删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

微通道内流体压力降研究进展

本站小编 Free考研考试/2022-01-01

杨潇寒1, 付涛涛1*, 姜韶堃2, 朱春英1, 马友光1
1. 天津大学化工学院,化学工程联合国家重点实验室,天津化学化工协同创新中心,天津 300072
2. 中国船舶重工集团公司第七一八研究所,河北 邯郸 056027
收稿日期:2017-12-07修回日期:2018-01-18出版日期:2018-08-22发布日期:2018-08-15
通讯作者:付涛涛

基金资助:国家自然科学基金资助项目;天津市自然科学基金

Progress in pressure drop of fluid in microchannels

Xiaohan YANG1, Taotao FU1*, Shaokun JIANG2, Chunying ZHU1, Youguang MA1
1. State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2. The 718th Research Institute of China Shipbuiding Industry Corporation, Handan, Hebei 056027, China
Received:2017-12-07Revised:2018-01-18Online:2018-08-22Published:2018-08-15


Supported by:The National Natural Science Foundation of China




摘要/Abstract


摘要: 从微通道构型出发,总结了恒定截面通道、变径通道、复杂通道内流体压降研究的最新进展,介绍了哈根?泊肃叶定律用于恒定截面通道的研究进展,提出了变径通道的截面变化对压降的影响,总结了复杂构型微通道内流体压降研究的难点,讨论了粘度、滑移、特征尺寸及其测量方式对压降的影响,为构建压降预测模型提供了思路. 对该领域今后主要的研究方向进行了展望.

引用本文



杨潇寒 付涛涛 姜韶堃 朱春英 马友光. 微通道内流体压力降研究进展[J]. 过程工程学报, 2018, 18(4): 680-688.
Xiaohan YANG Taotao FU Shaokun JIANG Chunying ZHU Youguang MA. Progress in pressure drop of fluid in microchannels[J]. Chin. J. Process Eng., 2018, 18(4): 680-688.



使用本文




0
/ / 推荐

导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.217406
http://www.jproeng.com/CN/Y2018/V18/I4/680







参考文献
[1]陈光文.微反应技术研究进展[A].中国化工学会橡塑产品绿色制造专业委员会、中国化工产业发展研究院、中橡联合工程技术研究院.中国化工学会橡塑产品绿色制造专业委员会微通道反应技术研讨和产业化推进会论文集[C].中国化工学会橡塑产品绿色制造专业委员会、中国化工产业发展研究院、中橡联合工程技术研究院:,2016:9.
Chen G W.Research Progress of Micro-reaction Technology[A].National Institute of Chemical Rubber Products Green Manufacturing Committee, China Chemical Industry Development Research Institute, China United Rubber Institute of Engineering Technology. China Chemical Industry Association of rubber and plastics products Green Manufacturing Committee micro-channel reaction technology seminar and industrialization Proceedings Proceedings[C].China Chemical Industry Association Rubber Products Green Manufacturing Committee, China Chemical Industry Development Institute, the United Rubber Institute of Engineering and Technology:,2016:9.
[2]SintonD.Energy:the Microfluidic Frontier[J].Lab on a Chip,2014,14(17): 3127-3134.
[3]Benson R S,Ponton J W. Process Miniaturization-a route toTotalenvironmentalAcceptability? [J]. Trans. Ind. Chem. Eng.,1993,71:160-168.
[4]骆广生.微化工技术——面向中国制造2025[A].中国化工学会.2015年中国化工学会年会论文集[C].中国化工学会:,2015:28.
Luo G S.Micro-Chemical Technology - Made in China2025[A].Chemical Industry and Engineering Society of China.Chinese Chemical Society Annual Conference Proceedings in 2015[C].Chemical Industry and Engineering Society of China:,2015:28.
[5] K. S. Sorbie, Polymer-Improved Oil Recovery (Springer Science and Business Media, 2013.
[6]马友光,付涛涛,朱春英. 微通道内气液两相流行为研究进展[J]. 化工进展,2007,(08):1068-1074.
Ma Y G, Fu T T, Zhu C Y.Rsearch Progress of Gas - Liquid Two Phase Flow in Microchannels[J]. Chemical Industry and Engineering Progress , 2007,(08):1068-1074.
[7]Mala G M, Li D, Werner C, et al. Flow Characteristics of Water Through a Microchannel Between Two Parallel Plates with ElectrokineticEffects[J]. International Journal of Heat and Fluid Flow, 1997, 18(5): 489-496.
[8]D. Pfund , D. Rector, A. Shekarriz, Pressure Drop Measurements in a Micro-channel, AIChE J. 46( 2000): 1 496 -1 507.
[9]Jovanovic J, Zhou W, Rebrov EV, Nijhuis TA, Hessel V, Schouten JC. Liquid-liquid Slug Flow: Hydrodynamics and Pressure drop. Chemical Engineering Science.2011; 66: 42-54.
[10]Groisman A, Enzelberger M, Quake SR. Microfluidic Memory and Control Devices.Science.2003; 300: 955-958.
[11]Bodiguel H, Beaumont J, Machado A, Martinie L, Kellay H, Colin A. Flow Enhancement due to Elastic Turbulence in Channel Flows of Shear Thinning Fluids. Physical Review Letters.2015; 114: 028302.
[12]Sutera S P, Skalak R. The history of Poiseuille'slaw[J]. Annual Review of Fluid Mechanics, 1993, 25(1): 1-20.
[13]Su H, Niu H, Pan L, et al. The Characteristics of Pressure Drop in Microchannels[J]. Industrial & Engineering Chemistry Research, 2010, 49(8): 3830-3839.
[14]Wu, P. Y.; Little, W. A. Measurement of Friction Factor for Flow of Gases in very Fine Channels used for Microminiature Joule-Thompson refrigerators. Cryogenics 1983, 24, 273–277.
[15]Peng X F, Peterson G P, Wang B X. Frictional Flow Characteristics of Water Flowing Through Rectangular Microchannels[J]. Experimental Heat Transfer An International Journal, 1994, 7(4): 249-264.
[16]Pfund D, Rector D, Shekarriz A, et al. Pressure Drop Measurements in a Microchannel[J]. AIChE Journal, 2000, 46(8): 1496.
[17]Yu D, Warrington R, Barron R, et al. An Experimental and Theoretical Investigation of Fluid Flow and Heat Transfer in Microtubes[C]//ASME/JSME Thermal Engineering Conference. 1995, 1(52): 523-530.
[18]Hegab H E, Bari A, Ameel T. Friction and Convection Studies of R-134a in Microchannels within the Transition and Turbulent Flow Regimes[J]. Experimental Heat Transfer, 2002, 15(4): 245-259.
[19]Hrnjak P, Tu X. Single Phase Pressure Drop in Microchannels[J]. International Journal of Heat and Fluid Flow, 2007, 28(1): 2-14.
[20]Judy J, Maynes D, Webb B W. Characterization of Frictional Pressure Drop for Liquid Flows through Microchannels[J]. International Journal of Heat and Mass Transfer, 2002, 45(17): 3477-3489.
[21]Barlak S, Yap?c? S, Sara O N. Experimental Investigation of Pressure Drop and Friction Factor for Water Flow in Microtubes[J]. International Journal of Thermal Sciences, 2011, 50(3): 361-368.
[22]Aniskin V M, Adamenko K V, Maslov A A. Experimental Determination of the Friction Factor Coefficient in Microchannels[J]. Journal of Applied Mechanics and Technical Physics, 2011, 52(1): 18-23.
[23]Cornish R J, Flow in a Pipe of Rectangular Cross-Section[J], Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1928, 120(786): 691~700
[24]White FM (1991) Viscous Fluid Flow[M], 2nd edn. McGraw-Hill, New York
[25]White FM (1994) Fluid Mechanics[M], 3rd edn. McGraw-Hill, New York .
[26]Shah RK, London AL (1978) Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data[M]. Academic Press, London.
[27]Morris C J, Forster F K, Oscillatory Flow in Microchannels[J], Experiments in Fluids, 2004, 36(6): 928~937.
[28]Fuerstman M J, Lai A, Thurlow M E, et al, The Pressure Drop along Rectangular MicrochannelsContaining Bubbles[J], Lab Chip, 2007, 7(11): 1479~1489.
[29]HenrikBruus.. Theoretical Microfluidics.Department of Micro and Nanotechnology Technical University ofDenmark,2004.
[30]李卓,俞坚,马重芳. 小通道单相流体突扩和突缩局部阻力特性[J].化工学报,2007,(05):1127-1131.
Li Z, Yu J,Ma C F.Local Resistance Characteristics of Single Phase Fluid with Sudden Expansion and Shrinkage in Small Channels[J].Journal of Chemical Industry and Engineering,2007,(05):1127-1131.
[31]Akbari M, Bahrami M, Sinton D. Analytical and Experimental Characterization of Flow in Slowly-Varying Cross-Section Microchannels[C]//ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2010: 2161-2170.
[32]Duryodhan V S, Singh S G, Agrawal A. Liquid Flow through Converging Microchannels and a Comparison with Diverging Microchannels[J]. Journal of Micromechanics and Microengineering, 2014, 24(12): 125002.
[33]Dominic A, Sarangan J, Suresh S, et al. An Experimental Study of Heat Transfer and Pressure Drop Characteristics of Divergent Wavy Minichannels using Nanofluids[J]. Heat and Mass Transfer, 2017, 53(3): 959-971.
[34]Carrier O, Funfschilling D, Debas H, et al. Pressure Drop in a Split‐and‐Recombine Caterpillar Micromixer in case of Newtonian and Non‐newtonianFluids[J]. AIChE Journal, 2013, 59(7): 2679-2685.
[35]Tan, Xiao-Hua& Jiang, Li & Li, Xiao-Ping & Li, Yue-Yang & Zhang, Kai. (2017). A Complex Model for the Permeability and Porosity of Porous Media.Chemical Engineering Science. 172. . 10.1016/j.ces.2017.06.041.
[36]Armstrong R T, McClure J E, Berrill M A, et al. Beyond Darcy's law: The Role of Phase Topology and Ganglion Dynamics for Two-Fluid Flow[J]. Physical Review E, 2016, 94(4): 043113.
[37]Zami-Pierre F, de Loubens R, Quintard M, et al. Transition in the Flow of Power-Law Fluids through Isotropic Porous Media[J]. Physical Review Letters, 2016, 117(7): 074502.
[38]计光华, 计洪苗. 微流动及其元器件[M]. 北京:高等教育出报社,2009.
Ji G H, Ji H M.Micro-Flow and Its Components[M].Beijing:Higher Education Press,2009.
[39]秦任甲. 毛细管粘度计测定非牛顿流体粘度意义分析[J]. 中国血液流变学杂志,1998,(01):38-40.
Qin R J.Analysis of the Viscosity of Non - Newtonian Fluid by Capillary Viscometer[J].Chinese Journal of Hemorheology,1998,(01):38-40.
[40]莫丽霞,赵亮,陈旭. 实验室测定液体粘滞系数的一种新方法[J]. 实验室研究与探索,2008,27(11):10-11+44.
Mo L X, Zhao L, Chen X.A New Method for Laboratory Determination of Liquid Viscosity Coefficient[J].Laboratory Research and Exploration,2008,27(11):10-11+44.
[41]Livak-Dahl, E.; Lee, J.; Burns, M. A. Lab Chip 2013, 13, 297-301.
[42]Li Y, Ward K R, Burns M A. Viscosity Measurements using Microfluidic Droplet Length[J]. Analytical Chemistry, 2017, 89(7): 3996-4006.
[43] Bird R B, Carreau P J, A Nonlinear Viscoelastic Model for Polymer Solutions and Melts - I, Chemical Engineering Science, 1968, 23(5):427~434.
[44] K. Kang, L.J. Lee, K.W. Koelling, High Shear Microfluidics and Its Application in Rheological Measurement, Exp. Fluids 38 (2005) 222.
[45] Tang G H, Lu Y B, Zhang S X, et al. Experimental Investigation of Non-Newtonian LiquidFlow in Microchannels[J]. Journal of Non-Newtonian Fluid Mechanics, 2012, 173: 21-29.
[46] Sun Y, Bai B, Ma Y, et al. Flow Behavior Characterization of a Polyacrylamide-Based Friction Reducer in Microchannels[J]. Industrial & Engineering Chemistry Research, 2014, 53(51): 20036-20043.
[47]戴干策, 陈敏恒. 化工流体力学[M]. 北京:化学工业出版社,2005.7.
Dai G C, Chen M H.Chemical Fluid Mechanics[M].Beijing;Chemical Industry Press,2005.7.
[48]Bahrami M,Yovanovich M M, Culham J R. A Novel Solution for Pressure Drop in Singly Connected Microchannels of Arbitrary Cross-section[J]. International Journal of Heat and Mass Transfer, 2007, 50(13): 2492-2502.
[49]Yue J, Chen G, Yuan Q. Pressure Drops of Single and Two-Phase Flows through T-type Microchannel Mixers[J]. Chemical Engineering Journal, 2004, 102(1): 11-24.
[50]Nghe P, Degré G, Tabeling P, et al. High Shear Rheology of Shear Banding Fluids in Microchannels[J]. Applied Physics Letters, 2008, 93(20): 204102.
[51]Nghe P, Degré G, Tabeling P, et al. High Shear Rheology of Shear Banding Fluids in Microchannels[J]. Applied Physics Letters, 2008, 93(20): 204102.
[52]Cuenca A, Bodiguel H. Submicron Flow of Polymer Solutions: Slippage Reduction due to Confinement[J]. Physical Review Letters,2013, 110(10): 108304.
[53] K. Kozicki, C.H. Chou, C. Tiu, Non-Newtonian Flow in Ducts of Arbitrary CrosssectionalShape, Chem. Eng. Sci. 21 (1966) 665.
[54] Bahrami M,Yovanovich M M, Culham J R. A Novel Solution for Pressure Drop in singly Connected Microchannels of Arbitrary Cross-section[J]. International Journal of Heat and Mass Transfer, 2007, 50(13): 2492-2502.
[55]鲁进利, 周宾,许忠林, 等. 不同截面微通道中流动阻力特性[J]. 东南大学学报: 自然科学版, 2011, 41(3): 554-557.
Lu J L, Zhou B , Xu Z L,et al.Flow Resistance Characteristics of Microchannels with Different Cross Sections[J].Journal of Southeast University: Natural Science,2011, 41(3): 554-557.
[56] Abdelall F F, Hahn G, Ghiaasiaan S M, et al. Pressure Drop caused by Abrupt Flow Area Changes in Small Channels[J]. Experimental Thermal and Fluid Science, 2005, 29(4): 425-434.




[1]史亚琪 李彦君 杜玉朋 任万忠. 气-固微型流化床压降特性及最小流化速度的实验研究[J]. 过程工程学报, 2021, 21(4): 420-430.
[2]刘建武 蒋晗 严生虎 张跃 沈介发 陈代祥. 微通道反应器中乙酰乙酸甲酯的连续流合成工艺[J]. 过程工程学报, 2020, 20(9): 1082-1088.
[3]郝思佳 范怡平 汪泉宇 赵亚飞. 气液逆流接触洗涤器两相洗涤效果和流动特性[J]. 过程工程学报, 2020, 20(4): 390-399.
[4]王娟 李军 邹槊 何星晨 万加亿 周宇. 压滤式水电解槽微通道内球凸-球凹结构绕流特性的模拟[J]. 过程工程学报, 2020, 20(3): 294-301.
[5]李冬 杨宏刚 王怡 采晓帆 蔡如明. 防返混锥对旋风除尘器内二次流的抑制效果研究[J]. 过程工程学报, 2020, 20(12): 1397-1405.
[6]吕涵 范怡平 赵亚飞 卢春喜. 气固并流式轴向移动床过滤器的压降特性[J]. 过程工程学报, 2020, 20(1): 35-43.
[7]郭骥 姬忠礼. 苯酚浓度对亲油疏水型滤材聚结性能的影响[J]. 过程工程学报, 2019, 19(6): 1143-1152.
[8]陈景 姬忠礼 刘震. 折叠滤芯气液过滤性能测试及优化[J]. 过程工程学报, 2019, 19(4): 775-782.
[9]鲁进利 刘亚进 韩亚芳 池帮杰 钱付平. 柜式空调微通道蒸发器换热性能测试[J]. 过程工程学报, 2019, 19(4): 661-667.
[10]李培生 连小龙 张莹 赵万东 刘强 卢敏 杜鹏. 液滴滴浸微通道入口段的动力学特性分析[J]. 过程工程学报, 2019, 19(1): 102-109.
[11]刘龙飞 姬忠礼 栾鑫. 高温陶瓷过滤管性能退化建模及实时寿命预测[J]. 过程工程学报, 2019, 19(1): 165-172.
[12]王润鹏 吴小林 刘震 姬忠礼. 不同操作压力下的气液过滤特性分析[J]. 过程工程学报, 2018, 18(5): 1020-1028.
[13]王正 赵祥迪 陈国鑫 杨帅 黄青山 蒋夫花. 微通道内火焰传播的研究进展[J]. 过程工程学报, 2018, 18(4): 669-679.
[14]颜深 孙国刚 詹敏述 姬忠礼. 不同滤料固定颗粒床过滤性能对比[J]. 过程工程学报, 2018, 18(3): 477-483.
[15]郝翊彤 姬忠礼 刘震 刘宇峰. 天然气滤芯三相过滤过程的压降特性[J]. 过程工程学报, 2017, 17(6): 1140-1147.





PDF全文下载地址:

http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3107
相关话题/过程 工程 化工 制造 实验室

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • Si/F/K/Na杂质对硫酸钙结晶过程的影响
    李绪1,2,朱干宇3,宫小康1,李少鹏3,刘兵兵1,李会泉3,4*1.宜都兴发化工有限公司,湖北宜都4433112.湖北兴发化工集团股份有限公司,湖北宜昌4430073.中国科学院过程工程研究所绿色过程工程实验室,湿法冶金清洁生产技术国家工程实验室,北京1001904.中国科学院大学化学院,北京10 ...
    本站小编 Free考研考试 2022-01-01
  • 普鲁士蓝钠离子电池正极材料高收率合成过程及性能
    孙李琪1,2,严小敏1,2,唐婉1,2,何雨石1,2,马紫峰1,2,廖小珍1,2*1.上海交通大学化学工程系,上海2002402.上海电化学能源器件工程技术研究中心,上海200240收稿日期:2017-11-29修回日期:2018-01-19出版日期:2018-08-22发布日期:2018-08-1 ...
    本站小编 Free考研考试 2022-01-01
  • 玉米芯炭质燃料的理化性能及热解过程分析
    杨兴卫1,杨茂立1,安海1,陈海生1,2*,张少朋1,梁志松11.国家能源大规模物理储能技术(毕节)研发中心,贵州毕节5517002.中国科学院工程热物理研究所,北京100190收稿日期:2017-10-20修回日期:2017-12-30出版日期:2018-08-22发布日期:2018-08-15通 ...
    本站小编 Free考研考试 2022-01-01
  • 基于VAE-DBN的故障分类方法在化工过程中的应用
    张祥,崔哲,董玉玺,田文德*青岛科技大学化工学院,山东青岛266042收稿日期:2017-09-29修回日期:2017-11-24出版日期:2018-06-22发布日期:2018-06-06通讯作者:田文德基金资助:基于非线性动态模型的精馏过程安全智能预测方法与预警策略研究Applicationof ...
    本站小编 Free考研考试 2022-01-01
  • 钒渣钙化焙烧熟料的浸出过程
    罗富怀1,2,付念新1,2*,张林3,刘武汉3,涂赣峰1,21.东北大学冶金学院,辽宁沈阳110819;2.东北大学多金属共生矿生态化利用教育部重点实验室,辽宁沈阳110819;3.攀钢集团西昌钢钒有限公司,四川西昌615012收稿日期:2017-10-09修回日期:2017-11-27出版日期:2 ...
    本站小编 Free考研考试 2022-01-01
  • 液态二氧化碳置换整形甲烷水合物过程特性
    张凤琦,陈国兴,郭开华*,杜奥涵中山大学工学院,广东广州510006收稿日期:2017-08-21修回日期:2017-10-19出版日期:2018-06-22发布日期:2018-06-06通讯作者:郭开华基金资助:国家自然科学基金资助项目ProcessCharacteristicsonReplace ...
    本站小编 Free考研考试 2022-01-01
  • 林木遗传育种国家重点实验室林木分子与代谢课题组构建了杨树木质部单细胞图谱
    导管、纤维及射线细胞拟时分析(A)导管细胞群拟时分析;(B)纤维及射线细胞群拟时分析;(C)三类细胞群分化示意图。cluster1为木质部发育前体细胞(Xpc),由cluster 1分别向cluster 10(VeI)和7(VeII)方向分化成导管细胞,向cluster8(FRpc)、cluster ...
    本站小编 Free考研考试 2022-01-01
  • 白洋淀流域水文过程演变及归因分析研究取得新进展
    图1. 白洋淀流域1998-2017年植被特征值NDVI变化 图2. 流域水文过程演变的敏感性的区域差异性规律近50年来中国河川径流量减少现象已引起政府决策部门和公众的广泛关注,水资源短缺以及由此引发的水生态安全问题已严重威胁了我国社会经济的可持续发展。水资源是受气候及下垫面变化影响最直接和最重要的 ...
    本站小编 Free考研考试 2022-01-01
  • 桉树中心科研人员新探索:连栽桉树改造过程中土壤微生物群落的变化规律
    桉树作为世界公认的速生树种之一,因其生长快,出材率高及用途广泛等特点,在中国南方被广泛种植。但是,短周期多代连栽模式在产生巨大经济效益的同时,带来了诸如土壤质量衰退,林下生物多样性失衡等生态环境问题,这使得经历多代连栽后桉树林地管理问题成为了极具争议的话题。因此,针对多代连栽后的桉树人工林采伐迹地改 ...
    本站小编 Free考研考试 2022-01-01
  • 《乌兰布和沙漠绿洲化过程与防护林研究》正式出版
    乌兰布和沙漠是我国八大沙漠之一,是黄河内蒙古段的主要沙害区,也是国家重点生态功能区之一,更是沙林中心治沙四十余年的主战场。近日,由沙林中心郝玉光研究员等著成的《乌兰布和沙漠绿洲化过程与防护林研究》由中国林业出版社正式出版发行。该书的出版得到了“十二五”国家科技支撑计划课题、中央级公益性科研院所基本科 ...
    本站小编 Free考研考试 2022-01-01