1. 郑州大学化工与能源学院,河南 郑州 450001 2. 中国科学院过程工程研究所绿色过程与工程重点实验室,离子液体清洁过程北京市重点实验室,多相复杂系统国家重点实验室,北京 100190
收稿日期:
2018-01-29修回日期:
2018-03-13出版日期:
2018-10-22发布日期:
2018-10-12通讯作者:
刘瑞霞基金资助:
国家自然基金石油联合项目基金;中国科学院****项目;国家自然科学基金Isobutane/butene alkylation catalyzed by rare earth La modified X-zeolites
Jiakuo XU1,2, Zhiqiang YANG2, Zihang LI2, Hongguo TANG2, Baozeng REN1, Ruixia LIU2*, Tao LI1*?1. School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, Henan 450001, China
2. Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
Received:
2018-01-29Revised:
2018-03-13Online:
2018-10-22Published:
2018-10-12Contact:
Ruixia Liu 摘要/Abstract
摘要: 采用液相离子交换法,通过改变交换和焙烧次数制备了5种不同浓度稀土La改性的X分子筛催化剂,使用连续进料的固定床反应器评价其催化异丁烷/丁烯烷基化反应的性能,分析了分子筛物相结构的变化,考察了分子筛的酸性. 结果表明,催化剂制备过程对催化剂结构和性能影响显著,La3+改性后X分子筛结晶度下降,但酸度显著增强,随La3+交换次数增加,分子筛的B酸量增多,L酸量减少;5种催化剂中,焙烧前离子交换2次、焙烧后再交换3次、再焙烧所制催化剂催化性能最佳,丁烯的初始转化率为89.94%, C8收率可达66.71%,这归因于酸性增加加快了氢负离子转移,降低了碳正离子上发生重复烷基化的可能性,抑制了大分子生成. 反应温度和烯烃空速对反应影响显著,温度从80℃升至100℃,副反应裂解生成的C5?C7从9.64%增加到36.74%;丁烯进料空速从0.1 h?1降至0.05 h?1时,低聚生成的C9+从7.2%增至31%.
引用本文
许家阔 杨志强 李自航 唐红果 任保增 刘瑞霞 李涛. 稀土La改性X分子筛催化异丁烷/丁烯烷基化反应[J]. 过程工程学报, 2018, 18(5): 996-1002.
Jiakuo XU Zhiqiang YANG Zihang LI Hongguo TANG Baozeng REN Ruixia LIU Tao LI. Isobutane/butene alkylation catalyzed by rare earth La modified X-zeolites[J]. Chin. J. Process Eng., 2018, 18(5): 996-1002.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218123
http://www.jproeng.com/CN/Y2018/V18/I5/996
参考文献
[1] Querini C A. Isobutane/butene alkylation: regeneration of solid acid catalysts [J]. Catalysis Today, 2000, 62(2-3): 135-143. [2] Zhang H H, Liu R X,Zhang R R, Huo F, Yang Z Q, He B, Zhang S J, Wang Y J. Stability, acidity and interaction properties of [Bmim][SbF6] coupled with concentrated sulfuric acid [J]. Science China-Chemistry. 2017, 60(9): 1243-1249. [3] Zhang H H, Liu R X, Yang Z Q, Huo F, Zhang R R, Li Z H, Zhang S J, Wang Y J. Alkylation of isobutane/butene promoted by fluoride-containing ionic liquids [J]. Fuel, 2018, 211: 233-240. [4] Stocker M, Mostad H, Rorvik T. Isobutane/2-butene alkylation on faujasite type zeolites (H EMT and H FAU) [J]. Applied Catalysis A:General, 1994, 28(2-4):203-209. [5] 吴梅,马忠庭,张海兵. 以分子筛催化剂催化的C4烷基化反应研究进展 [J]. 炼油与化工, 2012, 23(1): 1-3. Wu M, Ma Z T, Zhang H B. Research progress of C4 alkylation reaction catalyzed with molecular sieves [J]. Refining and Chemical Industry, 2012, 23(1): 1-3. [6] Feller A, Guzman A, Lercher J A, et al. On the mechanism of catalyzed isobutane/butene alkylation by zeolites [J]. Journal of Catalysis, 2004, 224(1): 80-93. [7] 李健,李永祥. 分子筛在异丁烷/丁烯烷基化中的应用研究进展 [J]. 化工进展, 2013, 32(s1): 122-126. Li J, Li Y X. Advances in isobutane/butene alkylation used zeolite [J]. Chemical Industry and Engineering Progress, 2013, 32: 122-126. [8] Corma A, Martinez A, Martinez C, et al. Isobutane/2-butene alkylation on MCM-22 catalyst. Influence of zeolite structure and acidity on activity and selectivity [J]. Catalysis letters, 1994, 28(2-4): 187-201. [9] Loenders R, Jacobs P A, Martens J A. Alkylation of isobutane with 1-butene on zeolite beta [J]. Journal of Catalysis, 1998, 176(2): 545-551. [10] Garwood W E. Paraffin-olefin alkylation over a crystalline aluminosilicate [J]. Journal of Catalysis, 1968, 11(2): 175-177. [11] Kirsch F W, Barmby D S, POTTS J D, et al. GD zeolite and hydrocarbon conversion process with GD zeolite catalyst [P], USP 3624173, 1971. [12] Klingmann R, Josl R, Weitkamp J, et al. Hydrogenative regeneration of a Pt/La-Y zeolite catalyst deactivated in the isobutane/n-butene alkylation [J]. Applied Catalysis A: General, 2005, 281(1-2): 215-223. [13] Guzma A, Feller A, Lercher J A, et al. On the formation of the acid sites in lanthanum exchanged X zeolites used for isobutane/cis-2-butene alkylation [J]. Microporous and Mesoporous Materials, 2005, 83(1-3): 309-318. [14] Ward J W. Hydroxyl groups on hydrogen Y zeolite [J]. The Journal of Physical Chemistry, 1969, 73(6): 2086-2088. [15] Sievers C, Olindo R, Lercher J A, et al. Comparison of zeolites LaX and LaY as catalysts for isobutane/2-butene alkylation [J]. Applied Catalysis A: General, 2008, 336(1-2): 89-100. [16] Jin D F, Zhu B, Hou Z Y, et al. Dimethyl ether synthesis via methanol and syngas over rare earth metals modified zeolite Y and dual Cu–Mn–Zn catalysts [J]. Fuel, 2007, 86(17-18): 2707-2713. [17] Du X H, Gao X H, Zhang H T, et al. Effect of cation location on the hydrothermal stability of rare earth-exchanged Y zeolites [J]. Catalysis Communications, 2013, 35(35): 17-22. [18] Schumler F, Shi H, Lercher J A, et al. Enhancement of Dehydrogenation and Hydride Transfer by La3+ Cations in Zeolites during Acid Catalyzed Alkane Reactions [J]. ACS Catalysis, 2014, 4(6): 1743-1752. [19] 于善青,龙军,等. 稀土离子调变Y型分子筛结构稳定性和酸性的机制 [J]. 物理化学学报, 2011, 27(11): 2528-2534. Yu S Q, Long J, et al. Mechanism of Rare Earth Cations on the Stability and Acidity of Y Zeolites [J]. Acta Phys.-Chim Sin., 2011, 27(11): 2528-2534. [20] 张探,周灵萍,田辉平. 稀土交换量对Y型分子筛结晶度测定值的影响 [J]. 石油炼制与化工, 2011, 42(4): 40-44. Zhang T, Zhou L P, Tian H P. Effect of Rare Earth Content on the Crystallinity of Zeolite by XRD Analysis [J]. Petroleum Processing and Petrochemicals, 2011, 42(4): 40-44. [21] 孙敏,贺振富. 稀土改性Y型分子筛的酸性研究 [J]. 石油炼制与化工, 2011, 42(5): 36-39. Sun M, He Z F. Research on the Acidic Properties of Rare Earth Modified Zeolite Y [J]. Petroleum Processing and Petrochemicals, 2011, 42(5): 36-39. [22] Costa B D, Querini C A. Isobutane alkylation with solid catalysts based on beta zeolite [J]. Applied Catalysis A: General, 2010, 385(1-2): 144-152. [23] Koklin A E, Chan V M K, Bogdan V I. Conversion of isobutane-butenes mixtures on H-USY and SO4 2? /ZrO2 catalysts under supercritical conditions: Isobutane alkylation and butenes oligomerization [J]. Russian Journal of Physical Chemistry B, 2015, 8(8): 991-998. [24] 王留阳,赵国英,任保增,等.酸性催化剂的酸性表征研究进展 [J]. 过程工程学报, 2017, 17(6): 1119-1126. Wang L Y, Zhao G Y, Ren B Z, et al. Research Advances in Acidity Characterization of Acid Catalysts (in Chinese) [J]. Chin. J. Process Eng., 2017, 17(6): 1119-1126. [25] Emeis C A. Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts [J]. Journal of Catalysis, 1993, 141(2): 347-354. [26] 彭凯,张成喜,李永祥. 异丁烷_丁烯烷基化固体酸催化剂的再生方法研究进展 [J]. 化工进展, 2015, 34(9): 3296-3302. Peng K, Zhang C X, Li Y X. Advances in regeneration methods of solid acid catalyst for isobutane/butene alkylation [J]. Chemical Industry and Engineering Progress , 2015, 34(9): 3296-3302. [27] Patrylak K I, Patrylak L K, Pertko O P, et al. Coke Alternate Movement in Faujasite Based Catalysts Deactivated from Butene Alkylation [J]. Current Catalysis, 2016, 5(2): 108-115. [28] Hamzehlouyan T, Kazemeini M, Khorasheh F. Modeling of catalyst deactivation in zeolite-catalyzed alkylation of isobutane with 2-butene [J]. Chemical Engineering Science, 2010, 65(2): 645-650. [29] Sievers C, Zuazo I, Guzman A, et al. Stages of aging and deactivation of zeolite LaX in isobutane/2-butene alkylation [J]. Journal of Catalysis, 2007, 246(2): 315-324. [30] Guzman A, Zuazo I, Lercher J A, et al. Influence of the activation temperature on the physicochemical properties and catalytic activity of La-X zeolites for isobutane/cis-2-butene alkylation [J]. Microporous and Mesoporous Materials, 2006, 97(1-3): 49-57. [31] Martinez A. Alkylation-Heterogeneous [J]. Encyclopedia of Catalysis, 2002, 1-63. |
相关文章 15
[1] | 刘剑 黄依倪 陈曦 易正戟. 甲基橙在Fe0-NaA-SSFSF固定床上的催化湿式H2O2氧化[J]. 过程工程学报, 2021, 21(2): 193-201. |
[2] | 白宜灵 范立闯 李涛 陈会民 张怀科 杨勇 张光晋. Zn改性对Ni/ZSM-22催化剂费托重柴油异构降凝性能的影响[J]. 过程工程学报, 2020, 20(1): 116-122. |
[3] | 刘悦 曹磊 李达 曹坤 隋富生 赵伟 吕伟 齐涛. 混合表面活性剂体系合成锆掺杂介孔分子筛[J]. 过程工程学报, 2018, 18(5): 1082-1087. |
[4] | 李艳 于光林 汪诚文. 沼气变压吸附剂吸附性能比较[J]. 过程工程学报, 2018, 18(2): 301-307. |
[5] | 郭亚楼 张辉 刘应书 赵梓伶 张宣凯 李东. 升温速率对CO2在13X分子筛上脱附性能的影响[J]. 过程工程学报, 2018, 18(1): 88-95. |
[6] | 赵金花 王宇松 陈武华 王春梅 张汉强 许惠瓶 罗江水. 制备条件对锗酸盐分子筛形貌及晶型的影响[J]. 过程工程学报, 2017, 17(3): 619-625. |
[7] | 曾小雅纪树兰赵亮秦振平周钱华. 有机硅烷改性ZSM-5/BPPO非对称膜制备及其渗透汽化性能[J]. , 2012, 12(4): 678-683. |
[8] | 成岳潘顺龙焦创王晶. Fe-MEL分子筛催化剂的制备及其催化脱色[J]. , 2012, 12(1): 148-153. |
[9] | 苏博郎万中曾群英刘训稳杨春基郭亚军. 有机官能化介孔催化剂制备及其在正丁醛自缩合制辛烯醛反应中的应用[J]. , 2010, 10(2): 361-366. |
[10] | 李新柱杨树林任海伦. 铁取代介孔磷铝分子筛的合成、表征及其催化性能[J]. , 2009, 9(2): 408-412. |
[11] | 吴新民刘磊宋永吉. 分子筛负载型加氢脱硫催化剂的制备及其性能[J]. , 2009, 9(1): 165-170. |
[12] | 孙晋峰任天瑞薛思佳. 固体酸催化麻疯树油酯交换制备生物柴油[J]. , 2008, 8(6): 1167-1172. |
[13] | 吕树祥魏佳胡炀郭丽梅邓宇武文洁. Fe-ZSM-5分子筛催化剂催化降解高浓度含酚废水[J]. , 2008, 8(4): 751-755. |
[14] | 王少君;侯蕾;徐云鹏;田志坚;余加祐;林励吾. 铝源前驱体对离子热法合成磷酸铝分子筛的影响[J]. , 2008, 8(1): 93-96. |
[15] | 张琦;王铁军;吴创之;马隆龙. 用于酯化反应的堇青石担载固体酸催化剂的制备工艺探索[J]. , 2008, 8(1): 192-196. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3122