中北大学超重力化工过程山西省重点实验室,山西省超重力化工工程技术研究中心,山西 太原 030051
收稿日期:
2017-11-15修回日期:
2018-03-05出版日期:
2018-10-22发布日期:
2018-10-12通讯作者:
袁志国基金资助:
国家自然科学基金资助项目;国家重点研发计划;山西省科技攻关项目Mass transfer performance of methanol absorption in layered packing cross-flow rotating beds
Jie DU, Zhiguo YUAN*, Pengfei LIANG, Shanshan DUAN, Hangtian LIShanxi Province Key Laboratory of Higee-oriented Chemical Engineering, North University of China, Research Center of Shanxi Province for High Gravity Chemical Engineering and Technology, Taiyuan, Shanxi 030051, China
Received:
2017-11-15Revised:
2018-03-05Online:
2018-10-22Published:
2018-10-12Contact:
YUAN Zhi-guo 摘要/Abstract
摘要: 在分层填料错流旋转床中用水吸收挥发性有机物甲醇气体,研究了超重力因子(??、空床气速(u)、液体喷淋密度(q)和甲醇气体进口浓度等操作参数对甲醇气相总体积传质系数KGa的影响. 结果表明,甲醇气体的KGa值随???u和q增加而增加,随甲醇气体进口浓度增大变化较小. 在?=100, u=0.9 m/s, q=17.6 m3/(m2?h)和甲醇气体进口浓度14000 mg/m3时,甲醇气体的吸收率为97%,KGa达27 s?1以上,是挡板填料逆流旋转床的1.1~3.9倍,是挡板填料错流旋转床的2~7.7倍,表明分层填料错流旋转床可有效减小气膜控制为主的传质阻力. 当甲醇气体入口浓度稳定时,在u大、q小的情况下,?对甲醇气体的KGa影响较大,有效强化了吸收甲醇过程中的传质效率. 分层填料错流旋转床中u达1 m/s,是挡板填料错流旋转床中的3~12倍.
引用本文
杜杰 袁志国 梁鹏飞 段姗姗 李航天. 分层填料错流旋转床吸收甲醇气体的传质性能[J]. 过程工程学报, 2018, 18(5): 965-971.
Jie DU Zhiguo YUAN Pengfei LIANG Shanshan DUAN Hangtian LI. Mass transfer performance of methanol absorption in layered packing cross-flow rotating beds[J]. Chin. J. Process Eng., 2018, 18(5): 965-971.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.217396
http://www.jproeng.com/CN/Y2018/V18/I5/965
参考文献
[1] 马超, 薛志钢, 李树文, 等. VOCs排放、污染以及控制对策[J]. 环境工程技术学报, 2012, 2(02): 103-109. . MA Chao, XUE Zhigang, LI Shuwen, et al. VOCs Emission,Pollution and Control Measures[J]. Journal of Environmental Engineering Technology, 2012, 2(02): 103-109. [2] 王治民, 孙建薇. 关于VOC废气处理技术的相关思考[J]. 能源与节能, 2014, (05): 97-99. WANG Zhiming, SUN Jianwei. Relevant Thinking on the VOC Gas Treatment Technology[J]. Energy and Energy Conservation, 2014, (05): 97-99. [3] KHAN F I, GHOSHAL A K. Removal of Volatile Organic Compounds from polluted air[J]. Journal of Loss Prevention in the Process Industries, 2000, 13(6): 527-545. [4] 韩晓强,黄伟. VOC废气蓄热式热氧化处理方法[J]. 中国环保产业, 2012, (12): 43-45. HAN Xiaoqiang, HUANG Wei. Regenerative Thermal Oxidation Treatment Process for VOC Gas[J]. China Environmental Protection Industry, 2012, (12): 43-45. [5] 马文娇. 催化燃烧去除挥发性有机化合物的研究进展[J]. 科技视界, 2014, (32): 48-85. MA Wenjiao. Research progress of catalytic combustion for removal of volatile organic compounds[J]. Science & Technology Vision, 2014, (32): 48-85. [6] 徐伟, 张钰靓, 施延君, 等. 钙钛矿型催化剂去除VOC的性能研究[J]. 广东化工, 2011, 38(06): 273-274. XU Wei, ZHANG Yuliang, SHI Yanjun, et al. Preparation of Supported Perovskite Catalysts and Its Performance for the Catalytic Combustion of VOCs[J]. Guangdong Chemical Industry, 2011, 38(06): 273-274. [7] HEYMES F, MANNO-DEMOUSTIER P, CHARBIT F, et al. A new efficient absorption liquid to treat exhaust air loaded with toluene[J]. Chemical Engineering Journal, 2006, 115(3): 225-231. [8] LALANNE F, MALHAUTIER L, ROUX JC, FANLO JL. Absorption of a mixture of volatile organic compounds (VOCs) in aqueous solutions of soluble cutting oil[J]. Bioresource Technology, 2008, 99(6): 1699-1707. [9] JI W, HILALY A, SIKDAR S K, et al. Optimization of multicomponent pervaporation for removal of volatile organic compounds from water[J]. Journal of Membrane Science, 1994, 97(1): 1-19. [10] BYEON J H, PARK J H, YOON K Y, et al. Removal of volatile organic compounds by spark generated carbon aerosol particles[J]. Carbon, 2006, 44(10): 2106-2108. [11] DAUBERT I, LAFFORGUE C C, FONADE C. Feasibility study of a compact process for biological treatment of highlysoluble VOCs polluted gaseous effluent[J]. Biotechnology Progress, 2001, 17(6):1084-1092. [12] RAMSHAW C, MALLINSON R H. Mass transfer process[J]. 1981. [13] 宋剑飞. 活性炭吸附VOCs及其构效关系研究[D]. 中南大学, 2014. SONG Jianfei. Studies on the adsorpition of VOCS by activated carbons and the structure-function relationship[D]. Central South University, 2014. [14] 祁贵生, 刘有智, 王焕, 等. 不同填料错流旋转填料床气液传质特性研究[J]. 化学工程, 2014, 42(05): 18-22. QI Guisheng, LIU Youzhi, WANG Huan, et al. Gas-liquid mass-transfer characteristic in cross-flow rotating packed bed with different packings[J]. Chemical Engineering, 2014, 42(05): 18-22. [15] 祁贵生,焦纬洲,刘有智,等. 新型填料结构旋转床传质特性 [J]. 化学反应工程与工艺, 2009, 25(2): 109-115. QI Guisheng, JIAO Weizhou, LIU Youzhi, et al. Mass Transfer Characteristics of a Rotating Packed Bed with New Type Packings [J]. Chemical Reaction Engineering and Technology, 2009, 25(2): 109-115. [16] 康荣灿,刘有智,焦纬洲,等. 填料结构对错流旋转填料床传质性能的影响 [J]. 青岛科技大学学报, 2007, 28(5): 406-409. KANG Rongcan, LIU Youzhi, JIAO Weizhou, et al. Effect of Different Packing Structure on Mass Transfer in a Cross-flow Rotating Packed Bed [J]. Journal of Qingdao University of Science and Technology, 2007, 28(5): 406-409. [17] AND Y S C, LIU H S. Absorption of VOCs in a Rotating Packed Bed[J]. Industrial & Engineering Chemistry Research, 2008, 41(6):1583-1588. [18] LIN C C, LIN Y C. Mass transfer performance of a rotating packed bed equipped with blade packings in removing methanol and 1-butanol from gaseous streams[J]. Chemical Engineering & Processing Process Intensification, 2012, 53(3):76-81. [19] LIN C C, LIN Y C, CHEN S C, et al. Evaluation of a rotating packed bed equipped with blade packings for methanol and 1-butanol removal[J]. Journal of Industrial & Engineering Chemistry, 2010, 16(6):1033-1039. [20] SUNG W D, CHEN Y S. Characteristics of a rotating packed bed equipped with blade packings and baffles[J]. Separation & Purification Technology, 2012, 93(93): 52-58. [21] RAO D P, A. BHOWAL ? A, Goswami P S. Process Intensification in Rotating Packed Beds (HIGEE):An Appraisal[J]. Industrial & Engineering Chemistry Research, 2004, 43(4): 1150-1162. [22] ZHENG C, GUO K, YUANDING FENG A, et al. Pressure Drop of Centripetal Gas Flow through Rotating Beds[J]. Industrial & Engineering Chemistry Research, 2000, 39(3):829-834. [23] HSU L J, LIN C C. Binary VOCs absorption in a rotating packed bed with blade packings[J]. Journal of Environmental Management, 2012, 98(98): 175-182. [24] 张近. 塔填料研究进展[J]. 化工进展,1989, (06): 9-19. ZHANG Jin. Research progress of tower packing[J]. Chemical Industry and Engineering Progress,1989, (06): 9-19. [25] LIN C C, CHIEN K S. Mass-transfer performance of rotating packed beds equipped with blade packings in VOCs absorption into water[J]. Separation & Purification Technology, 2008, 63(1):138-144. [26] RAFSON H J. Odor and VOC control handbook[J]. 1998. [27] 刘有智. 超重力化工过程与技术[M]. 国防工业出版社, 2009.2-3. LIU Youzhi. Chemical Engineering Process and Technology in High Gravity [M]. Beijing: National Defence Industry Press, 2009, 2-3. [28] SHEN K P, WEI T Y, LIU W T, et al. Removal of VOCs from Gaseous Streams in a High-Voidage Rotating Packed Bed[J]. Journal of Chemical Engineering of Japan, 2004, 37(12): 1471-1477. [29] CHEN Y S, HSU Y C, LIN C C, et al. Volatile organic compounds absorption in a cross-flow rotating packed bed.[J]. Environmental Science & Technology, 2008, 42(7):2631-6. |
相关文章 15
[1] | 宋春雨 聂普选 马守涛 任国瑜. 典型过程强化技术在纳米材料制备中的应用进展[J]. 过程工程学报, 2021, 21(4): 373-382. |
[2] | 许晓飞 魏文泽 董鑫 刘凤霞 魏炜 刘志军. 氧化沟内曝气器布置方式对曝气性能的影响规律[J]. 过程工程学报, 2021, 21(4): 394-400. |
[3] | 贺睿 乔崇智 王利民 赵双良. 运动颗粒对传质过程影响的格子Boltzmann模拟[J]. 过程工程学报, 2021, 21(2): 125-133. |
[4] | 郝思佳 范怡平 汪泉宇 赵亚飞. 气液逆流接触洗涤器两相洗涤效果和流动特性[J]. 过程工程学报, 2020, 20(4): 390-399. |
[5] | 王治红 刘知习 李永军 王仕城. 分层填料对旋转填料床气相流场影响的数值模拟[J]. 过程工程学报, 2020, 20(3): 254-264. |
[6] | 李雪良 张国强 赵鑫锐 孙秀兰 周景文 堵国成 陈坚. 细胞培养肉规模化生产工艺及反应器展望[J]. 过程工程学报, 2020, 20(1): 3-11. |
[7] | 王泽利 李鑫钢 郑成功 何林. 工业挥发性有机污染物控制与资源化利用[J]. 过程工程学报, 2019, 19(S1): 35-44. |
[8] | 刘凤霞 李永强 许晓飞 董鑫 刘志军. 微曝氧化沟气液两相传质模型构建及传质影响因素分析[J]. 过程工程学报, 2019, 19(4): 676-684. |
[9] | 郝思佳 满长卓 许峻 范怡平. 新型气液逆流撞击洗涤喷嘴的优化[J]. 过程工程学报, 2019, 19(2): 254-262. |
[10] | 吴文亮 李涛 高红帅 尚大伟 涂文辉 王斌琦 张香平. 咪唑类离子液体高效吸收二氯甲烷[J]. 过程工程学报, 2019, 19(1): 173-180. |
[11] | 周日峰 石基弘 刘全祯 牟善军 姜春明 巩亮. 活性炭吸附甲烷和甲苯的分子模拟研究[J]. 过程工程学报, 2018, 18(S1): 97-102. |
[12] | 仝梓正 赵君梅 沈杏 刘会洲. 紫外-可见吸收光谱法表征氟磷酸钒钠系列化合物中钒的表观价态[J]. 过程工程学报, 2018, 18(6): 1302-1306. |
[13] | 李娜 罗春欢 苏庆泉. CaCl2-LiBr-LiNO3-KNO3/H2O工质对的热物性和腐蚀性[J]. 过程工程学报, 2018, 18(4): 764-768. |
[14] | 钟源 杜海存 张莹 彭慧颖. 单向温度梯度下异质液滴的热毛细迁移[J]. 过程工程学报, 2018, 18(4): 697-703. |
[15] | 耿康生 李育敏 陆佳冬 刘鹏真 汪军 计建炳. 化学吸收法测定新型复合转子旋转床气液有效比表面积及液相传质系数[J]. 过程工程学报, 2018, 18(4): 704-709. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3145