU1,2, Xuefei ZHANG21. School of Automotive and Transportation Engineering, Hefei University of Technology, Hefei, Anhui 230009, China2. Advanced Energy Technology and Equipment Research Institute, Hefei University of Technology, Hefei, Anhui 230009, China3. School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, China4. National City Energy Measurement Center (Anhui), Hefei, Anhui 230051, China
Received:
2018-09-06Revised:
2018-10-20Online:
2019-06-22Published:
2019-06-20Contact:
Xian-Jun XING 摘要/Abstract
摘要: 采用热重分析法研究了水稻秸秆(RS)、煤粉(PC)及两者不同掺混比的混合物在不同升温速率下(10, 20, 40℃/min)从室温升至1000℃的燃烧特性,用Kissinger?Akahira?Sunose (KAS)法和Flynn?Wall?Ozawa (FWO)法计算了燃烧过程中的活化能。结果表明,失重速率(DTG)曲线中RS比PC多一个失重峰,且残余质量低。随升温速率增加,所有样品DTG曲线均向高温偏移,产生热滞后现象。RS和PC在混合燃烧过程中存在协同效应,且高温区域内更显著。PC掺混比例为50wt%时,混合物平均活化能的计算值较低,仅为76.0 kJ/mol (KAS)和83.2 kJ/mol (FWO)。
引用本文
邢献军 陈泽宇 李永玲 朱成成 张学飞. 水稻秸秆与煤粉混合燃烧特性及动力学[J]. 过程工程学报, 2019, 19(3): 637-643.
Xianjun XING Zeyu CHEN Yongling LI Chengcheng ZHU Xuefei ZHANG. Co-combustion characteristics and kinetic analyses of rice straw and pulverized coal[J]. Chin. J. Process Eng., 2019, 19(3): 637-643.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218277
http://www.jproeng.com/CN/Y2019/V19/I3/637
参考文献
[1]田红,廖正祝.玉米秸秆与油页岩混烧的热重试验[J].农业工程学报, 2014, 30(14):244-250 [2]Tian H, Liao Z Z.Co-combustion thermogravimetry experiment of corn stalks and oil shale[J].Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(14):244-250 [3]Liu X, Chen M Q, Wei Y H.Kinetics based on two-stage scheme for co-combustion of herbaceous biomass and bituminous coal[J]. Fuel, 2015, 143:577-585.[J]., 2015, 143:577-585 [4]Yu D, Chen M Q.Oxygen enriched co-combustion of biomass and bituminous coal[J].Energy Sources, 2016, 38(7):994-1001 [5]Yi Q G, Qi F J, Cheng G, et al.Thermogravimetric analysis of co-combustion of biomass and biochar[J].Journal of Thermal Analysis and Calorimetry, 2013, 112(3):1475-1479 [6]Niu S B, Chen M Q, Li Y, et al.Co-combustion characteristics of municipal sewage sludge and bituminous coal[J]. Journal of Thermal Analysis and Calorimetry, 2017(1):1-14.[J]., 2017, (1):1-14 [7]Li J, Lu J, Zhu Y H, et al.The Characteristics of Combustion and Dynamic Analysis of Mixed Zhundong Coal and Oil Shale Semi-coke[C]. 2017 2nd International Conference on Energy, Power and Electrical Engineering, Shanghai, 2017. [8]Fang S W, Yu Z S, Lin Y S, et al.Thermogravimetric analysis of the co-pyrolysis of paper sludge and municipal solid waste[J] . Energy Conversion and Management, 2015, 101: 626-631.[J]., 2015, 101:626-631 [9]Tang Y T, Ma X Q, Lai Z Y, et al.Thermogravimetric analyses of co-combustion of plastic, rubber, leather in N2/O2 and CO2/O2 atmospheres[J]. Energy, 2015, 90: 1066-1074.[J]., 2015, 90:1066-1074 [10]巴飞,胡建杭,刘慧利,等.全氧条件下生物质和塑料共燃烧的热重分析及动力学[J].过程工程学报, 2016, 16(6):1022-1027 [11]Ba F, Hu J H, Liu H L, et al.Thermogravimetric analysis and kinetics of biomass and plastic Co-combustion in oxygen enriched environment[J].The Chinese Journal of Process Engineering, 2016, 16(6):1022-1027 [12]施江,谢峻林,梅书霞,等.与煤粉混合燃烧特性及动力学分析[J].环境工程学报, 2017, 11(1):490-496 [13]Shi J, Xie J L, Mei S X, et al.Combustion characteristics and kinetic analysis of RDF and coal blends[J].Chinese Journal of Environmental Engineering, 2017, 11(1):490-496 [14]张林海,薛党琴,李刚,等.农作物秸秆混配燃烧特性与动力学分析[J].农业机械学报,2014(s1):202-206.[J].农业机械学报, 2014, s1:202-206 [15]Zhang L H, Xue D Q, Li G, et al.Straw Mixed Combustion Characteristics and Kinetic Analysis. [J]. Transactions of the Chinese Society for Agricultural Machinery, 2014(s1):202-206.[J]., 2014, s1:202-206 [16]Zhuo Z X, Liu J Y, Sun S Y, et al.Thermogravimetric characteristics of textile dyeing sludge, coal and their blend in N2/O2 and CO2/O2 atmospheres[J]. Applied Thermal Engineering, 2017, 111:87-94.[J]., 2017, 111:87-94 [17]曹红亮,李国强,黄思涵,等.基于等转化率法的牛粪热解动力学特性研究[J].太阳能学报, 2015, 36(7):1773-1778 [18]Cao H L, Li G Q, Huang S H, et al.Research on kinetic characteristics of cattle manure pyrolysis using isoconversional methods[J].Acta Energiae Solaris Sinica, 2015, 36(7):1773-1778 [19]Hu S C, Ma X Q, Lin Y S, et al.Thermogravimetric analysis of the co-combustion of paper mill sludge and municipal solid waste[J]. Energy Conversion and Management, 2015, 99: 112—118.[J]., 2015, 99:112-118 [20]Peng X W, Ma X Q, Lin Y S, et al.Co-pyrolysis between microalgae and textile dyeing sludge by TG-FTIR: kinetics and products[J].Energy Conversion and Management, 2015, 100(2):391-402 [21]Tang Y T, Ma X Q, Lai Z Y, et al.Oxy‐fuel combustion characteristics and kinetics of microalgae and its mixture with rice straw using thermogravimetric analysis[J]. International Journal of Energy Research, 2018, 42: 532-541.[J]., 2018, 42:532-541 [22]Liu Z Y, Wang L H, JENKINS B M, et al.Influence of alkali and alkaline earth metallic species on the phenolic species of pyrolysis oil[J].Bioresources, 2017, 12(1):1611-1623 [23]Peng X W, Ma X Q, Xu Z B, et al .Thermogravimetric analysis of co-combustion between microalgae and textile dyeing sludge.[J]. Bioresource Technology, 2015, 180:288-295.[J]., 2015, 180:288-295 [24]Lin Y, Liao Y F, Yu Z S, et al.Co-pyrolysis kinetics of sewage sludge and oil shale thermal decomposition using TGA–FTIR analysis[J]. Energy Conversion and Management, 2016, 118:345-352.[J]., 2016, 118:345-352 [25]Buratti C, Barbanera M, Bartocci P, et al.Thermogravimetric analysis of the behavior of sub-bituminous coal and cellulosic ethanol residue during co-combustion[J]. Bioresource Technology, 2015, 186: 154-162.[J]., 2015, 186:154-162 |
相关文章 15
[1] | 郭艳东 张晓春 游琳琳. 水对离子液体微观结构和传输性能的影响[J]. 过程工程学报, 2021, 21(4): 431-439. |
[2] | 张梦秋 靳惠娟 巩方玲 张佑红 韦祎 何玉先 马光辉. 两亲性脂肽纳米混悬液冻干粉的制备及其表征[J]. 过程工程学报, 2021, 21(4): 463-470. |
[3] | 孙晨阳 侯超峰 葛蔚. LJ势氩系统分子动力学模拟中截断半径的选择[J]. 过程工程学报, 2021, 21(3): 259-264. |
[4] | 马艳艳 李正军 张松平 陈卫 任瑛. HBc-VLP的分子动力学模拟和结合自由能计算[J]. 过程工程学报, 2021, 21(2): 219-229. |
[5] | 陈建军 张军伟 宋乾宁. 离子交换分离L-缬氨酸的传质动力学及动态穿透特征[J]. 过程工程学报, 2021, 21(1): 46-56. |
[6] | 夏紫薇 郑刘根 周春财 魏祥平 董祥林. 安徽临涣矿区烟煤与生活污泥共燃的燃烧特性与动力学特征[J]. 过程工程学报, 2021, 21(1): 108-115. |
[7] | 刘亚迪 Niklas Hedin 赵国英 贾利娜 聂毅. 低场MRI原位研究离子液体合成及相态变化[J]. 过程工程学报, 2020, 20(7): 807-821. |
[8] | 吴浩 邹冲 何江永 王凯 刘占伟 师帅. 低阶煤热解条件对高炉喷吹半焦燃烧性能及动力学特性的影响[J]. 过程工程学报, 2020, 20(4): 449-457. |
[9] | 李希铭 牛胜利 曲同鑫 韩奎华 路春美 王永征. 基于颗粒动力学理论的搅拌器中固液流动的数值模拟[J]. 过程工程学报, 2020, 20(3): 265-275. |
[10] | 叶聪 邢献军 张学飞 陈涛 张佳佳. 城市污泥与稻壳水热炭混合燃烧特性与动力学[J]. 过程工程学报, 2020, 20(3): 362-370. |
[11] | 龚傲 吴选高 喻小强 王定纯 徐志峰 田磊. 选择性还原氨浸从高硅低品位铜钴矿中提取铜、钴 的工艺及其浸出动力学[J]. 过程工程学报, 2020, 20(10): 1156-1165. |
[12] | 龙超 陈瑞 翟持 陈飞 杨春曦. 微芯片中磁性液滴的生成与操控综述[J]. 过程工程学报, 2020, 20(10): 1134-1146. |
[13] | 程海鹰 李建新 张勇 王京 胡志勇. 风速对骨料烘干煤粉燃烧器排放特性的影响[J]. 过程工程学报, 2019, 19(5): 1037-1046. |
[14] | 范一鸣 王景甫. 气淬高温熔渣颗粒运动和换热特性的数值分析[J]. 过程工程学报, 2019, 19(4): 685-692. |
[15] | 刘佳霖 任瑛 陈卫 杨晖 何秀娟 李应成. 油水界面上阴/阳离子型复配表面活性剂体系的分子动力学模拟[J]. 过程工程学报, 2019, 19(3): 533-543. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3290