1. 昆明理工大学冶金与能源工程学院,云南 昆明 650093 2. 中国科学院过程工程研究所,离子液体清洁过程北京市重点实验室, 北京 100190 3. 昆明钢铁控股有限公司,云南 昆明 650093
收稿日期:
2018-07-02修回日期:
2018-09-07出版日期:
2018-11-22发布日期:
2018-11-19通讯作者:
卿山基金资助:
中国国家自然科学基金High phenol-containing coking wastewater treatment with environmentally benign alkali-enhanced extractant
Dingtian XIAO1, Latif ULLAH2, Shan QING1*, Huaqiang XIAO31. Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China 2. Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China 3. Wukun Steel Co., Ltd., Kunming, Yunnan 650093, China
Received:
2018-07-02Revised:
2018-09-07Online:
2018-11-22Published:
2018-11-19Contact:
QING Shan Supported by:
National Natural Science Foundation of China摘要/Abstract
摘要: 本工作研究了一种注重于减少二次有机污染的废水高效环保脱酚工艺,采用了一种创新的方法采集含酚焦化废水的样品,通过检测特定参数确定废水样品的化学成分,避免实验误差且增强了水处理效果. 蒸氨废水是一种理想的焦化废水样品,脱酚过程中不会产生酸焦油油膜和硫酸铵沉淀. 相对于蒸氨废水,残余氨水不仅会导致严重的水污染还会消耗更多的酸,导致成本增高. 从环保角度研究萃取剂,除了关注其脱酚效率还需要研究其他影响参数如总氰量、S?含量、氨氮量、Cl?含量、SO42?含量、挥发酚含量、总含盐、污水含油量、总硬度、CODCr、电导率和pH值等. 考察了有机微粒的扩散特征和导致脱酚前后参数变化的原因. 以温度23℃、浓度为3wt%的氢氧化钠溶液反复洗涤用过的BQ络合萃取剂5次可得再生萃取剂,用其处理过后废水挥发酚含量为265.45 mg/L. 这款优良的萃取剂的CODCr,污水含油量,pH,脱酚效率依次分别为3638.34, 188.86, 6.18和83.76%,造成的二次有机污染较少.
引用本文
肖丁天 笛福 卿山 肖华强. 环保性碱液强化萃取剂处理高含酚量的焦化废水[J]. 过程工程学报, 2018, 18(S1): 153-160.
Dingtian XIAO Latif ULLAH Shan QING Huaqiang XIAO. High phenol-containing coking wastewater treatment with environmentally benign alkali-enhanced extractant[J]. Chin. J. Process Eng., 2018, 18(S1): 153-160.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.20180231
http://www.jproeng.com/CN/Y2018/V18/IS1/153
参考文献
[1] E.Kalaiarasan, T.Palvannan, Removal of phenols from acidic environment by horse-radish peroxidase (HRP): Aqueous thermostabilization of HRP by polysaccharide additives, J. Taiwan Inst. Chem. Eng. 45 (2) (2014) 625–634. [2] Armelle,Mbaveng,Kuete,20-Harmful and Protective Effects of Phenolic Compounds from African Medicinal Plants[J],Toxicological Survey of African Medicinal Plants ,2014,577-609 [3] Gupta,Sachin,Acute phenol poisoning:a life-threatening hazard of chronic pain relief,Clinical Toxicology,[J], 2008,.3250-253 [4] researchersi chaohai, zhang xiaoxuan, ren yuan, hu yun, wu haizhen. Water pollution control of persistent organic pollutants: adsorptive enrichment of biodegradation and process analysis [J]. Environmental chemistry, 2011(01). [5] researchersng Huan-xin;Chu Yun;Zhang Jin-jun;Ma Xue-researchersn. The release characteristics of phenol in sewage sludge and its risk assessment and control[J]. China Environmental Science, 2010, Vol.30(10):1359-1368. [6] M.S.A. Palma, J.L. Paiva, M. Zilli, A. Converti, Batch phenol removal from methyl isobutyl ketone by liquid–liquid extraction with chemical reaction, Chem. Eng.Process. 46 (2007) 764–768. [7] Y. Park, A. Skelland, L. Forney, J. Kim, Removal of phenol and substituted phenols by newly developed emulsion liquid membrane process, Water Res. 40 (9) (2006)1763–1772. [8] S. Mohammadi, A. Kargari, H. Sanaeepur, K. Abbassian, A. Najafi, E. Mofarrah, Phenol removal from industrial wastewaters: A short review, Desalin. Water Treat. (2014)1–20. [9] Yajie Li, Salma Tabassum, Zhenjia Zhang. An advanced anaerobic biofilter with effluent recirculation for phenol removal and methane production in treatment of coal gasification wastewater[J]. Journal of environmental science, 2016, (9):23-33. [10] Masuda, M,Sakurai, A,Sakakibara. Effect of enzyme impurities on phenol removal by the method of polymerization and precipitation catalyzed by Coprinus cinereus peroxidase[J]. Applied Microbiology and Biotechnology, 2001, :494-506. [11] C.C. Tung, Y.M. Yang, C.H. Chang, J.R. Maa, Removal of copper ions and dissolved phenol from water using micellar-enhanced ultrafiltration with mixed surfactants,Waste Manag. 22 (2002) 695–701. [12] G.M. Zeng, K. Xu, J.H. Huang, X. Li, Y.Y. Fang, Y.H. Qu, Micellar enhanced ultrafiltration of phenol in synthetic wastewater using polysulfone spiral membrane,J. Membr. Sci. 310 (2008) 149–160. [13] P. Venkateswaran, K. Palanivelu, Recovery of phenol from aqueous solution by supported liquid membrane using vegetable oils as liquid membrane, J. Hazard.Mater. B131 (2006) 146–152. [14] A. Balasubramanian, S. Venkatesan, Optimization of process parameters using response surface methodology for the removal of phenol by emulsion liquid membrane, Pol. J. Chem. Technol. 14 (1) (2012) 46–49. [15] Y.S. Ng, N.S. Jayakumar, M.A. Hashim, Performance evaluation of organic emulsion liquid membrane on phenol removal, J. Hazard. Mater. 184 (2010) 255–260. [16] M.T.A. Reis, O.M.F. Freitas, M.R.C. Ismael, R. Machado, J.M.R. Carvalho, Recovery of phenol from aqueous solutions using liquid membranes with Cyanex 923,J. Membr. Sci. 305 (2007) 313–324. [17] A. Balasubramanian,S.Venkatesan, Optimization of process parameters using response surface methodology for the removal of phenol by emulsion liquidmembrane, Pol. J. Chem. Technol. 14 (1) (2012) 46–49. [18] Wongsarivej Pratarn,Tongprem Pornsiri,Adsorption and Ozonation Kinetic Model for Phenolic Wastewater Treatment[J]. Chinese journal of chemical engineering, 2011, (1):76-82. [19] N. Othman, N.F.M. Noah, R.N.R. Sulaiman, N.A. Abdullah, S.K. Bachok, Liquid–liquid extraction of palladium from simulated liquid waste using phospinic acid as a carrier, J. Teknol. 68 (5) (2014) 41–45. [20] N.Y. Chan, N. Othman, Z.Y. Ooi, Prediction of Kraft lignin extraction performance using emulsion liquid membrane carrier-diffusion model, J. Teknol. (Sci. Eng.) 67(2) (2014) 17–21. [21] Wang xinle, li mingyu, song Lin, liu mingqing, xu yufeng. Treatment of high concentration phenol containing waste water from coal gas by complexation extraction [J]. Industrial water treatment,2008,28(12):29-32. |
相关文章 15
[1] | 李晓晖 艾仙斌 吴永明 孙小艳. Mextral V10–Mextral 973H体系脱除酸性矿山废水中重金属的研究[J]. 过程工程学报, 2021, 21(4): 488-494. |
[2] | 程衔锟 熊延杭 侯雪 田欢 田勇攀 徐亮 赵卓. 硫杂冠醚对Ag(I)和Tl(I)的萃取[J]. 过程工程学报, 2021, 21(2): 144-152. |
[3] | 张东 张健 尚广浩 苏慧 刘文森 朱云 朱兆武 齐涛. 溶剂萃取法回收不锈钢酸洗废液中再生H2SO4的研究[J]. 过程工程学报, 2020, 20(9): 1025-1034. |
[4] | 薛岗 丁磊 高阳 钟梅英. 表面印迹耦合溶胶-凝胶法制备4-硝基酚印迹材料及性能表征[J]. 过程工程学报, 2020, 20(4): 440-448. |
[5] | 刘文森 雷泽 朱兆武 齐涛. 含氮杂环化合物与有机酸协同体系在镍、钴萃取分离中的应用[J]. 过程工程学报, 2020, 20(4): 382-389. |
[6] | 罗兴国 黄卉 魏昶 李兴彬 邓志敢 李旻廷. Metral54-100萃取分离铜、镍的密度泛函研究[J]. 过程工程学报, 2020, 20(3): 308-317. |
[7] | 陈娇玉 孟冠华 魏旺 刘宝河 丁素云 何佳睿. 臭氧氧化双酚A的性能及机理[J]. 过程工程学报, 2020, 20(2): 230-236. |
[8] | 曹宏斌 许高洁 宁朋歌 石绍渊. 酚油共萃协同解毒技术及其在煤化工高浓废水中的应用[J]. 过程工程学报, 2019, 19(S1): 81-92. |
[9] | 袁博 王泽 宋文立 李松庚. 混配组分对基于KH2PO4/Al2O3催化剂的酚油醚化的影响[J]. 过程工程学报, 2019, 19(6): 1101-1110. |
[10] | 郭骥 姬忠礼. 苯酚浓度对亲油疏水型滤材聚结性能的影响[J]. 过程工程学报, 2019, 19(6): 1143-1152. |
[11] | 何辉 祁贵生 刘有智 郑奇 任慧云. 超重力强化干法脱硝制氨工艺[J]. 过程工程学报, 2019, 19(4): 845-852. |
[12] | 许海洋 孟祥展 夏大厦 惠岚峰 王慧. 功能化离子液体萃取分离甘氨酸[J]. 过程工程学报, 2019, 19(3): 544-552. |
[13] | 罗兴国 魏昶 李兴彬 邓志敢 庄子宇 李存兄. HA和HNAPO萃取锌的密度泛函分析[J]. 过程工程学报, 2019, 19(1): 151-158. |
[14] | 张军平 陈嵩嵩 盛贵阳 王蕾 蒋元力 顾晓华 张香平. 甲基丙烯酸甲酯-甲醇-水共沸体系萃取分离工艺模拟[J]. 过程工程学报, 2018, 18(6): 1323-1331. |
[15] | 孙颖 宁朋歌 曹宏斌 刘文昭. 萃取法分离钒铬的竞争机制[J]. 过程工程学报, 2018, 18(5): 989-995. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3165