1. 长江大学石油工程学院,湖北 武汉 430100 2. 加拿大国家研究院测量科学与标准研究中心,加拿大 渥太华
收稿日期:
2018-01-15修回日期:
2018-04-19出版日期:
2018-10-22发布日期:
2018-10-12通讯作者:
张引弟基金资助:
页岩气采输流动保障及应用新技术;稠油热采地面注汽锅炉热能高效利用及CO2富集驱油联产技术研究;CO2气氛下煤及碳氢燃料燃烧碳烟颗粒物 (Soot) 的形成机制;国家留学基金委基金资助Combustion characteristics of CH4 at O2/H2O atmosphere and gas hydrate co-production process
Duoduo HU1, Yindi ZHANG1,2*, Chang LIU11. College of Petroleum Engineering, Yangtze University, Wuhan, Hubei 430100, China
2. Measurement Science and Standards, National Research Council Canada, Building M-9, 1200 Montreal Road, Ottawa, Ontario K1AOR6, Canada
Received:
2018-01-15Revised:
2018-04-19Online:
2018-10-22Published:
2018-10-12摘要/Abstract
摘要: 对O2/N2, O2/CO2和O2/H2O三种气氛下CH4燃烧特性及主要污染物生成进行了数值模拟,将出口O2浓度作为污染物排放的协同考虑因素,提出了基于O2/H2O气氛燃烧置换天然气水合物的新技术方案,比较了3种燃烧气氛对甲烷燃烧温度、燃烧速率、污染物(NOx和碳黑)生成量及燃烧效率等的影响. 结果表明,相较于O2/N2和O2/CO2气氛,O2/H2O气氛下燃烧温度最低、燃烧速率最高、污染物生成量最少、燃烧效率最高、出口O2浓度最低. 确定了与传统燃烧温度分布特征曲线相匹配的浓度配比为32vol% O2/68vol% H2O. 基于模拟研究结果,提出了一套O2/H2O燃烧技术与开发天然气水合物联产的技术新思路.
引用本文
胡多多 张引弟 刘畅. O2/H2O气氛下CH4燃烧特性与置换天然气水合物联产方案[J]. 过程工程学报, 2018, 18(5): 1102-1111.
Duoduo HU Yindi ZHANG Chang LIU. Combustion characteristics of CH4 at O2/H2O atmosphere and gas hydrate co-production process[J]. Chin. J. Process Eng., 2018, 18(5): 1102-1111.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218114
http://www.jproeng.com/CN/Y2018/V18/I5/1102
参考文献
[1] Lai X, Ye Z, Xu Z, et, al. Carbon capture andsequestration (CCS) technological innovation system in China: structure, function evaluation and policy implication. Energy Policy , 2012(50): 635–646. [2] 刘斯亮. O2/N2、O2/CO2和O2/H2O氛围中HCN转化生成NO的特性与机理研究[D]. 华中科技大学,2016:1-2. Liu S L. Numerical Study of HCN Oxidation Mechanism and NO Characteristic in . O2/N2、O2/CO2 and O2/H2O atmospheres[D]. Huazhong University of Science and Technology, 2016:1-2. [3] IEA-GHG. International oxy-combustion network for CO2 capture—Report on 2ndWorkshop. CT, USA, Jan, 2007. [4] Arlos S. Modeling design and pilot-scale experiments of CANMET’S advanced oxy-fuel/steam burner[J]. International Oxy-combustion research network, USA, 2007. [5] 盛磊. O2/H2O和O2/CO2富氧燃烧方式下燃煤电站的模拟比较分析[D]. 华中科技大学,2015:7-9. Sheng L. Simulation and Comparative Analysis of O2/H2O and O2/CO2 Oxy-combustion Coal-fired Power Plants[D]. Huazhong University of Science and Technology, 2015: 7-9. [6] Yewen T, Mark A, Douglas K V. CO2 capture using oxygen enhanced combustion strategies for natural gas power plants[J]. Fuel, 2002, 81: 1007-1016. [7] Klas A, Filip J. Flame and radiation characteristics of gas—fired O2/CO2 combustion[J]. Fuel, 2007, 86: 656-668. [8] Seepana S, Jayanti S. Steam-moderated oxy-fuel combustion[J]. Energy Conversion and Management, 2010, 51(10): 1981-1988. [9] Yizhuo He, Xiaochun Zheng, Jianghui Luo, et, al. Experimental and Numerical Study of the Effects of Steam Addition on NO Formation during Methane and Ammonia Oxy-Fuel Combustion[J]. Energy Fuels, 2017, 31: 10093-10100. [10] 朱清华,牛奕,陈先锋等. 水蒸气对层流甲烷/空气扩散火焰中烟黑生成的影响[J]. 安全与环境学报,2017,17(1):174-177. Zhu Q H, Niu Y, Chen X F, et, al Impact of Water Vapor on the Soot Formation in the Laminar Methane/Air Diffusion Flame[J]. Journal of Safely and Environment, 2017, 17(1): 174-177. [11] 何志霞,王谦,袁建平. 热流体数值计算方法与应用[M]. 北京:机械工业出版社,2014:9. He Z P, Wang Q. Yuan J P. Method and Application of Numerical Calculation of Thermal Fluid[M]. Beijing: Machinery Industry Press, 2014: 9. [12] 周力行. 湍流两相流动与燃烧的数值模拟[M]. 北京:清华大学出版社,1991:92. Zhou L X. Numerical Simulation of Turbulent Two - Phase Flow and Combustion[M]. Beijing: Tsinghua University Press, 1991:92. [13] 李姗. O2/CO2氛围下天然气燃烧数值模拟及热物性检测研究[D]. 长江大学,2016:24-25. Li S. Numerical?Simulation?and?Experimental?Research for?Natural?Gas?Combustion?Characteristic?Under O2/CO2?Atmosphere[D]. Yangtze University, 2016: 24-25. [14] 王皆腾,祁海鹰,李宇红等. 碳氢燃料在高温空气燃烧过程中的裂解和烟炱生成[J]. 能源技术,2001,22:221-225. Wang J T, Qi H Y, Li Y H et, al. Pyrolysis of Hydrocarbons and Soot Formation in High Temperature Air Combustion[J]. Energy Technology, 2001, 22: 221-225. [15] 张引弟. 乙烯火焰反应动力学简化模型及烟黑生成模型研究[D]. 华中科技大学,2011:4-5. Zhang Y D. Simulation Study on Simplification of Chemical Kinetics Model and Soot Formation for Ethylene Flames[D]. Huazhong University of Science and Technology, 2011: 4-5. [16] Li S L, Jiang Y, Chen W T. Numerical Analysis on Characteristics of Soot Particles in ?C2H4/CO2/O2/N2 Combustion[J]. Chinese?Journal?of?Chemical?Engineering, 2013: 21(3): 238-245. [17] 楚化强,曹文健,冯艳,等. 二氧化碳和富氧空气对甲烷与乙烯燃烧的影响[J]. 过程工程学报,2016,16(3):470-476. Chu H Q, Cao W J, Feng Y, et, al. Effects of CO2 and Oxygen-enriched Air on Combustion of Methane and Ethylene[J]. Journal of Process Engineering, 2016, 16(3): 470-476. [18] Jeong P, Seung-Gon K, Kee-Man L, et, al. Chemical Effect of Diluents on Flame Structure and NO Emission Characteristic in Methane-air Counterflow Diffusion Flame[J]. International Journal of Research, 2002, 26: 1141-1160. [19] He Y Z, Luo J H, Li Y G , et al. Comparison of the Reburning Chemistry in O2/N2,O2/CO2and O2/H2O Atmospheres[J]. Energy Fuels, 2017, 31: 11404-11412. [20] Le C T, Dagaut P O. Oxidation of H2/CO2 mixtures and effect of hydrogen initial concentration on the combustion of CH4 and CH4/CO2 mixture Experiments and modeling[J]. Proceedings of the combustion institute , 2009, 32(1): 427-435. [21] Giménez-López J, Millera A, Bilbao R, et, al. HCN oxidation in an O2/CO2atmosphere:An experimental and kinetic modeling study[J]. Combustion and Flame, 2010, 157(2): 267-276. [22] Giménez-López J, Aranda V, Millera A, et, al. An experimental parametric study of gas reburning under conditions of interest for oxy-fuel combustion[J]. Fuel Processing Technology, 2011, 92(3): 582-589. [23] 洪迪昆. CH4在O2/CO2与O2/H2O气氛下燃烧的分子动力学模拟[D]. 华中科技大学,2015:46. Hong D K. Molecular Dynamics Simulation of Combustion of CH4 in O2/CO2 and O2/H2O Atmospheres[D]. Huazhong University of Science and Technology, 2015: 46. [24] 徐晓英. 燃气锅炉富氧燃烧及NOX排放特性的数值模拟[D]. 吉林大学,2007:29. Xu X Y. Numerical Simulation of Oxygen-enriched Combustion and NOX Emission Characteristic of Gas Boiler [D]. Jilin University, 2007: 29. [25] 鄂勇,宋国利,张颖等. 碳黑大气颗粒物的环境效应[J]. 地球与环境,2006,34:61-64. E Y, Song G L, Zhang Y et, al. Environmental Effects of Particulate Matter of Black Carbon[J]. Earth and Environment, 2006, 34: 61-64. [26] 郭喆,娄春,刘正东. 富氧扩散火焰中燃烧特性及火焰结构对碳黑生成的影响[J]. 中国科学,2013,43(9):991-1000. Guo Z, Lou C, Liu Z D. Combustion Characteristics in Oxygen Diffusion Flame and Effect of Flame Structure on Carbon Black Formatio [J]. Chinese Science, 2013, 43(9): 991-1000. [27] 田晓晶,崔玉峰,房爱兵,等. CH4/O2/H2O燃气轮机富氧燃烧特性[J]. 燃烧科学与技术,2013,19(5):413-417. Lian X J, Cui Y F, Fang A M, et, al. Oxy-Fuel Combustion Characteristic of CH4/O2/H2O in Gas Turbine [J]. Burning Science and Technology, 2013, 19(5): 413-417. |
相关文章 15
[1] | 王珂 张引弟 王城景 辛玥. CH4掺混H2的燃烧数值模拟及掺混比合理性分析[J]. 过程工程学报, 2021, 21(2): 240-250. |
[2] | 韩健 刘新华 何京东. 典型煤炭燃料在民用解耦炉中的燃烧实验研究[J]. 过程工程学报, 2020, 20(6): 728-736. |
[3] | 宋震 李凯莉 孙嘉航 吕忠蕾. 海洋天然气水合物储层拉削开采新方法及可行性分析[J]. 过程工程学报, 2020, 20(10): 1234-1240. |
[4] | 陶源清 颜克凤 李小森 陈浩. 盐离子对蒙脱石水化膨胀特性的影响[J]. 过程工程学报, 2020, 20(10): 1182-1189. |
[5] | 刘仕尧 黄家玉 罗锦洪 邓双 郭凤艳. 富氧燃烧方式下烟气中SO3和Hg的排放及控制研究进展[J]. 过程工程学报, 2019, 19(S1): 115-122. |
[6] | 任昕 张引弟 刘畅 王珂. O2/CO2气氛中水蒸气预混CH4燃烧特性与烟气余热梯级利用方案[J]. 过程工程学报, 2019, 19(5): 1047-1056. |
[7] | 李学峰 何霞 王国荣 邱顺佐 周守为 刘清友. 天然气水合物提纯螺旋分离器性能数值模拟[J]. 过程工程学报, 2019, 19(3): 510-515. |
[8] | 于荆鑫 王菁 杨凤玲 郝艳红 程芳琴. 基于Aspen Plus的燃煤电厂烟气污染控制单元模拟[J]. 过程工程学报, 2019, 19(2): 329-337. |
[9] | 邱顺佐 王国荣 王广申 周守为 刘清友 钟林 王雷振. 旋流分离对天然气水合物除砂提纯的影响[J]. 过程工程学报, 2019, 19(1): 64-72. |
[10] | 陈浩 吴文科 吕斌 陈靖文 付来强 尹钢. 用双锥-内锥型水力旋流器提纯海洋天然气水合物浆体[J]. 过程工程学报, 2018, 18(3): 491-495. |
[11] | 邢献军 邢勇强 虞浸 李永玲 马培勇 许宝杰. 生活垃圾燃烧烟气中CO和NO的排放特性[J]. 过程工程学报, 2017, 17(4): 866-872. |
[12] | 陈彦广张雷韩洪晶赵哲吉闫伟宁宋华. 钙钛矿类混合离子电子导体在污染物处理中应用的研究进展[J]. 过程工程学报, 2015, 15(5): 892-900. |
[13] | 张学民李金平吴青柏王春龙南军虎. CO2置换天然气水合物中CH4的研究进展[J]. , 2014, 14(4): 715-720. |
[14] | 宋永臣阮徐可梁海峰李清平赵越超. 天然气水合物热开采技术研究进展[J]. , 2009, 9(5): 1035-1040. |
[15] | 许春华高宝玉曹百川岳钦艳卢磊程丹丹. 恒压运行时混凝动态膜的形成及对污染物的去除[J]. , 2009, 9(1): 33-37. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3139