1. 贵州大学化学化工学院,贵州 贵阳 550025 2. 中国科学院过程工程研究所湿法冶金清洁生产技术国家工程实验室,北京 100190 3. 中国科学院城市环境研究所区域大气环境卓越中心,福建 厦门 361021
收稿日期:
2018-06-12修回日期:
2018-08-26出版日期:
2019-04-22发布日期:
2019-04-18通讯作者:
刘霄龙基金资助:
国家重点研发计划-铝业典型烟气硫硝控制技术Research progress of low-temperature SCR denitration catalysts
Ruliang NING1,2, Xiaolong LIU2*, Tingyu ZHU1,2,31. School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, China2. National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China3. Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
Received:
2018-06-12Revised:
2018-08-26Online:
2019-04-22Published:
2019-04-18摘要/Abstract
摘要: 氮氧化物NOx(NO, NO2和N2O)是全球大气污染的主要污染物之一,引起光化学烟雾、酸雨、臭氧层破坏等环境问题,严重影响人们的生存环境和生活质量,引起了世界各国的广泛关注。针对固定源和移动源燃烧排放,各国制定了日益严格的排放标准。目前主要的脱硝技术分为选择性催化还原(SCR)、选择性非催化还原(SNCR)、氧化脱硝和活性炭吸附脱硝等。SNCR的应用有较高的条件,影响其成功运行的主要因素有温度、氨氮比、氨气在烟气中的分布和停留时间等,故SNCR的工业应用存在一定的局限性。SCR脱硝技术比其它脱硝技术应用更广泛,其中脱硝多安排于除尘脱硫后,此时温度多处于100?250℃之间。为提高SCR脱硝性能,低温SCR脱除NOx是目前研究最热门的烟气脱硝技术。本工作综述了近年来低温SCR脱硝催化剂的研究进展,介绍了锰基催化剂、钒基催化剂及碳基催化剂的发展现状,对单组分Mn基催化剂、负载型Mn基催化剂和复合型Mn基催化剂进行了综述,从V基催化剂的制备对脱销的影响和脱硝机理进行了表述,综述了过渡金属掺杂对C基催化剂的影响,阐述了烟气中H2O和SO2对催化反应的影响及低温SCR反应的脱硝机理,对低温SCR催化剂进行了总结并对其未来发展进行了展望。
引用本文
宁汝亮 刘霄龙 朱廷钰. 低温SCR脱硝催化剂研究进展[J]. 过程工程学报, 2019, 19(2): 223-234.
Ruliang NING Xiaolong LIU Tingyu ZHU. Research progress of low-temperature SCR denitration catalysts[J]. Chin. J. Process Eng., 2019, 19(2): 223-234.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218233
http://www.jproeng.com/CN/Y2019/V19/I2/223
参考文献
1. Yu, S.; Jiang, N.; Zou, W.; Li, L.; Tang, C.; Dong, L. A general and inherent strategy to improve the water tolerance of low temperature NH3-SCR catalysts via trace SiO2 deposition. Catalysis Communications 2016, 84, 75-79. 2. Qiu, Y.; Liu, B.; Du, J.; Tang, Q.; Liu, Z.; Liu, R.; Tao, C. The monolithic cordierite supported V2O5 –MoO3/TiO2 catalyst for NH3-SCR. Chemical Engineering Journal 2016, 294, 264-272. 3. Li, J.; Chang, H.; Ma, L.; Hao, J.; Yang, R.T. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—a review. Catalysis Today 2011, 175, 147-156. 4. Fang, N.; Guo, J.; Shu, S.; Luo, H.; Chu, Y.; Li, J. Enhancement of low-temperature activity and sulfur resistance of Fe0.3Mn0.5Zr0.2 catalyst for no removal by NH3-SCR. Chemical Engineering Journal 2017, 325, 114-123. 5. Xia, Q,; Qin, Z. Investigation of selective catalytic reduction of NOx with V2O5/TiO2 as catalysts. Journal of Safety and Environmental 2004, 4, 16-18. 6. Tian, W.; Yang, H.; Fan, X.; Zhang, X. Catalytic reduction of NOx with NH3 over different-shaped MnO2 at low temperature. Journal of hazardous materials 2011, 188, 105-109. 7. Tang, X.; Hao, J.; Xu, W.; Li, J. Low temperature selective catalytic reduction of NOx with NH3 over amorphous mnox catalysts prepared by three methods. Catalysis Communications 2007, 8, 329-334. 8. Zhang, Y.; Zhao, X.; Xu, H.; Shen, K.; Zhou, C.; Jin, B.; Sun, K. Novel ultrasonic-modified MnOx/TiO2 for low-temperature selective catalytic reduction (SCR) of no with ammonia. Journal of colloid and interface science 2011, 361, 212-218. 9. Wu, Z.; Jin, R.; Liu, Y.; Wang, H. Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature. Catalysis Communications 2008, 9, 2217-2220. 10. Thirupathi, B.; Smirniotis, P.G. Effect of nickel as dopant in Mn/TiO2 catalysts for the low-temperature selective reduction of NO with NH3. Catalysis Letters 2011, 141, 1399-1404. 11. Thirupathi, B.; Smirniotis, P.G. Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: Catalytic evaluation and characterizations. Journal of Catalysis 2012, 288, 74-83. 12. Shen, B.; Liu, T.; Zhao, N.; Yang, X.; Deng, L. Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3. Journal of Environmental Sciences 2010, 22, 1447-1454. 13. Luo, S.; Zhou, W.; Xie, A.; Wu, F.; Yao, C.; Li, X.; Zuo, S.; Liu, T. Effect of MnO2 polymorphs structure on the selective catalytic reduction of NOx with NH3 over TiO2–palygorskite. Chemical Engineering Journal 2016, 286, 291-299. 14. Huang, J.; Tong, Z.; Huang, Y.; Zhang, J. Selective catalytic reduction of NO with NH3 at low temperatures over iron and manganese oxides supported on mesoporous silica. Applied Catalysis B: Environmental 2008, 78, 309-314. 15. Jing, G.U.O.; Caiting, L.I.; Pei, L.U.; Huafei, C.U.I.; Dunliang, P.; Qingbo, W.E.N. Research on SCR denitrification of MnOx/Al2O3 modified by CeO2 and its mechanism at low temperature. Chinese Journal of Environmental Science 2011, 32, 2240-2246. 16. Li, Y.; Li, Y.; Wang, P.; Hu, W.; Zhang, S.; Shi, Q.; Zhan, S. Low-temperature selective catalytic reduction of NOx with NH3 over MnFeOx nanorods. Chemical Engineering Journal 2017, 330, 213-222. 17. Lian, Z.; Liu, F.; He, H.; Shi, X.; Mo, J.; Wu, Z. Manganese–niobium mixed oxide catalyst for the selective catalytic reduction of NOx with NH3 at low temperatures. Chemical Engineering Journal 2014, 250, 390-398. 18. Zuo, J.; Chen, Z.; Wang, F.; Yu, Y.; Wang, L.; Li, X. Low-temperature selective catalytic reduction of NOx with NH3 over novel Mn–Zr mixed oxide catalysts. Industrial & Engineering Chemistry Research 2014, 53, 2647-2655. 19. Liu, Z.; Liu, Y.; Li, Y.; Su, H.; Ma, L. WO3 promoted Mn–Zr mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Chemical Engineering Journal 2016, 283, 1044-1050. 20. Wan, Y.; Zhao, W.; Tang, Y.; Li, L.; Wang, H.; Cui, Y.; Gu, J.; Li, Y.; Shi, J. Ni-Mn bi-metal oxide catalysts for the low temperature SCR removal of NO with NH3. Applied Catalysis B: Environmental 2014, 148-149, 114-122. 21. Cha, W.; Chin, S.; Park, E.; Yun, S.-T.; Jurng, J. Effect of V2O5 loading of V2O5/TiO2 catalysts prepared via CVC and impregnation methods on NOx removal. Applied Catalysis B: Environmental 2013, 140-141, 708-715. 22. Boningari, T.; Koirala, R.; Smirniotis, P.G. Low-temperature catalytic reduction of NO by NH3 over vanadia-based nanoparticles prepared by flame-assisted spray pyrolysis: Influence of various supports. Applied Catalysis B: Environmental 2013, 140-141, 289-298. 23. Boningari, T.; Koirala, R.; Smirniotis, P.G. Low-temperature selective catalytic reduction of NO with NH3 over V/ZrO2 prepared by flame-assisted spray pyrolysis: Structural and catalytic properties. Applied Catalysis B: Environmental 2012, 127, 255-264. 24. Jiang, Y.; Gao, X.; Zhang, Y.; Wu, W.; Song, H.; Luo, Z.; Cen, K. Effects of PbCl2 on selective catalytic reduction of NO with NH3 over vanadia-based catalysts. Journal of hazardous materials 2014, 274, 270-278. 25. Li, Q.; Yang, H.; Ma, Z.; Zhang, X. Selective catalytic reduction of NO with NH3 over CuOx-carbonaceous materials. Catalysis Communications 2012, 17, 8-12. 26. Li, Q.; Yang, H.; Qiu, F.; Zhang, X. Promotional effects of carbon nanotubes on V2O5/TiO2 for NOx removal. Journal of hazardous materials 2011, 192, 915-921. 27. Fan, X.; Qiu, F.; Yang, H.; Tian, W.; Hou, T.; Zhang, X. Selective catalytic reduction of NOx with ammonia over Mn–Ce–Ox/TiO2-carbon nanotube composites. Catalysis Communications 2011, 12, 1298-1301. 28. Zhang L, Zhang D, Zhang J. Design of meso-TiO2@MnOx-CeOx/CNTs with a core–shell structure as DeNOx catalysts: promotion of activity, stability and SO2-tolerance. Nanoscale, 2013, 20, 9821-9829. 29. Zhang, Y.; Zheng, Y.; Wang, X.; Lu, X. Preparation of Mn–FeOx/CNTs catalysts by redox co-precipitation and application in low-temperature no reduction with NH3. Catalysis Communications 2015, 62, 57-61. 30. Huang, B.; Huang, R.; Jin, D.; Ye, D. Low temperature SCR of NO with NH3 over carbon nanotubes supported vanadium oxides. Catalysis Today 2007, 126, 279-283. 31. Huang, Z.; Liu, Z.; Zhang, X.; Liu, Q. Inhibition effect of H2O on V2O5/AC catalyst for catalytic reduction of NO with NH3 at low temperature. Applied Catalysis B: Environmental 2006, 63, 260-265. 32. Wu, Z.; Jin, R.; Wang, H.; Liu, Y. Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature. Catalysis Communications 2009, 10, 935-939. 33. Sun, D.; Liu, Q.; Liu, Z.; Gui, G.; Huang, Z. An in situ drifts study on SCR of NO with NH3 over V2O5/AC surface. Catalysis Letters 2009, 132, 122-126. 34. Jiang, B.; Deng, B.; Zhang, Z.; Wu, Z.; Tang, X.; Yao, S.; Lu, H. Effect of Zr addition on the low-temperature SCR activity and SO2 tolerance of Fe–Mn/Ti catalysts. The Journal of Physical Chemistry C 2014, 118, 14866-14875. 35. Zhu, Z.P.; Liu, Z.Y.; Niu, H.X.; Liu, S.J. Promoting effect of SO2 on activated carbon-supported vanadia catalyst for NO reduction by NH3 at low temperatures. Journal of Catalysis 1999, 187, 245-248. 36. Gálvez, M.E.; Boyano, A.; Lázaro, M.J.; Moliner, R. A study of the mechanisms of no reduction over vanadium loaded activated carbon catalysts. Chemical Engineering Journal 2008, 144, 10-20. 37. Ettireddy, P.R.; Ettireddy, N.; Boningari, T.; Pardemann, R.; Smirniotis, P.G. Investigation of the selective catalytic reduction of nitric oxide with ammonia over Mn/TiO2 catalysts through transient isotopic labeling and in situ FT-IR studies. Journal of Catalysis 2012, 292, 53-63. 38. Yang, S.; Wang, C.; Li, J.; Yan, N.; Ma, L.; Chang, H. Low temperature selective catalytic reduction of NO with NH3 over Mn–Fe spinel: Performance, mechanism and kinetic study. Applied Catalysis B: Environmental 2011, 110, 71-80. 39. Grossale, A.; Nova, I.; Tronconi, E.; Chatterjee, D.; Weibel, M. The chemistry of the NO/NO2–NH3 “fast” SCR reaction over Fe-ZSM5 investigated by transient reaction analysis. Journal of Catalysis 2008, 256, 312-322. 40. Wang, Y.; Ge, C.; Zhan, L.; Li, C.; Qiao, W.; Ling, L. MnOx–CeO2/activated carbon honeycomb catalyst for selective catalytic reduction of NO with NH3 at low temperatures. Industrial & Engineering Chemistry Research 2012, 51, 11667-11673. 41. Tronconi, E.; Nova, I.; Ciardelli, C.; Chatterjee, D.; Weibel, M. Redox features in the catalytic mechanism of the “standard” and “fast” NH3-SCR of NOx over a V-based catalyst investigated by dynamic methods. Journal of Catalysis 2007, 245, 1-10. 42. Wang, J.; Yan, Z.; Liu, L.; Chen, Y.; Zhang, Z.; Wang, X. In situ drifts investigation on the SCR of NO with NH3 over V2O5 catalyst supported by activated semi-coke. Applied Surface Science 2014, 313, 660-669. |
相关文章 15
[1] | 郭艳东 张晓春 游琳琳. 水对离子液体微观结构和传输性能的影响[J]. 过程工程学报, 2021, 21(4): 431-439. |
[2] | 孟昭磊 李保卫 付金艳 朱超 武文斐. 稀土精矿负载Fe2O3矿物催化材料的NH3-SCR脱硝性能研究[J]. 过程工程学报, 2021, 21(3): 363-372. |
[3] | 郭成 高翔鹏 李明阳 郝军杰 龙红明 赵卓. 海藻酸钠基吸附材料去除水中重金属离子的研究进展[J]. 过程工程学报, 2021, 21(1): 3-17. |
[4] | 向杰 张松平 张贵锋 罗坚 余蓉. 一步离子交换层析从Cohn组分V上清液中分离人血清白蛋白[J]. 过程工程学报, 2021, 21(1): 92-99. |
[5] | 李建涛 姚秀颖 刘璐 卢春喜. 催化裂化外取热器入口区域催化剂分布及优化研究[J]. 过程工程学报, 2020, 20(9): 1016-1024. |
[6] | 于凤芹 李运甲 刘周恩 李文松 张卫东 高士秋 许光文 余剑. 移动床活性焦烟气净化工艺中废活性焦的形成与特征分析[J]. 过程工程学报, 2020, 20(6): 695-702. |
[7] | 王殿二 王玲 高国龙 徐新 吴鹏 张亚平. Ce-Fe/ZSM-5催化剂用于燃机烟气SCR脱硝的性能[J]. 过程工程学报, 2020, 20(6): 718-727. |
[8] | 冯颖 张庆瑾 王珏程 张建伟. pH对壳聚糖螯合铜(II)的螯合机理及稳定常数的影响[J]. 过程工程学报, 2020, 20(6): 646-654. |
[9] | 皇甫林 李长明 王超 李萍 李运甲 高士秋 余剑. 硅系黏结剂对涂覆型蜂窝体催化剂性能的影响[J]. 过程工程学报, 2020, 20(4): 484-492. |
[10] | 杨会 朱辉 陈永平 付海明. 方形截面纤维表面气溶胶粒子多机理过滤性能数值分析[J]. 过程工程学报, 2020, 20(4): 400-409. |
[11] | 冯留海 冯钰琦 赵杰 门卓武 李希 卜亿峰. 气固流化床内费托铁基催化剂的流化特性[J]. 过程工程学报, 2020, 20(3): 302-307. |
[12] | 陈娇玉 孟冠华 魏旺 刘宝河 丁素云 何佳睿. 臭氧氧化双酚A的性能及机理[J]. 过程工程学报, 2020, 20(2): 230-236. |
[13] | 王来勇 钱付平 朱景晶 黄乃金 徐兵 吴昊. 选择性催化还原蜂窝状催化剂内流动特性的多尺度模拟[J]. 过程工程学报, 2020, 20(2): 133-140. |
[14] | 武文粉 李会泉 孟子衡 王晨晔 王兴瑞 赵晨. 碱溶法回收废SCR脱硝催化剂中的二氧化钛[J]. 过程工程学报, 2019, 19(S1): 72-80. |
[15] | 吴湾 王雪 朱廷钰. 细颗粒物凝并技术机理的研究进展[J]. 过程工程学报, 2019, 19(6): 1057-1065. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3241