1. 天津大学化工学院,化学工程联合国家重点实验室,天津化学化工协同创新中心,天津 300072
2. 中国船舶重工集团公司第七一八研究所,河北 邯郸 056027
收稿日期:
2017-12-07修回日期:
2018-01-18出版日期:
2018-08-22发布日期:
2018-08-15通讯作者:
付涛涛基金资助:
国家自然科学基金资助项目;天津市自然科学基金Progress in pressure drop of fluid in microchannels
Xiaohan YANG1, Taotao FU1*, Shaokun JIANG2, Chunying ZHU1, Youguang MA11. State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2. The 718th Research Institute of China Shipbuiding Industry Corporation, Handan, Hebei 056027, China
Received:
2017-12-07Revised:
2018-01-18Online:
2018-08-22Published:
2018-08-15Supported by:
The National Natural Science Foundation of China摘要/Abstract
摘要: 从微通道构型出发,总结了恒定截面通道、变径通道、复杂通道内流体压降研究的最新进展,介绍了哈根?泊肃叶定律用于恒定截面通道的研究进展,提出了变径通道的截面变化对压降的影响,总结了复杂构型微通道内流体压降研究的难点,讨论了粘度、滑移、特征尺寸及其测量方式对压降的影响,为构建压降预测模型提供了思路. 对该领域今后主要的研究方向进行了展望.
引用本文
杨潇寒 付涛涛 姜韶堃 朱春英 马友光. 微通道内流体压力降研究进展[J]. 过程工程学报, 2018, 18(4): 680-688.
Xiaohan YANG Taotao FU Shaokun JIANG Chunying ZHU Youguang MA. Progress in pressure drop of fluid in microchannels[J]. Chin. J. Process Eng., 2018, 18(4): 680-688.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.217406
http://www.jproeng.com/CN/Y2018/V18/I4/680
参考文献
参考文献 [1]陈光文.微反应技术研究进展[A].中国化工学会橡塑产品绿色制造专业委员会、中国化工产业发展研究院、中橡联合工程技术研究院.中国化工学会橡塑产品绿色制造专业委员会微通道反应技术研讨和产业化推进会论文集[C].中国化工学会橡塑产品绿色制造专业委员会、中国化工产业发展研究院、中橡联合工程技术研究院:,2016:9. Chen G W.Research Progress of Micro-reaction Technology[A].National Institute of Chemical Rubber Products Green Manufacturing Committee, China Chemical Industry Development Research Institute, China United Rubber Institute of Engineering Technology. China Chemical Industry Association of rubber and plastics products Green Manufacturing Committee micro-channel reaction technology seminar and industrialization Proceedings Proceedings[C].China Chemical Industry Association Rubber Products Green Manufacturing Committee, China Chemical Industry Development Institute, the United Rubber Institute of Engineering and Technology:,2016:9. [2]SintonD.Energy:the Microfluidic Frontier[J].Lab on a Chip,2014,14(17): 3127-3134. [3]Benson R S,Ponton J W. Process Miniaturization-a route toTotalenvironmentalAcceptability? [J]. Trans. Ind. Chem. Eng.,1993,71:160-168. [4]骆广生.微化工技术——面向中国制造2025[A].中国化工学会.2015年中国化工学会年会论文集[C].中国化工学会:,2015:28. Luo G S.Micro-Chemical Technology - Made in China2025[A].Chemical Industry and Engineering Society of China.Chinese Chemical Society Annual Conference Proceedings in 2015[C].Chemical Industry and Engineering Society of China:,2015:28. [5] K. S. Sorbie, Polymer-Improved Oil Recovery (Springer Science and Business Media, 2013. [6]马友光,付涛涛,朱春英. 微通道内气液两相流行为研究进展[J]. 化工进展,2007,(08):1068-1074. Ma Y G, Fu T T, Zhu C Y.Rsearch Progress of Gas - Liquid Two Phase Flow in Microchannels[J]. Chemical Industry and Engineering Progress , 2007,(08):1068-1074. [7]Mala G M, Li D, Werner C, et al. Flow Characteristics of Water Through a Microchannel Between Two Parallel Plates with ElectrokineticEffects[J]. International Journal of Heat and Fluid Flow, 1997, 18(5): 489-496. [8]D. Pfund , D. Rector, A. Shekarriz, Pressure Drop Measurements in a Micro-channel, AIChE J. 46( 2000): 1 496 -1 507. [9]Jovanovic J, Zhou W, Rebrov EV, Nijhuis TA, Hessel V, Schouten JC. Liquid-liquid Slug Flow: Hydrodynamics and Pressure drop. Chemical Engineering Science.2011; 66: 42-54. [10]Groisman A, Enzelberger M, Quake SR. Microfluidic Memory and Control Devices.Science.2003; 300: 955-958. [11]Bodiguel H, Beaumont J, Machado A, Martinie L, Kellay H, Colin A. Flow Enhancement due to Elastic Turbulence in Channel Flows of Shear Thinning Fluids. Physical Review Letters.2015; 114: 028302. [12]Sutera S P, Skalak R. The history of Poiseuille'slaw[J]. Annual Review of Fluid Mechanics, 1993, 25(1): 1-20. [13]Su H, Niu H, Pan L, et al. The Characteristics of Pressure Drop in Microchannels[J]. Industrial & Engineering Chemistry Research, 2010, 49(8): 3830-3839. [14]Wu, P. Y.; Little, W. A. Measurement of Friction Factor for Flow of Gases in very Fine Channels used for Microminiature Joule-Thompson refrigerators. Cryogenics 1983, 24, 273–277. [15]Peng X F, Peterson G P, Wang B X. Frictional Flow Characteristics of Water Flowing Through Rectangular Microchannels[J]. Experimental Heat Transfer An International Journal, 1994, 7(4): 249-264. [16]Pfund D, Rector D, Shekarriz A, et al. Pressure Drop Measurements in a Microchannel[J]. AIChE Journal, 2000, 46(8): 1496. [17]Yu D, Warrington R, Barron R, et al. An Experimental and Theoretical Investigation of Fluid Flow and Heat Transfer in Microtubes[C]//ASME/JSME Thermal Engineering Conference. 1995, 1(52): 523-530. [18]Hegab H E, Bari A, Ameel T. Friction and Convection Studies of R-134a in Microchannels within the Transition and Turbulent Flow Regimes[J]. Experimental Heat Transfer, 2002, 15(4): 245-259. [19]Hrnjak P, Tu X. Single Phase Pressure Drop in Microchannels[J]. International Journal of Heat and Fluid Flow, 2007, 28(1): 2-14. [20]Judy J, Maynes D, Webb B W. Characterization of Frictional Pressure Drop for Liquid Flows through Microchannels[J]. International Journal of Heat and Mass Transfer, 2002, 45(17): 3477-3489. [21]Barlak S, Yap?c? S, Sara O N. Experimental Investigation of Pressure Drop and Friction Factor for Water Flow in Microtubes[J]. International Journal of Thermal Sciences, 2011, 50(3): 361-368. [22]Aniskin V M, Adamenko K V, Maslov A A. Experimental Determination of the Friction Factor Coefficient in Microchannels[J]. Journal of Applied Mechanics and Technical Physics, 2011, 52(1): 18-23. [23]Cornish R J, Flow in a Pipe of Rectangular Cross-Section[J], Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1928, 120(786): 691~700 [24]White FM (1991) Viscous Fluid Flow[M], 2nd edn. McGraw-Hill, New York [25]White FM (1994) Fluid Mechanics[M], 3rd edn. McGraw-Hill, New York . [26]Shah RK, London AL (1978) Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data[M]. Academic Press, London. [27]Morris C J, Forster F K, Oscillatory Flow in Microchannels[J], Experiments in Fluids, 2004, 36(6): 928~937. [28]Fuerstman M J, Lai A, Thurlow M E, et al, The Pressure Drop along Rectangular MicrochannelsContaining Bubbles[J], Lab Chip, 2007, 7(11): 1479~1489. [29]HenrikBruus.. Theoretical Microfluidics.Department of Micro and Nanotechnology Technical University ofDenmark,2004. [30]李卓,俞坚,马重芳. 小通道单相流体突扩和突缩局部阻力特性[J].化工学报,2007,(05):1127-1131. Li Z, Yu J,Ma C F.Local Resistance Characteristics of Single Phase Fluid with Sudden Expansion and Shrinkage in Small Channels[J].Journal of Chemical Industry and Engineering,2007,(05):1127-1131. [31]Akbari M, Bahrami M, Sinton D. Analytical and Experimental Characterization of Flow in Slowly-Varying Cross-Section Microchannels[C]//ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2010: 2161-2170. [32]Duryodhan V S, Singh S G, Agrawal A. Liquid Flow through Converging Microchannels and a Comparison with Diverging Microchannels[J]. Journal of Micromechanics and Microengineering, 2014, 24(12): 125002. [33]Dominic A, Sarangan J, Suresh S, et al. An Experimental Study of Heat Transfer and Pressure Drop Characteristics of Divergent Wavy Minichannels using Nanofluids[J]. Heat and Mass Transfer, 2017, 53(3): 959-971. [34]Carrier O, Funfschilling D, Debas H, et al. Pressure Drop in a Split‐and‐Recombine Caterpillar Micromixer in case of Newtonian and Non‐newtonianFluids[J]. AIChE Journal, 2013, 59(7): 2679-2685. [35]Tan, Xiao-Hua& Jiang, Li & Li, Xiao-Ping & Li, Yue-Yang & Zhang, Kai. (2017). A Complex Model for the Permeability and Porosity of Porous Media.Chemical Engineering Science. 172. . 10.1016/j.ces.2017.06.041. [36]Armstrong R T, McClure J E, Berrill M A, et al. Beyond Darcy's law: The Role of Phase Topology and Ganglion Dynamics for Two-Fluid Flow[J]. Physical Review E, 2016, 94(4): 043113. [37]Zami-Pierre F, de Loubens R, Quintard M, et al. Transition in the Flow of Power-Law Fluids through Isotropic Porous Media[J]. Physical Review Letters, 2016, 117(7): 074502. [38]计光华, 计洪苗. 微流动及其元器件[M]. 北京:高等教育出报社,2009. Ji G H, Ji H M.Micro-Flow and Its Components[M].Beijing:Higher Education Press,2009. [39]秦任甲. 毛细管粘度计测定非牛顿流体粘度意义分析[J]. 中国血液流变学杂志,1998,(01):38-40. Qin R J.Analysis of the Viscosity of Non - Newtonian Fluid by Capillary Viscometer[J].Chinese Journal of Hemorheology,1998,(01):38-40. [40]莫丽霞,赵亮,陈旭. 实验室测定液体粘滞系数的一种新方法[J]. 实验室研究与探索,2008,27(11):10-11+44. Mo L X, Zhao L, Chen X.A New Method for Laboratory Determination of Liquid Viscosity Coefficient[J].Laboratory Research and Exploration,2008,27(11):10-11+44. [41]Livak-Dahl, E.; Lee, J.; Burns, M. A. Lab Chip 2013, 13, 297-301. [42]Li Y, Ward K R, Burns M A. Viscosity Measurements using Microfluidic Droplet Length[J]. Analytical Chemistry, 2017, 89(7): 3996-4006. [43] Bird R B, Carreau P J, A Nonlinear Viscoelastic Model for Polymer Solutions and Melts - I, Chemical Engineering Science, 1968, 23(5):427~434. [44] K. Kang, L.J. Lee, K.W. Koelling, High Shear Microfluidics and Its Application in Rheological Measurement, Exp. Fluids 38 (2005) 222. [45] Tang G H, Lu Y B, Zhang S X, et al. Experimental Investigation of Non-Newtonian LiquidFlow in Microchannels[J]. Journal of Non-Newtonian Fluid Mechanics, 2012, 173: 21-29. [46] Sun Y, Bai B, Ma Y, et al. Flow Behavior Characterization of a Polyacrylamide-Based Friction Reducer in Microchannels[J]. Industrial & Engineering Chemistry Research, 2014, 53(51): 20036-20043. [47]戴干策, 陈敏恒. 化工流体力学[M]. 北京:化学工业出版社,2005.7. Dai G C, Chen M H.Chemical Fluid Mechanics[M].Beijing;Chemical Industry Press,2005.7. [48]Bahrami M,Yovanovich M M, Culham J R. A Novel Solution for Pressure Drop in Singly Connected Microchannels of Arbitrary Cross-section[J]. International Journal of Heat and Mass Transfer, 2007, 50(13): 2492-2502. [49]Yue J, Chen G, Yuan Q. Pressure Drops of Single and Two-Phase Flows through T-type Microchannel Mixers[J]. Chemical Engineering Journal, 2004, 102(1): 11-24. [50]Nghe P, Degré G, Tabeling P, et al. High Shear Rheology of Shear Banding Fluids in Microchannels[J]. Applied Physics Letters, 2008, 93(20): 204102. [51]Nghe P, Degré G, Tabeling P, et al. High Shear Rheology of Shear Banding Fluids in Microchannels[J]. Applied Physics Letters, 2008, 93(20): 204102. [52]Cuenca A, Bodiguel H. Submicron Flow of Polymer Solutions: Slippage Reduction due to Confinement[J]. Physical Review Letters,2013, 110(10): 108304. [53] K. Kozicki, C.H. Chou, C. Tiu, Non-Newtonian Flow in Ducts of Arbitrary CrosssectionalShape, Chem. Eng. Sci. 21 (1966) 665. [54] Bahrami M,Yovanovich M M, Culham J R. A Novel Solution for Pressure Drop in singly Connected Microchannels of Arbitrary Cross-section[J]. International Journal of Heat and Mass Transfer, 2007, 50(13): 2492-2502. [55]鲁进利, 周宾,许忠林, 等. 不同截面微通道中流动阻力特性[J]. 东南大学学报: 自然科学版, 2011, 41(3): 554-557. Lu J L, Zhou B , Xu Z L,et al.Flow Resistance Characteristics of Microchannels with Different Cross Sections[J].Journal of Southeast University: Natural Science,2011, 41(3): 554-557. [56] Abdelall F F, Hahn G, Ghiaasiaan S M, et al. Pressure Drop caused by Abrupt Flow Area Changes in Small Channels[J]. Experimental Thermal and Fluid Science, 2005, 29(4): 425-434. |
相关文章 15
[1] | 史亚琪 李彦君 杜玉朋 任万忠. 气-固微型流化床压降特性及最小流化速度的实验研究[J]. 过程工程学报, 2021, 21(4): 420-430. |
[2] | 刘建武 蒋晗 严生虎 张跃 沈介发 陈代祥. 微通道反应器中乙酰乙酸甲酯的连续流合成工艺[J]. 过程工程学报, 2020, 20(9): 1082-1088. |
[3] | 郝思佳 范怡平 汪泉宇 赵亚飞. 气液逆流接触洗涤器两相洗涤效果和流动特性[J]. 过程工程学报, 2020, 20(4): 390-399. |
[4] | 王娟 李军 邹槊 何星晨 万加亿 周宇. 压滤式水电解槽微通道内球凸-球凹结构绕流特性的模拟[J]. 过程工程学报, 2020, 20(3): 294-301. |
[5] | 李冬 杨宏刚 王怡 采晓帆 蔡如明. 防返混锥对旋风除尘器内二次流的抑制效果研究[J]. 过程工程学报, 2020, 20(12): 1397-1405. |
[6] | 吕涵 范怡平 赵亚飞 卢春喜. 气固并流式轴向移动床过滤器的压降特性[J]. 过程工程学报, 2020, 20(1): 35-43. |
[7] | 郭骥 姬忠礼. 苯酚浓度对亲油疏水型滤材聚结性能的影响[J]. 过程工程学报, 2019, 19(6): 1143-1152. |
[8] | 陈景 姬忠礼 刘震. 折叠滤芯气液过滤性能测试及优化[J]. 过程工程学报, 2019, 19(4): 775-782. |
[9] | 鲁进利 刘亚进 韩亚芳 池帮杰 钱付平. 柜式空调微通道蒸发器换热性能测试[J]. 过程工程学报, 2019, 19(4): 661-667. |
[10] | 李培生 连小龙 张莹 赵万东 刘强 卢敏 杜鹏. 液滴滴浸微通道入口段的动力学特性分析[J]. 过程工程学报, 2019, 19(1): 102-109. |
[11] | 刘龙飞 姬忠礼 栾鑫. 高温陶瓷过滤管性能退化建模及实时寿命预测[J]. 过程工程学报, 2019, 19(1): 165-172. |
[12] | 王润鹏 吴小林 刘震 姬忠礼. 不同操作压力下的气液过滤特性分析[J]. 过程工程学报, 2018, 18(5): 1020-1028. |
[13] | 王正 赵祥迪 陈国鑫 杨帅 黄青山 蒋夫花. 微通道内火焰传播的研究进展[J]. 过程工程学报, 2018, 18(4): 669-679. |
[14] | 颜深 孙国刚 詹敏述 姬忠礼. 不同滤料固定颗粒床过滤性能对比[J]. 过程工程学报, 2018, 18(3): 477-483. |
[15] | 郝翊彤 姬忠礼 刘震 刘宇峰. 天然气滤芯三相过滤过程的压降特性[J]. 过程工程学报, 2017, 17(6): 1140-1147. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3107