1. 郑州大学化工与能源学院,河南 郑州 450001 2. 中国科学院过程工程研究所离子液体清洁过程北京市重点实验室,多相复杂系统国家重点实验室,北京 100190
收稿日期:
2018-03-29修回日期:
2018-07-11出版日期:
2019-02-22发布日期:
2019-02-12通讯作者:
张香平基金资助:
国家自然科学基金资助项目;山西省重点研发计划重点项目;科技北京百名领军人才培养工程Efficient absorption of dichloromethane using imidazolium based ionic liquids
Wenliang WU1,2, Tao LI1, Hongshuai GAO2*, Dawei SHANG2, Wenhui TU2, Binqi WANG2, Xiangping ZHANG1,2*1. School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, Henan 450001, China2. Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
Received:
2018-03-29Revised:
2018-07-11Online:
2019-02-22Published:
2019-02-12Contact:
xiangping zhang 摘要/Abstract
摘要: 合成了一系列常规离子液体1-丁基-3-甲基咪唑四氟硼酸盐([Bmim][BF4])、1-丁基-3-甲基咪唑六氟磷酸盐([Bmim][PF6])、1-丁基-3-甲基咪唑双三氟甲磺酰亚胺盐([Bmim][NTf2])、1-丁基-3-甲基咪唑双氰胺盐([Bmim][DCA])、1-丁基-3-甲基咪唑硫氰酸盐([Bmim][SCN])、1-乙基-3-甲基咪唑硫氰酸盐([Emim][SCN])和N-丁基吡啶硫氰酸盐([BPy][SCN]),用智能重量分析仪(IGA)测定不同温度和分压下离子液体吸收二氯甲烷(DCM)的容量。结果表明,[Bmim][SCN]具有最高的二氯甲烷吸收容量(1.46 g/g, 303.15 K, 60 kPa),5次循环后吸收能力无明显下降,[Bmim][SCN]基本可完全再生,能循环使用。量化计算结果表明[SCN]?可与二氯甲烷形成氢键,增强其对二氯甲烷的吸收能力。
引用本文
吴文亮 李涛 高红帅 尚大伟 涂文辉 王斌琦 张香平. 咪唑类离子液体高效吸收二氯甲烷[J]. 过程工程学报, 2019, 19(1): 173-180.
Wenliang WU Tao LI Hongshuai GAO Dawei SHANG Wenhui TU Binqi WANG. Efficient absorption of dichloromethane using imidazolium based ionic liquids[J]. Chin. J. Process Eng., 2019, 19(1): 173-180.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218162
http://www.jproeng.com/CN/Y2019/V19/I1/173
参考文献
[1]. Yu J, Cai W, Chen J, et al. Conversion Characteristics and Mechanism Analysis of Gaseous Dichloromethane Degraded by a VUV Light in Different Reaction Media [J]. J. Environ. Sci., 2012, 24(10): 1777-1784. [2]. Yun JH, Choi DK. Adsorption Equilibria of Chlorinated Organic Solvents onto Activated Carbon[J]. Ind. Eng. Chem. Res., 1998, 37: 1422-1427. [3]. Schlosser PM, Bale AS, Gibbons CF, et al. Human Health Effects of Dichloromethane: Key Findings and Scientific Issues [J]. Environ. Health Perspect, 2015, 123(2):114-119. [4]. Ozturk B, Yilmaz D. Absorptive Removal of Volatile Organic [J]. Process Saf. Environ., 2006, 84(B5): 391-398. [5]. Shestakova M, Sillanpaa M. Removal of Dichloromethane from Ground and Wastewater: A Review [J]. Chemosphere, 2013, 93(7): 1258-1267. [6]. Borkar C, Tomar D, Gumma S. Adsorption of Dichloromethane on Activated Carbon [J]. J. Chem. Eng. Data, 2010, 55: 1640-1644. [7]. Lemus J, Martin-Martinez M, Palomar J. Removal of Chlorinated Organic Volatile Compounds by Gas Phase Adsorption with Activated Carbon [J]. Chem. Eng. J., 2012, 211-212: 246-254. [8]. Zhou L, Zhang X, Chen Y. Facile Synthesis of Al-fumarate metal–organic Framework Nano-flakes and Their Highly Selective Adsorption of Volatile Organic Compounds [J]. Mater. Lett., 2017, 197: 224-227. [9]. Zhou L, Zhang X, Chen Y. Modulated Synthesis of Zirconium Metal–organic Framework UiO-66 with Enhanced Dichloromethane Adsorption Capacity [J]. Mater. Lett., 2017, 197:167-170. [10]. Leng Y, Wang J, Zhu D, et al. Heteropolyanion-based Ionic Liquids: Reaction-induced Self-separation Catalysts for Esterification [J]. Angew. Chem. Int. Ed., 2009, 48(1): 168-71. [11]. Dong K, Liu X, Dong H, et al. Multiscale Studies on Ionic Liquids [J]. Chem. Rev., 2017, 117(10): 6636-6695. [12]. Shang D, Zhang X, Zeng S, et al. Protic Ionic Liquid [Bim][NTf2] with Strong Hydrogen Bond Donating Ability for Highly Efficient Ammonia Absorption [J]. Green Chem., 2017, 19(4): 937-945. [13]. Zeng S, Wang J, Bai L, et al. Highly Selective Capture of CO2 by Ether-functionalized Pyridinium Ionic Liquids with Low Viscosity [J]. Energy Fuels, 2015, 29(9): 6039-6048 [14]. Che S, Dao R, Zhang W, et al. Designing an Anion-functionalized Fluorescent Ionic Liquid as an Efficient and Reversible Turn-off Sensor for Detecting SO2 [J]. Chem. Commun., 2017, 53(27): 3862-3865. [15]. Yang D, Han Y, Qi H, et al. Efficient Absorption of SO2 by EmimCl-EG Deep Eutectic Solvents [J]. ACS Sustain. Chem. Eng., 2017, 5(8): 6382-6386. [16]. Zeng S, Zhang X, Gao H, et al. SO2-induced Variations in the Viscosity of Ionic Liquids Investigated by in Situ Fourier Transform Infrared Spectroscopy and Simulation Calculations [J]. Ind. Eng. Chem. Res., 2015, 54(43): 10854-10862. [17]. Wang J, Petit C, Zhang X, et al. Simultaneous Measurement of CO2 Sorption and Swelling of Phosphate-based Ionic Liquid [J]. Green Energy Environ., 2016, 1(3): 258-265. [18]. Meng X, Wang J, Jiang H, et al. Guanidinium-based Dicarboxylic Acid Ionic Liquids for SO2 Capture [J]. J. Chem. Technol. Biot., 2017, 92(4): 767-774. [19]. Liu X, Huang Y, Zhao Y, et al. Ionic Liquid Design and Process Simulation for Decarbonization of Shale Gas [J]. Ind. Eng. Chem. Res., 2016, 55(20): 5931-5944. [20]. Zeng S, Gao H, Zhang X, et al. Efficient and Reversible Capture of SO2 by Pyridinium-based Ionic Liquids [J]. Chem. Eng. J., 2014, 251: 248-256. [21]. Li Z, Zhang X, Dong H, et al. Efficient Absorption of Ammonia with Hydroxyl-functionalized Ionic Liquids [J]. RSC Adv., 2015, 5(99): 81362-81370. [22]. Shang D, Bai L, Zeng S, et al. Enhanced NH3 Capture by Imidazolium-based Protic Ionic Liquids with Different Anions and Cation Substituents [J]. J. Chem. Technol. Biot., 2017, DOI 10.1002/jctb.5467. [23]. Lei Z, Han J, Zhang B, et al. Solubility of CO2 in Binary Mixtures of Room-temperature Ionic Liquids at High Pressures [J]. J. Chem. Eng. Data, 2012, 57(8): 2153-2159. [24]. Lei Z, Dai C, Chen B. Gas Solubility in Ionic Liquids [J]. Chem. Rev., 2014, 114(2): 1289-1326. [25]. Ando RA, Siqueira LJA, Bazito FC, et al. The Sulfur Dioxide-1-butyl-3-methylimidazolium Bromide Interaction_drastic Changes in Structural and Physical Properties [J]. J. Phys. Chem. B, 2007, 111: 8717-8719. [26]. Ren SH, Hou YC, Wu WZ, et al. Properties of Ionic Liquids Absorbing SO2 and the Mechanism of the Absorption [J]. J. Phys. Chem. B, 2010, 114: 2175-2179. [27]. Brown P, Gurkan BE, Hatton TA. Enhanced Gravimetric CO2 Capacity and Viscosity for Ionic Liquids with Cyanopyrrolide Anion [J]. AIChE J., 2015, 61(7): 2280-2285. [28]. Feldheim DL, Hendrickson SM, Krejcik M, et al. Kinetics of Dichloromethane Absorption into the Conductive Polymers [J]. J. Phys. Chem., 1995, 99: 3288-3293. [29]. Borisch J, Pilkenton S, Miller LM, et al. TiO2 Photocatalytic Degradation of Dichloromethane: An FTIR and Solid-state NMR Study [J]. J. Phys. Chem. B, 2004, 108: 5640-5646. [30]. Ding F, He X, Luo X, et al. Highly Efficient CO2 Capture by Carbonyl-containing Ionic Liquids Through Lewis Acid-base and Cooperative C-HO Hydrogen Bonding Interaction Strengthened by the Anion [J]. Chem. Commun., 2014, 50(95): 15041-15044. [31]. Noack K, Schulz PS, Paape N, et al. The Role of the C2 Position in Interionic Interactions of Imidazolium Based Ionic Liquids: A Vibrational and NMR Spectroscopic Study [J]. Phys. Chem. Chem. Phys., 2010, 12(42): 14153-14161. [32]. Meng Z, Dolle A, Carper WR. Gas Phase Model of An Ionic Liquids: Semi-empirical and Ab Initio Bonding and Molecular Structure [J]. J. Mol. Strut., 2002, 585: 119-128. |
相关文章 2
[1] | 许海洋 孟祥展 夏大厦 惠岚峰 王慧. 功能化离子液体萃取分离甘氨酸[J]. 过程工程学报, 2019, 19(3): 544-552. |
[2] | 孟建陈璐璐李延斌高保娇. 非水介质中表面引发接枝聚合法制备接枝微粒PMAA/SiO2及其对阿魏酸的氢键吸附性能[J]. 过程工程学报, 2015, 15(4): 646-652. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3214