1. 中国石油化工股份有限公司青岛安全工程研究院,山东 青岛 266101 2. 化学品安全控制国家重点实验室,山东 青岛 266101 3. 赛飞特工程技术集团有限公司,山东 青岛 266061
收稿日期:
2018-03-19修回日期:
2018-09-12出版日期:
2018-11-22发布日期:
2018-11-19通讯作者:
辛保泉基金资助:
四川省科技创新苗子工程Quantitative analysis method and index response law of hydrogen sulfide leakage
Baoquan XIN1,2*, Wei LU1,2, Xiangjian ZHANG1,2, Lu WAN31. SINOPEC Qingdao Research Institute of Safety Engineering, Qingdao, Shandong 266101, China 2. State Key Laboratory of Safety and Control for Chemicals, Qingdao, Shandong 266101, China 3. Saifeite Engineering Technology Group Co., Ltd., Qingdao, Shandong 266061, China
Received:
2018-03-19Revised:
2018-09-12Online:
2018-11-22Published:
2018-11-19摘要/Abstract
摘要: 为了定量分析不同场景下H2S泄漏影响范围及各参数的响应规律,为H2S的泄漏防护提供定量数据,根据统一扩散模型和重气扩散理论,应用挪威船级社的 PHAST软件研究了H2S在不同泄漏条件下的扩散特征、浓度分布及顺风距离等. 结果表明,泄漏1 min时,中孔、大孔泄漏和破裂时的立即威胁生命和健康(IDLH)浓度顺风距离从661 m增至2404 m,IDLH浓度和最高容许浓度(MAC)的顺风距离、最大云团宽度均增大了3~4倍,持续5和30 min时变化类似;相同泄漏孔径时,中孔、大孔泄漏和破裂时,IDLH顺风距离分别缩短了31.4%, 23.8%和24.7%,最大云团宽度增加了1.4~1.7倍;风速4 m/s时,大气稳定度E的IDLH和MAC顺风距离分别是大气稳定度B的2.8倍和3.8倍;大气稳定度D、风速8.5 m/s时的IDLH和MAC顺风距离分别是风速1.5 m/s时的49.2%和39.3%;顺风距离及最大云团宽度随地面粗糙度增大呈对数降低;H2S泄漏后可能造成的主要危害是中毒,其次是喷射火、闪火及爆炸. 在进行泄漏防护时可参考定量分析结果,从个体防护和安全隔离两方面考虑;泄漏影响范围可作为H2S安全隔离的边界.
引用本文
辛保泉 卢卫 张相建 万露. 硫化氢泄漏后果定量分析方法及指标响应规律[J]. 过程工程学报, 2018, 18(S1): 82-88.
Baoquan XIN Wei LU Xiangjian ZHANG Lu WAN. Quantitative analysis method and index response law of hydrogen sulfide leakage[J]. Chin. J. Process Eng., 2018, 18(S1): 82-88.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.20180084
http://www.jproeng.com/CN/Y2018/V18/IS1/82
参考文献
[1]章博, 王志刚, 王彦富.高硫炼油装置硫化氢泄漏场景集定量分析[J].中国安全生产科学技术, 2015, 11(10):73-78 [2]Zhang Bo, Wang Zhigang, Wang Yanfu.Quantitative analysis of hydrogen sulfide leakage scene in high sulfur refining unit[J].China safety production science and technology, 2015, 11(10):73-78 [3]Mohtadi-Bonab M A, Eskandari M.A focus on different factors affecting hydrogen induced cracking in oil and natural gas pipeline steel[J].Engineering Failure Analysis, 2017, 79:351-360 [4]毛小虎, 郝永梅, 邢志祥, 等.城市天然气管道动态泄漏扩散特性模拟分析[J].油气储运, 2014, 33(04):374-379 [5]Mao Xiaohu, Hao Yongmei, Xing Zhixiang, et al.Simulation and analysis of dynamic leakage and diffusion characteristics of urban natural gas pipeline[J].oil and gas storage and transportation, 2014, 33(04):374-379 [6]邓海发, 陈国明, 朱渊, 等.海洋钻井平台井喷硫化氢扩散规律研究[J].安全与环境学报, 2010, 10(05):177-180 [7]Deng Haifa, Chen Guoming, Zhu Yuan, et al.Study on the diffusion of hydrogen sulfide in offshore drilling platform[J].Journal of safety and environment, 2010, 10(05):177-180 [8]蒋军成, 潘旭海.描述重气泄漏扩散过程的新型模型[J].南京工业大学学报(自然科学版), 2002,, (1):41-46 [9]Jiang Juncheng, Pan Xuhai.A new model [J]. Journal of Nanjing University of Technology described the process of diffusion of heavy gas (NATURAL SCIENCE EDITION), 2002, (1): 41-46. [10]Wang Y, Zhang R, Zhang Z, et al.Leakage risk quantitative calculation model and its application for anaerobic reactor[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017. [11]Liu D, Wei J.Modelling and simulation of continuous dense gas leakage for emergency response application[J]. Journal of Loss Prevention in the Process Industries, 2017, 48:14-20. [12]邱永年, 胡利明.凝析油炼制场所硫化氢事故爆炸风险分析[J].石油化工安全环保技术, 2014, 30(01):42-46 [13]Qiu Yongnian, Hu Liming.Condensate oil refining hydrogen sulfide explosion accident risk analysis places[J].petroleum and chemical safety and environmental protection technology, 2014, 30(01):42-46 [14]Pandya N, Gabas N, Marsden E.Sensitivity analysis of Phast’s atmospheric dispersion model for three toxic materials (nitric oxide,ammonia,chlorine)[J].Journal of Loss Prevention in the Process Industries, 2012, 25(1):20-32 [15]雷达, 张建文, 冯文兴.含硫化氢天然气泄漏事故的硫化氢中毒灾害分析[J].安全与环境学报, 2012, (3):224-228 [16]Lei Da, Zhang Jianwen, Feng Wenxing.Analysis of the hazards of hydrogen sulfide poisoning with hydrogen sulfide natural gas leakage accidents [J]. safety and environment, 2012, (3): 224-228. [17]敬加强, 李小明, 江漩涛, 等.不同硫化氢浓度下的天然气管道泄漏扩散数值模拟[J].当代化工, 2015, (11):2710-2713 [18]Jing Jiaqiang, Li Xiaoming, Jiang Xuan Tao, et al.Natural gas pipeline under different concentration of hydrogen sulfide leakage diffusion numerical simulation [J]. contemporary chemical industry, 2015, (11): 2710-2713. [19]AQ/T 3046—2013, 化工企业定量风险评价导则. [20]AQ/T3046-2013, Guidelines for quantitative risk assessment of chemical enterprises. [21]高少华, 邹兵, 严龙, 等.含硫天然气净化厂硫化氢泄漏分析及对策[J].中国安全生产科学技术, 2012, (2):174-179. [22]Gao Shaohua, Zou Bing, Yan long, et al.Analysis and Countermeasures of hydrogen sulfide leakage in sulfur containing natural gas purification plant [J]. China safety production science and technology, 2012, (2): 174-179. [23]API Publ4628.A Guidance Manual For Modeling Hypothetical Accidental Releases to the Atmosphere[S]. [24]王龙, 马贵阳.天然气管道泄漏后硫化氢和甲烷危险区域分析[J].当代化工, 2015, (4):760-762, 765. [25]Wang Long, Ma Guiyang.Analysis of the hazardous area of hydrogen sulfide and methane after leakage of natural gas pipeline [J]. Contemporary chemical industry, 2015, (4): 760-762765. |
相关文章 4
[1] | 杨新芳 赵丽凤 刘洋 肖云汉. 水蒸气和H2S对白云石循环碳酸化/煅烧过程中CO2捕获性能的影响[J]. 过程工程学报, 2017, 17(3): 594-599. |
[2] | 于宏东齐涛王丽娜陈德胜赵宏欣曲景奎何明明. 临沂低品位钛矿的矿物组成及铁钛元素的分布状态[J]. 过程工程学报, 2015, 15(5): 813-818. |
[3] | 邱淑兴张生富张溪杨明睿刘伟. 煤焦化过程中矿相转变规律[J]. , 2015, 15(2): 278-283. |
[4] | 李钒王辉闫柏军. 钢渣中不同价态金属元素的化学定量分析研究进展[J]. , 2014, 14(3): 506-515. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3156