删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

萃取法分离钒铬的竞争机制

本站小编 Free考研考试/2022-01-01

孙 颖1,2, 宁朋歌2*, 曹宏斌1,2, 刘文昭2
1. 天津大学化工学院,天津 300072 2. 中国科学院过程工程研究所环境技术与工程研究部绿色过程与工程重点实验室,北京市过程污染控制工程技术研究中心,北京 100190
收稿日期:2017-12-15修回日期:2018-07-08出版日期:2018-10-22发布日期:2018-10-12
通讯作者:宁朋歌

基金资助:国家自然科学基金;国家科技支撑计划

Competition mechanisms in separation of vanadium and chromium with extraction method

Ying SUN1,2, Pengge NING2*, Hongbin CAO1,2, Wenzhao LIU2
1. School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
2. Beijing Engineering Research Center of Process Pollution Control, Key laboratory of Green Process and Engineering, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
Received:2017-12-15Revised:2018-07-08Online:2018-10-22Published:2018-10-12







摘要/Abstract


摘要: 采用伯胺萃取法分离钒铬,研究了不同Cr/V浓度比的钒铬溶液在一定初始pH值范围内的分离效果. 结果表明,伯胺萃取法分离钒铬具有很好的选择性,V(V)和Cr(IV)的萃取率均随溶液初始pH值降低而上升,相同加酸比[H+/V(Cr)摩尔比]下,钒铬混合溶液中V(V)萃取率高于其单金属溶液的萃取率,Cr(IV)萃取率低于其单金属溶液的萃取率,且萃取率随时间延长先上升后下降.

引用本文



孙颖 宁朋歌 曹宏斌 刘文昭. 萃取法分离钒铬的竞争机制[J]. 过程工程学报, 2018, 18(5): 989-995.
Ying SUN Pengge NING Hongbin CAO Wenzhao LIU. Competition mechanisms in separation of vanadium and chromium with extraction method[J]. Chin. J. Process Eng., 2018, 18(5): 989-995.



使用本文




0
/ / 推荐

导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.217427
http://www.jproeng.com/CN/Y2018/V18/I5/989







[1] MOSKALYK R R, ALFANTAZI A M. Processing of vanadium: a review [J]. Minerals Engineering, 2003, 16(9): 793-805.
[2] ERDEN M A, GUNDUZ S, KARABULUT H, et al. Effect of vanadium addition on the microstructure and mechanical properties of low carbon micro-alloyed powder metallurgy steels [J]. Materials Testing, 2016, 58(5): 433-437.
[3] YAN Y, LI B, GUO W, et al. Vanadium based materials as electrode materials for high performance supercapacitors [J]. Journal of Power Sources, 2016, 329(148-169.
[4] 张冬清, 李运刚, 张颖异. 国内外钒钛资源及其利用研究现状 [J]. 四川有色金属, 2011, 02):
ZHANG D Q, LI Y G, ZHANG Y Y. The current research situation of vanadium and titanium resources and its utilization at home and abroad [J]. Sichuan Nonferrous Metals, 2011, 02):
[5] DOMINGO J L. Vanadium: A review of the reproductive and developmental toxicity [J]. Reproductive Toxicology, 1996, 10(3): 175-182.
[6] COSTA M, KLEIN C B. Toxicity and carcinogenicity of chromium compounds in humans [J]. Critical Reviews In Toxicology, 2006, 36(2): 155-163.
[7] YANG K, ZHANG X Y, TIAN X D, et al. Leaching of vanadium from chromium residue [J]. Hydrometallurgy, 2010, 103(1-4): 7-11.
[8] JING X H, NING P G, CAO H B, et al. High-Performance Recovery of Vanadium(V) in Leaching/Aqueous Solution by a Reusable Reagent-Primary Amine N1519 [J]. ACS Sustain Chem Eng, 2017, 5(4): 3096-3102.
[9] JI Y L, SHEN S B, LIU J H, et al. Green and Efficient Process for Extracting Chromium from Vanadium Slag by an Innovative Three-Phase Roasting Reaction [J]. ACS Sustain Chem Eng, 2017, 5(7): 6008-6015.
[10] WANG M Y, CHEN B F, HUANG S, et al. A novel technology for vanadium and chromium recovery from V-Cr-bearing reducing slag [J]. Hydrometallurgy, 2017, 171(116-122.
[11] WANG G Y, ZHANG B G, LI S, et al. Simultaneous microbial reduction of vanadium (V) and chromium (VI) by Shewanella loihica PV-4 [J]. Bioresource Technology, 2017, 227(353-358.
[12] FAN Y Y, WANG X W, WANG M Y. Separation and recovery of chromium and vanadium from vanadium-containing chromate solution by ion exchange [J]. Hydrometallurgy, 2013, 136(31-35.
[13] CAVACO S A, FERNANDES S, AUGUSTO C M, et al. Evaluation of chelating ion-exchange resins for separating Cr(III) from industrial effluents [J]. Journal Of Hazardous Materials, 2009, 169(1-3): 516-523.
[14] 李鸿乂, 李翠, 张梦, et al. 离子交换法分离溶液中钒与铬的研究 [J]. 钢铁钒钛, 2014, 03): 5-9.
LI H Y, LI C, ZHANG M, et al. Study on separation of vanadium and chromium by ion exchange resin [J]. Iron Steel Vanadium Titanium, 2014, 03): 5-9.
[15] LIU S Y, WANG L J, CHOU K C. A Novel Process for Simultaneous Extraction of Iron, Vanadium, Manganese, Chromium, and Titanium from Vanadium Slag by Molten Salt Electrolysis [J]. Industrial & Engineering Chemistry Research, 2016, 55(50): 12962-12969.
[16] 蒋霖. 钒铬溶液中钒铬提取及分离工艺研究进展 [J]. 钢铁钒钛, 2014, 06): 52-59.
JIANG L. Research progress of the separation process of vanadium and chromium from solution containing vanadium and chromium [J]. Iron Steel Vanadium Titanium, 2014, 06): 52-59.
[17] YU S Q, MENG X S, CHEN J Y. SOLVENT-EXTRACTION OF VANADIUM(V) FROM AQUEOUS-SOLUTIONS BY PRIMARY AMINES [J]. Scientia Sinica Series B-Chemical Biological Agricultural Medical & Earth Sciences, 1982, 25(2): 113-123.
[18] NAYL A A, ALY H F. Solvent extraction of V(V) and Cr(III) from acidic leach liquors of ilmenite using Aliquat 336 [J]. Transactions Of Nonferrous Metals Society Of China, 2015, 25(12): 4183-4191.
[19] NING P G, LIN X, CAO H B, et al. Selective extraction and deep separation of V(V) and Cr(VI) in the leaching solution of chromium-bearing vanadium slag with primary amine LK-N21 [J]. Separation And Purification Technology, 2014, 137(109-115.
[20] WEN J W, LIU F, CAO H B, et al. Insights into the extraction of various vanadium species by primary amine [J]. Hydrometallurgy, 2017, 173(57-62.
[21] NING P G, LIN X, WANG X Y, et al. High-efficient extraction of vanadium and its application in the utilization of the chromium-bearing vanadium slag [J]. Chem Eng J, 2016, 301(132-138.




[1]李晓晖 艾仙斌 吴永明 孙小艳. Mextral V10–Mextral 973H体系脱除酸性矿山废水中重金属的研究[J]. 过程工程学报, 2021, 21(4): 488-494.
[2]吴耀 李雲 郭宏飞 刘秀伍 陈学青 曹吉林. 273 K及323 K条件下NaCl–NaBr–CH3OH三元体系相平衡 研究及其应用[J]. 过程工程学报, 2021, 21(3): 286-297.
[3]宋春光 张红玲 董玉明 裴丽丽 刘宏辉 江军生 徐红彬. 石煤钒矿酸浸尾渣高温焙烧制备陶粒过程元素硫释放规律[J]. 过程工程学报, 2021, 21(2): 167-173.
[4]王雨晴 刘居陶 徐琴琴 银建中. 超临界流体沉积制备[Emim][BF4]支撑型离子液体膜及其气体分离性能[J]. 过程工程学报, 2021, 21(2): 134-143.
[5]程衔锟 熊延杭 侯雪 田欢 田勇攀 徐亮 赵卓. 硫杂冠醚对Ag(I)和Tl(I)的萃取[J]. 过程工程学报, 2021, 21(2): 144-152.
[6]陈建军 张军伟 宋乾宁. 离子交换分离L-缬氨酸的传质动力学及动态穿透特征[J]. 过程工程学报, 2021, 21(1): 46-56.
[7]张东 张健 尚广浩 苏慧 刘文森 朱云 朱兆武 齐涛. 溶剂萃取法回收不锈钢酸洗废液中再生H2SO4的研究[J]. 过程工程学报, 2020, 20(9): 1025-1034.
[8]刘堉学 高思鸿 范怡平 卢春喜. 旋流分离-颗粒床耦合气固分离装备旋流场静压分布[J]. 过程工程学报, 2020, 20(9): 1008-1015.
[9]纪慧超 刘全军 江旭 董敬申. 云南高泥尾矿铅锌分离实验研究[J]. 过程工程学报, 2020, 20(8): 912-920.
[10]汪金良 王龙君 刘付朋. 基于硫酸减量化从钕铁硼废料中选择性转型分离稀土[J]. 过程工程学报, 2020, 20(8): 921-928.
[11]黎洁 纪翠翠 谢贤 康博文 范培强. 云南某富银锌精矿锌银浮选分离实验研究[J]. 过程工程学报, 2020, 20(8): 938-946.
[12]龚庆超 王健乔 方冬东 段锋 张丽徽. 铁基载氧体与干化市政污泥二元混合物流化特性[J]. 过程工程学报, 2020, 20(8): 904-911.
[13]王新东 李兰杰 杜浩 赵备备. 亚熔盐高效提钒铬清洁生产技术产业化应用[J]. 过程工程学报, 2020, 20(6): 667-677.
[14]刘福立 马淑花 任坤 王晓辉. 粉煤灰中重金属元素砷的赋存状态与分离方法[J]. 过程工程学报, 2020, 20(5): 540-547.
[15]王佳荣 姬忠礼 马巍威 卢锦杰 杨博. 表面润湿性对梯形除雾器分离性能的影响[J]. 过程工程学报, 2020, 20(4): 410-417.





PDF全文下载地址:

http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3131
相关话题/过程 工程 云南 钢铁 金属