1. 清华大学热科学与动力工程教育部重点实验室,二氧化碳资源化利用与减排技术北京市重点实验室,清华大学?滑铁卢大学微纳米能源环境联合研究中心,清华大学能源与动力工程系,北京 100084 2. 美国能源部艾姆斯实验室, 美国 IA 50011-2230
收稿日期:
2018-06-25修回日期:
2018-08-29出版日期:
2019-04-22发布日期:
2019-04-18通讯作者:
李清海基金资助:
国家自然科学基金资助项目 (U1302274)Effects of particle clusters on fluctuation coupling terms in dilute gas-particle turbulent flows
Heng FENG1, Qinghai LI1*, Aihong MENG1, Yanguo ZHANG1, Bo KONG21. Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory for CO2 Utilization and Reduction Technology, Tsinghua University?University of Waterloo Joint Research Center for Micro/Nano Energy & Environment Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China 2. Ames Laboratory-USDOE, Ames, IA 50011-2230, USA
Received:
2018-06-25Revised:
2018-08-29Online:
2019-04-22Published:
2019-04-18Contact:
Qing HaiLi Supported by:
Projects (U1302274) supported by the National Science Foundation of China摘要/Abstract
摘要: 研究了颗粒团聚对描述稀相气固两相流的气固相宏观控制方程中待封闭气固脉动关联项的影响规律并建立关键待封闭项代数模型。根据气相速度脉动与固相浓度关联项(漂移速度)控制方程,将漂移速度表达为固相非均匀程度和气固平均滑移速度的代数模型。分别采用两种基于颗粒动理学的欧拉?欧拉框架介尺度方法模拟三维周期条件且固相平均浓度为1%的稀相气固两相流动,第1种方法假设固相速度分布函数f为各项同性的双流体方法(TFM);第2种方法假设f服从各向异性高斯分布的积分矩法(AG)。网格分辨率为颗粒直径dp的1.75倍,气固间动量交换采用Stokes曳力模型,并与文献中采用相同参数设置的欧拉?拉格朗日(E?L)方法模拟结果进行对比。结果表明,AG方法的准确度优于TFM方法,气固平均滑移速度、气固脉动能等更接近E?L方法模拟结果。颗粒聚团的积分尺度小于气相脉动速度的积分尺度,两者均呈各向异性,竖直分量高于水平分量。模拟得到了气固速度脉动关联系数和漂移速度系数。
引用本文
冯蘅 李清海 蒙爱红 张衍国 孔博. 颗粒团聚对稀相气固流动脉动关联项的影响[J]. 过程工程学报, 2019, 19(2): 279-288.
Heng FENG Qinghai LI Aihong MENG Yanguo ZHANG Bo KONG. Effects of particle clusters on fluctuation coupling terms in dilute gas-particle turbulent flows[J]. Chin. J. Process Eng., 2019, 19(2): 279-288.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218230
http://www.jproeng.com/CN/Y2019/V19/I2/279
参考文献
[1] Feng H, Li Q H, Meng A H, et al. A damk?hler number for evaluating combustion efficiency of horizontal circulating fluidized. CFB-11: Proceedings of the 11th International Conference on Fluidized Bed Technology, Pulished 2014, Volume, Issue, Pages 613-618. [2] Kasbaoui M H, Koch D L, Subramanian G, et al. Preferential concentration driven instability of sheared gas–solid suspensions[J]. Journal of Fluid Mechanics, 2015, 770: 85-123. [3] Fullmer W D, Hrenya C M. The clustering instability in rapid granular and gas-solid flows[J]. Annual Review of Fluid Mechanics, 2017, 49: 485-510. [4] Couto N, Silva V B, Bispo C, et al. From laboratorial to pilot fluidized bed reactors: analysis of the scale-up phenomenon[J]. Energy Conversion and Management, 2016, 119: 177-186. [5] Fox R O. Large-eddy-simulation tools for multiphase flows[J]. Annual Review of Fluid Mechanics, 2012, 44: 47-76. [6] 祁海鹰, 戴群特, 陈程. 大型流态化多相流数值模拟的关键科学问题——曳力模型的理论分析[J]. 力学与实践,2014,36(03):269-277. Qi H Y, Dai Q T, Chen C. The key scientific problems in the Eulerian modeling of large scale multi-phase flows——drag model. Mechanics in Engineering,2014,36(03):269-277. [7] O’Brien T J, Syamlal M. Particle cluster effects in the numerical simulation of a circulating fluidized bed[J]. Circulating fluidized bed technology IV, 1993: 367-372. [8] Li J H, Ge W, Wang W, et al. Focusing on mesoscales: from the energy-minimization multiscale model to mesoscience[J]. Current Opinion in Chemical Engineering, 2016, 13: 10-23. [9] Zhou L X. Dynamics of multiphase turbulent reacting fluid flows [M]. National Defence Industry Press, Beijing, 2002. [10] Agrawal K, Loezos P N, Syamlal M, et al. The role of meso-scale structures in rapid gas–solid flows[J]. Journal of Fluid Mechanics, 2001, 445: 151-185. [11] 王淑彦, 房建宇, 邵宝力等. 基于不同亚格子尺度过滤模型下提升管内颗粒流动的数值模拟[J]. 高校化学工程学报,2016,30(02):325-331. WANG S Y, Fang J Y, Shao B, et al. Numerical Simulation of Flow Behavior of Particles Based on Two-Fluid Model with Different Filtered Drag Models in Riser[J] Journal of Chemical Engineering of Chinese Universities, ,2016,30(02):325-331. [12] Cheng Y, Guo Y C, Wei F, et al. Modeling the hydrodynamics of downer reactors based on kinetic theory[J]. Chemical Engineering Science, 1999, 54(13): 2019-2027. [13] 于勇, 蔡飞鹏, 周力行, 等. 下降管中稠密两相湍流的数值模拟[J]. 工程热物理学报, 2005, 26(z1): 117-120. Yu Y, Cai P F, Zhou L X, et al. Simulation of dense gas-particle flows in downer[J]. Journal of engineering thermophysics, 2005, 26(zl): 117-120. [14] Zeng Z X, Zhou L X. A two-scale second-order moment particle turbulence model and simulation of dense gas–particle flows in a riser[J]. Powder technology, 2006, 162(1): 27-32. [15] Jesse C, Desjardins O, Fox R O. Strongly coupled fluid-particle flows in vertical channels. II. Turbulence modeling[J]. Physics of Fluids, 2016, 28(3): 033306. [16] Fox R O. On multiphase turbulence models for collisional fluid–particle flows[J]. Journal of Fluid Mechanics, 2014, 742:368–424. [17] 王维,洪坤,鲁波娜,张楠,李静海. 流态化模拟:基于介尺度结构的多尺度CFD[J]. 化工学报,2013,64(01):95-106. Wang W, Hong K, Lu B N, Zhang N, Li J H. Fluidized bed simulation: structure-dependent multiscale CFD[J]. Journal of Chemical Industry and Engineering(China),2013,64(01):95-106. [18] 杨宁,李静海. 化学工程中的介尺度科学与虚拟过程工程:分析与展望[J]. 化工学报,2014,65(07):2403-2409. Yang N, Li J H. Mesoscience in chemical engineering and virtual process engineering[J]:analysis and perspective. Journal of Chemical Industry and Engineering(China),20 [19] Zhou L X. Advances in Studies on Turbulent Dispersed Multiphase Flows[J]. Chinese Journal of Chemical Engineering, 2010, 18(6): 889-898. [20] Tenneti S, Subramaniam S. Particle-resolved direct numerical simulation for gas-solid flow model development[J]. Annual review of fluid mechanics, 2014, 46: 199-230. [21] Igci Y, Sundaresan S. Constitutive models for filtered two-fluid models of fluidized gas–particle flows[J]. Industrial & Engineering Chemistry Research, 2011, 50(23): 13190-13201. [22] Ozel A, Fede P, Simonin O. Development of filtered Euler–Euler two-phase model for circulating fluidised bed: high resolution simulation, formulation and a priori analyses[J]. International Journal of Multiphase Flow, 2013, 55: 43-63. [23] Van M A, Sint A M, Deen N G, et al. Numerical simulation of dense gas-solid fluidized beds: a multiscale modeling strategy[J]. Annu. Rev. Fluid Mech., 2008, 40: 47-70. [24] Gidaspow D. Multiphase flow and fluidization: continuum and kinetic theory descriptions[M]. Academic press, 1994. [25] Desjardins O, Fox R O, Villedieu P. A quadrature-based moment method for dilute fluid-particle flows[J]. Journal of Computational Physics, 2008, 227(4): 2514-2539. [26] Jenkins J T, Savage S B. A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles[J]. Journal of Fluid Mechanics, 1983, 130: 187-202. [27] Gidaspow D. Multiphase flow and fluidization: continuum and kinetic theory descriptions[M]. Academic press, 1994. [28] Rubinstein G J, Derksen J J, Sundaresan S. Lattice Boltzmann simulations of low-Reynolds-number flow past fluidized spheres: effect of Stokes number on drag force[J]. Journal of Fluid Mechanics, 2016, 788: 576-601. [29] Cody G D, Johri J, Goldfarb D. Dependence of particle fluctuation velocity on gas flow, and particle diameter in gas fluidized beds for monodispersed spheres in the Geldart B and A fluidization regimes[J]. Powder Technology, 2008, 182(2): 146-170. [30] Wang W, Chen Y P. Mesoscale modeling: beyond local equilibrium assumption for multiphase flow[M]//Advances in Chemical Engineering. Academic Press, 2015, 47: 193-277. [31] Wang J W. Effect of granular temperature and solid concentration fluctuation on the gas-solid drag force: A CFD test[J]. Chemical Engineering Science, 2017, 168: 11-14. [32] Gopalan B, Shaffer F. Higher order statistical analysis of Eulerian particle velocity data in CFB risers as measured with high speed particle imaging[J]. Powder technology, 2013, 242: 13-26. [33] 孙丹, 陈巨辉, 刘国栋, 等. 稠密气固两相流各向异性颗粒相矩方法[J]. 力学学报, 2010, 42(6): 1034-1041. Sun D, Chen J H, Liu G D, et al. Anisotropic second –order moment method of particles for dense gas-solid flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1034-1041. [34] 蔡振宁. 气体动理学中数值矩方法的算法研究与应用[D]. 北京大学, 2013. Cai Zhenning. Investigations and Applications of the Numerical Moment Method in the Kinetic Theory of Gases[D]. Peking University, 2013. [35] Capecelatro J, Desjardins O, Fox R O. On fluid–particle dynamics in fully developed cluster-induced turbulence[J]. Journal of Fluid Mechanics, 2015, 780: 578-635. [36] Zhao Bidan, Li Shuyue, Wang Junwu. Generalized Boltzmann kinetic theory for EMMS-based two-fluid model[J]. Chemical Engineering Science, 2016, 156: 44-55. [37] Marchisio D L, Fox R O. Computational models for polydisperse particulate and multiphase systems[M]. Cambridge University Press, 2013. [38] Vié A, Doisneau F, Massot M. On the Anisotropic Gaussian velocity closure for inertial-particle laden flows[J]. Communications in Computational Physics, 2015, 17(01): 1-46. [39] Bhatnagar P L, Gross E P, Krook M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems[J]. Physical review, 1954, 94(3): 511. [40] Garzó V, Tenneti S, Subramaniam S, et al. Enskog kinetic theory for monodisperse gas–solid flows[J]. Journal of Fluid Mechanics, 2012, 712: 129-168. [41] Capecelatro J, Desjardins O, Fox R O. Numerical study of collisional particle dynamics in cluster-induced turbulence[J]. Journal of Fluid Mechanics, 2014, 747: R2. [42] Kong B, Fox R O, Feng H, et al. Euler–euler anisotropic gaussian mesoscale simulation of homogeneous cluster‐induced gas–particle turbulence[J]. AIChE Journal, 2017, 63(7): 2630-2643. [43] Abbott M B, Minns A W. Computational hydraulics[M]. Routledge, 2017. |
相关文章 15
[1] | 何星晨 王娟 张佳 万加亿 王江云 毛羽. 多组扭曲片排布方式对乙烯裂解炉管内产物收率的影响[J]. 过程工程学报, 2021, 21(4): 401-409. |
[2] | 周小宾 彭世恒 刘勇 王多刚. 废钢对转炉熔池流体流动影响研究[J]. 过程工程学报, 2021, 21(4): 410-419. |
[3] | 郭栋 梁海峰. 气液混合式撞击流反应器流场特性数值模拟[J]. 过程工程学报, 2021, 21(3): 277-285. |
[4] | 王珂 张引弟 王城景 辛玥. CH4掺混H2的燃烧数值模拟及掺混比合理性分析[J]. 过程工程学报, 2021, 21(2): 240-250. |
[5] | 史怡坤 李瑞江 朱学栋 方海灿 朱子彬. 真空变压吸附制氧径向流吸附器的流动特性模拟[J]. 过程工程学报, 2021, 21(1): 18-26. |
[6] | 杨会 朱辉 陈永平 付海明. 滑移效应下纤维绕流场及过滤阻力的数值计算与分析[J]. 过程工程学报, 2021, 21(1): 36-45. |
[7] | 岳高伟 万重重 王路 李彦兵. 玻璃钢化淬冷降温特征及影响因素[J]. 过程工程学报, 2020, 20(8): 947-958. |
[8] | 王志敏 谢峻林 梅书霞 何峰 金明芳. 浮法玻璃熔窑火焰空间石油焦部分替代重油燃烧的数值模拟[J]. 过程工程学报, 2020, 20(6): 737-744. |
[9] | 王娟 何星晨 李军 万加亿 邹槊 徐皓晗. 开口扭曲片圆管强化传热与流动阻力特性模拟[J]. 过程工程学报, 2020, 20(5): 510-520. |
[10] | 王志奇 邹玉洁 刘柏希 张振康. 热风循环隧道烘箱的流场模拟及结构优化[J]. 过程工程学报, 2020, 20(5): 531-539. |
[11] | 郝思佳 范怡平 汪泉宇 赵亚飞. 气液逆流接触洗涤器两相洗涤效果和流动特性[J]. 过程工程学报, 2020, 20(4): 390-399. |
[12] | 李希铭 牛胜利 曲同鑫 韩奎华 路春美 王永征. 基于颗粒动力学理论的搅拌器中固液流动的数值模拟[J]. 过程工程学报, 2020, 20(3): 265-275. |
[13] | 张宇 田丽亭 岳小棚 王坤. 槽式太阳能集热管内相变微胶囊悬浮液的热力性能分析[J]. 过程工程学报, 2020, 20(3): 276-284. |
[14] | 王娟 李军 高助威 何星晨 邹槊 万加亿. 热风混合器内部流场的数值模拟与结构改进[J]. 过程工程学报, 2020, 20(2): 148-157. |
[15] | 吴仲达 游永华 王盛 张壮 周思凯 戴方钦 易正明. 扩缩方孔蜂窝蓄热体强化传热的数值模拟[J]. 过程工程学报, 2020, 20(12): 1416-1423. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3238