西安建筑科技大学冶金工程学院,陕西 西安 710055
收稿日期:
2017-11-09修回日期:
2018-03-11出版日期:
2018-10-22发布日期:
2018-10-12通讯作者:
魏起书Melting temperature and viscosity characteristic of dephosphorization slag contained CaO-SiO2-FeO-B2O3-MnO
Shuangping YANG*, Qishu WEI, Chen WANG, Bo YANG, Jinkun PANGCollege of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
Received:
2017-11-09Revised:
2018-03-11Online:
2018-10-22Published:
2018-10-12摘要/Abstract
摘要: 采用FactSage模拟软件和修正后的Einstein?Roscoe公式计算了无氟型CaO?SiO2?FeO?B2O3?MnO预熔脱磷渣的熔化温度和粘度,考察了碱度和各成分配比对脱磷渣熔化温度和粘度的影响,得到合理的脱磷渣成分配比及控制区间和适宜的熔池温度,采用正交法进行了实验验证,通过直观分析、方差分析和主效应分析优选出最佳配比. 结果表明,该渣系粘度随碱度、FeO含量和助熔剂含量提高而降低,1400℃时最佳配比为碱度R?4.0, B2O3含量9wt%, MnO含量10wt%, FeO含量45wt%. 计算的熔化温度为1195.51℃,粘度为0.207 Pa×s,实验所测熔化温度为1192.21℃,粘度为0.199 Pa×s,计算值与实测值相近,表明正交法优选方案可靠.
引用本文
杨双平 魏起书 王琛 杨波 庞锦琨. CaO-SiO2-FeO-B2O3-MnO脱磷渣熔化温度和粘度特性[J]. 过程工程学报, 2018, 18(5): 1013-1019.
Shuangping YANG Qishu WEI Chen WANG Bo YANG Jinkun PANG. Melting temperature and viscosity characteristic of dephosphorization slag contained CaO-SiO2-FeO-B2O3-MnO[J]. Chin. J. Process Eng., 2018, 18(5): 1013-1019.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.217385
http://www.jproeng.com/CN/Y2018/V18/I5/1013
参考文献
[1]张飞虎, 游香米. 铁水脱磷工艺分析研究[J]. 工业加热, 2012, 41(4):55-57. ZHANG Feihu,YOU Xiangmi,Analysis and Research of Molten Metal Dephosphorization[J]. Industrial Heating, 2012, 41(4):55-57. [2]邢薇, 吴龙, 李士琦,姚力,刘润藻. CaO--FeO--Al2O3--SiO2渣熔化温度特性实验研究[J]. 北京科技大学学报, 2014(5):603-607. XING Wei,WU Long,LI Shi-qi,YAO Li,LIU Run-zao.Experimental study on the melting temperature characteristic of the CaO--FeO--Al2O3--SiO2 slag system[J]. Journal of University of Science and Technology Beijing, 2014(5):603-607. [3]赵晓辉, 张朝晖, 巨建涛, 焦志远, 刘俊平. CaF2-SiO2-Al2O3-CaO-MgO渣系熔化温度的实验研究[J]. 热加工工艺, 2013, 42(9):81-84. ZHAO Xiaohui, ZHANG Zhaohui, JU Jiantao, JIAO Zhiyuan, LIU Junping.Study on Melting Temperature of CaF2-SiO2-Al2O3-CaO-MgO Slag[J]. Hot Working Technology, 2013, 42(9):81-84. [4]杨福, 毕学工, 周进东. 助熔剂种类与配比对高磷铁水脱磷渣高温性能的影响[J]. 武汉科技大学学报, 2010, 33(5):482-485. Yang Fu, Bi Xuegong, Zhou Jindong.Influence of type and blending ratio of fluxing accelerating agent on high-temperature properties of dephosphorization slag in high phosphorus hot metal[J]. Journal of Wuhan University of Science and Technology, 2010, 33(5):482-485. [5]刘超, 张玉柱, 康月. Factsage计算MgO含量对高炉渣粘度的影响[J]. 河北联合大学学报(自然科学版), 2014(4):25-29. LIU Chao,ZHANG Yuzhu,KANG Yue.Factsage Calculation of the Influence of MgO on the Visconsity of BF Slag[J]. Journal of Hebei United University(Natural Science Edition), 2014(4):25-29. [6]刘瑞江, 张业旺, 闻崇炜, 汤建. 正交试验设计和分析方法研究[J]. 实验技术与管理, 2010, 27(9):52-55. Liu Ruijiang, Zhang Yewang, Wen Chongwei, Tang Jian.Study on the design and analysis methods of orthogonal experiment[J]. Experimental Technology and Management, 2010, 27(9):52-55. [7]Jung I H, Ende M A V, Cho M K, et al. FactSage Thermodynamic Database for Steelmaking Refractory Research[J]. Chinas Refractories, 2015, 24(1):15-21. [8]袁海平, 梁钦锋, 刘海峰, 龚欣. CaCO3对煤灰熔融特性和黏温特性影响的研究[J]. 中国电机工程学报, 2012, 32(20):49-55. YUAN Haiping, LIANG Qinfeng, LIU Haifeng, GONG Xin. Effects of CaCO3 on the Fusion Characteristic and Viscosity-temperature Behaviour of Coal Ashes[J]. Proceedings of the CSEE, 2012, 32(20):49-55. [9]Gao Y M, Wang S B, Hong C, et al. Effects of basicity and MgO content on the viscosity of the SiO2-CaO-MgO-9wt%Al2O3 slag system[J]. International Journal of Minerals Metallurgy and Materials, 2014, 21(4):353-362. [10]Xin Q I, Wen G H, Tang P, et al. Viscosity and Viscosity Estimate Model of Fluoride-Free and Titanium-Bearing Mold Fluxes[J].Journal of Iron and Steel Research(International), 2010, 17(6):6-10. [11]张明军, 陈伟庆, 邵俊宁, 贾祥超. 高铝钢包渣粘度的计算研究[J]. 河南冶金, 2014, 22(4):10-12. Zhang Mingjun,Chen Weiqing,Shao Junning,Jia Xiangchao. VISCOSITY CALCULATION OF LADLE SLAG WITH HIGH ALUMINA[J]. Henan Metallurgy, 2014, 22(4):10-12. [12]Wright S, Zhang L, Sun S, et al. Viscosity of a CaO-MgO-Al2O3-SiO2, melt containing spinel particles at 1646K[J]. Metallurgical & Materials Transactions B, 2000, 31(1):97-104. [13]Seong-Ho S, Sung-Mo J, Young-Seok L, et al. Viscosity of Highly Basic Slags[J]. Isij International, 2007, 47(8):1090-1096. [14]郭靖, 程树森, 赵宏博. 基于结构理论的SiO2-CaO-MgO-Al2O3熔渣黏度的预报模型[J]. 钢铁研究学报, 2013, 25(8):6-11. GUO Jing,CHENG Shusen,ZHAO Hongbo.Modeling Research for Estimating Viscosity of SiO2-CaO-MgO-Al2O3 System Molten Slag Based on Slag Structure Theory[J]. Journal of Iron and Steel Research, 2013, 25(8):6-11. [15]成国光, 张鉴, 赵沛. 含B2O3渣系的热力学计算模型[J]. 中国有色金属学报, 1997(zy):30-33. Cheng Guoguang, Zhang Jian, Zhao Pei.THERMODYNAMIC CALCULATING MODELS FOR SLAG MELTS CONTAINING B2O3[J]. TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 1997(zy):30-33. [16]蔡金林, 薛正良, 熊天宇, 谢煜程,胡彬,李建立. 高温快速煅烧石灰的物化性质及微观结构的研究[J]. 炼钢, 2017, 33(1):43-48. CAI Jinlin, XUE Zhengliang, XIONG Tianyu, XIE Yucheng, HU Bin, LI Jianli.Study on the physico-chemical properties and microstructure of lime rapidly calcined at high temperature[J]. Steelmaking, 2017, 33(1):43-48. [17]吴斌, 徐秀, 高博, 刘秀成, 何存富. 液体黏滞系数测量新方法[J]. 机械工程学报, 2014, 50(6):8-14. WU Bin, XU Xiu, GAO Bo, LIU Xiucheng, HE Cunfu.New Method for Measuring Viscosity of Liquids[J]. Journal of Mechanical Engineering, 2014, 50(6):8-14. [18]黄志勇, 袁庭伟, 颜根发,等. MnO基无氟复合造渣剂在沙钢转炉冶炼中应用的试验研究[J]. 安徽冶金科技职业学院学报, 2006, 16(1):7-11. HUANG Zhiyong, YUAN Tingwei, YAN Genfa, et al. Experimental Investigation of Slag-forming Compounds of MnO-Based without Fluorine in Converter Smelting Process[J]. JOURNAL OF ANHUI VOCATIONAL COLLEGE OF METALLURGY AND TECHNOLOGY, 2006, 16(1):7-11. [19]张少广, 徐宏凯. 二水草酸亚铁分解行为研究现状[J]. 中国有色冶金, 2016(3):80-84. ZHANG Shaoguang, XU Hongkai. Study on decomposition behavior of ferrous oxalate dihydrate[J]. China Nonferrous Metallurgy, 2016(3):80-84. [20]Hermanek M, Zboril R, Mashlan M, et al. Thermal behaviour of iron (II) oxalate dihydrate in the atmosphere of its conversion gases[J]. Journal of Materials Chemistry, 2006, 16(13):1273-1280. [21]Hermanek M, Zboril R, Medrik I, et al. Catalytic efficiency of iron(III) oxides in decomposition of hydrogen peroxide: competition between the surface area and crystallinity of nanoparticles.[J]. Journal of the American Chemical Society, 2007, 129(35):10929-36. |
相关文章 15
[1] | 戴广平 石瑀 周世伟 李博 魏永刚. 铜熔渣喷吹地沟油还原贫化[J]. 过程工程学报, 2019, 19(4): 759-766. |
[2] | 石瑀 李博 戴广平 周世伟 王华 魏永刚. 硼酸钙对铜渣中夹杂铜沉降效果的影响[J]. 过程工程学报, 2019, 19(3): 553-559. |
[3] | 郑贺 李博 周浩 魏永刚 王华. 橡胶籽油还原作用下铜渣的贫化[J]. 过程工程学报, 2019, 19(3): 589-596. |
[4] | 钟源 杜海存 张莹 彭慧颖. 单向温度梯度下异质液滴的热毛细迁移[J]. 过程工程学报, 2018, 18(4): 697-703. |
[5] | 邓永春 姜银举 王永强. 高稀土氧化物渣系熔化温度的测定[J]. 过程工程学报, 2017, 17(6): 1203-1207. |
[6] | 邓永春 吴胜利 姜银举 崔萌萌 刘聪. La2O3-SiO2-Al2O3渣系的熔化温度及其影响因素[J]. 过程工程学报, 2017, 17(2): 357-361. |
[7] | 佟志芳乔家龙陈涛. 炉渣组分对CaO-Al2O3-SiO2-TiO2-MgO-Na2O渣系粘度的影响[J]. 过程工程学报, 2016, 16(2): 189-196. |
[8] | 杜冰王志孙丽媛马文会葛治陈杭. 复合熔析精炼去除工业硅中的非金属杂质硼[J]. 过程工程学报, 2015, 15(3): 393-399. |
[9] | 梁珂艳陶秀祥惠鹏岳. 用落球法研究气固浓相流化床表观粘度[J]. , 2014, 14(6): 901-906. |
[10] | 张旭升吕庆刘小杰郄亚娜. 添加剂对中钛炉渣性能的影响[J]. , 2014, 14(5): 809-815. |
[11] | 袁骧张建良毛瑞刘征建朱广跃. 高炉低钛渣粘度和熔化性能[J]. , 2014, 14(4): 664-670. |
[12] | 高永建于得江韩伟张光晋. 长碳链二元酸酯的合成及其物化性能[J]. , 2013, 13(5): 831-835. |
[13] | 黄娟鲍杰戴干策. 螺带型搅拌槽内异物性液体的混合性能[J]. , 2013, 13(4): 548-554. |
[14] | 卢叶唐萍文光华高建军. 超纯低压转子钢冶炼渣系研究[J]. , 2011, 11(6): 1075-1080. |
[15] | 王赞霞傅莉张建敏徐慧商莹张丽马倩倩王振贤. [aP4443][Gly]-H2O两元体系物性测定及CO2吸收性能[J]. , 2011, 11(5): 818-822. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3124