1. 中国矿业大学(北京)化学与环境工程学院,北京 100083
2. 中国科学院过程工程研究所湿法冶金清洁生产技术国家工程实验室,绿色过程与工程重点实验室,北京 100190
3. 中国科学院大学化学工程学院,北京 100049
收稿日期:
2017-09-12修回日期:
2017-12-22出版日期:
2018-08-22发布日期:
2018-08-15通讯作者:
金伟基金资助:
国家自然科学基金青年项目;国家自然科学基金青年项目Enhanced copper dissolution by integrating anodic oxidation and cathodic oxidation process in acidic solution
Yunting WANG1,2, Yudong XUE2,3, Shili ZHENG2*, Chunhui ZHANG1, Wei JIN2*1. School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
2. National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Key Laboratory of Green Process and
Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
3. School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Received:
2017-09-12Revised:
2017-12-22Online:
2018-08-22Published:
2018-08-15摘要/Abstract
摘要: 提出了一种阳极直接电化学溶解与阴极间接溶出耦合溶出铜的新方法,阴极间接氧化是基于氧气还原反应和类芬顿反应产生H2O2和?OH. 结果表明,在最佳电压0.25 V或电流密度6 mA/cm2下,电化学体系能产生大量活性物种,铜溶出率在直接阳极溶出的基础上大幅提升.
引用本文
王云婷 薛玉冬 郑诗礼 张春晖 金伟. 酸性溶液中阴阳极协同氧化强化铜的溶出[J]. 过程工程学报, 2018, 18(4): 722-727.
Yunting WANG Yudong XUE Shili ZHENG Chunhui ZHANG Wei JIN. Enhanced copper dissolution by integrating anodic oxidation and cathodic oxidation process in acidic solution[J]. Chin. J. Process Eng., 2018, 18(4): 722-727.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.217336
http://www.jproeng.com/CN/Y2018/V18/I4/722
参考文献
[1]Rocchetti L, Veglio F, Kopacek B, et al.Environmental impact assessment of hydrometallurgical processes for metal recovery from WEEE residues using a portable prototype plant[J].Environ. Sci. Technol., 2013, 47(3):1581-1588 [2]Jochen P.Heap leaching as a key technology for recovery of values from low-grade ores – A brief overview.[J].Hydrometallurgy, 2016, 165(1):206-212 [3]Behnamfard A, Salarirad M M, Vrglio F.Process development for recovery of copper and precious metals from waste printed circuit boards with emphasize on palladium and gold leaching and precipitation[J].Waste Manag., 2013, 33(11):2354-2363 [4]Wang Z H, Bush R T, Liu J S.Arsenic(III) and iron(II) co-oxidation by oxygen and hydrogen peroxide: divergent reactions in the presence of organic ligands[J].Chemosphere, 2013, 93(9):1936-1941 [5]Li L, Wang W J, Wang C, et al.Effects of an applied magnetic field on the anodic dissolution of nickel in HNO3 + Cl? solution[J].Electrochem. Commun., 2009, 11(11):2109-2112 [6]Wong D K Y, Coller B A W, Macfarlane D R.A kinetic model for the dissolution mechanism of copper in acidic sulfate solutions[J].Electrochim. Acta, 1993, 38(14):2121-2127 [7]Moreira A, Benedetti A, Cabot P, et al.Electrochemical behaviour of copper electrode in concentrated sulfuric acid solutions[J].Electrochim. Acta, 1993, 38(7):981-987 [8]Kim E Y, Kim M S, Lee J C, et al.Leaching behavior of copper using electro-generated chlorine in hydrochloric acid solution[J].Hydrometallurgy, 2010, 100(3-4):95-102 [9]Xue Y D, Jin W, Du H, et al.Electrochemical Cr(III) oxidation and mobilization by in situ generated reactive oxygen species in alkaline solution[J].J. Electrochem. Soc., 2016, 163(8):H684-H689 [10]Martinez-Huitle C A, Ferro S.Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes[J].Chem. Soc. Rev., 2006, 35(12):1324-1340 [11]Brillas E, Sires I, Oturan M A.Electro-Fenton process and related electrochemical technologies based on Fenton`s reaction chemistry [J].[J].Chem. Rev., 2009, 109(12):6570-6631 [12]Jin W, Moats M S, Zheng S L, et al.Modulated Cr(III) oxidation in KOH solutions at a gold electrode: Competition between disproportionation and stepwise electron transfer[J].Electrochim. Acta, 2011, 56(24):8311-8318 [13]Xue Y D, Zheng S L, Du H, et al.Cr(III)-induced electrochemical advanced oxidation processes for the V2O3 dissolution in alkaline media [J].[J].Chem. Eng. J., 2017, 307(1):518-528 [14]Dos Santos P L, Guimaraes I R, Mesquita A M, et al.Copper-doped akaganeite: Application in catalytic Cupro-Fenton reactions for oxidation of methylene blue [J].[J].J. Mol. Catal. A: Chem., 2016, 424(1):194-202 [15]Xue Y D, Wang Y T, Zheng S L, et al.Efficient oxidative dissolution of V2O3 by the in situ electro-generated reactive oxygen species on N-doped carbon felt electrodes [J][J].Electrochim. Acta, 2017, 226(1):140-147 [16]Zhang H J, Li H L, Deng C C, et al.Electrocatalysis of oxygen reduction reaction on carbon nanotubes modified by graphitization and amination[J].ECS Electrochemistry Letters, 2015, 4(8):H33-H37 [17]Xue Y D, Jin W, Du H, et al.Tuning α-Fe2O3 nanotube arrays for the oxygen reduction reaction in alkaline media[J].RSC Adv., 2016, 6(48):41878-41884 [18]Jin W, Du H, Zheng S L, et al.Comparison of the oxygen reduction reaction between NaOH and KOH solutions on a Pt electrode:The electrolyte-dependent effect [J].[J].J. Phys. Chem. B, 2010, 114(19):6542-6548 [19]Jin W, Moats M S, Zheng S L, et al.Indirect electrochemical Cr(III) oxidation in KOH solutions at an Au electrode: the role of oxygen reduction reaction[J].J. Phys. Chem. B, 2012, 116(25):7531-7537 [20]Zhang C, Jiang Y H, Li Y L, et al.Three-dimensional electrochemical process for wastewater treatment: A general review [J].[J].Chem. Eng. J., 2013, 228(15):455-467 [21]Wang Z H, Ma W H, Chen C C, et al.Probing paramagnetic species in titania-based heterogeneous photocatalysis by electron spin resonance (ESR) spectroscopy—A mini review[J].Chem. Eng. J., 2011, 170(2-3):353-362 [22]Pham A N, Xing G W, Miller C J, et al.Fenton-like copper redox chemistry revisited: Hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production [J].[J].J. Catal., 2013, 301(1):54-64 [23]杜一立, 李进, 葛小鹏, 等.用原子力显微镜研究铜合金微生物的腐蚀行为[J].中国腐蚀与防护学报, 2008, 28(6):321-325 [24]Sanchez J, Fullea J, Andrade C, et al.AFM study of the early corrosion of a high strength steel in a diluted sodium chloride solution[J].Corros. Sci., 2008, 50(7):1820-1824 |
相关文章 15
[1] | 朱琳 王芳宇 李 洁 马扬洲 宋广生 夏爱林. 聚丙烯酸修饰的Fe3O4@C核壳型微球的制备及其在锂离子电池 负极中的电化学性能[J]. 过程工程学报, 2020, 20(9): 1114-1120. |
[2] | 杨茂林 李田 黄能 赵培涛 郭庆杰. 含PVC混合塑料水热反应中的氯迁移特性[J]. 过程工程学报, 2020, 20(4): 467-475. |
[3] | 刘明宝 郭万中 田思雨 陈梅. 油酸钠与苯甲羟肟酸钠协同体系中金红石的浮选机理[J]. 过程工程学报, 2020, 20(11): 1296-1303. |
[4] | 郑诗礼 薛玉冬 杜浩 张懿. 碱性介质活性氧调控技术在湿法冶金中的研究进展[J]. 过程工程学报, 2019, 19(S1): 58-64. |
[5] | 刘桐桐 王凯 陈永修 韩永生. 有机添加剂对超级电容器中水系电解液理化性能的影响[J]. 过程工程学报, 2019, 19(6): 1242-1249. |
[6] | 刘欢 何几文 华中胜 徐亮 肖赛君 赵卓. Bi(III)在NaCl-KCl熔盐体系中的电化学行为[J]. 过程工程学报, 2019, 19(2): 317-322. |
[7] | 刘威 肖赛君 王振. NaCl-KCl熔盐体系中Cr2+在W电极上的电化学行为 [J]. , 2017, 17(1): 119-122. |
[8] | 常建霞酒红芳焦红倩张少梅武世梅宋霜. 三维氧化石墨烯-Ag/泡沫镍复合材料的制备及其电化学性能[J]. 过程工程学报, 2016, 16(2): 341-345. |
[9] | 郑璐晋日亚孙友谊马骏. 液相剥离石墨烯的制备及其电化学性能[J]. 过程工程学报, 2016, 16(2): 346-350. |
[10] | 刘强徐瑞东何世伟. 化学镀铜体系的电化学性能[J]. 过程工程学报, 2016, 16(1): 125-131. |
[11] | 周文刘雅兰王长福刘峙嵘. 氯化钆在熔盐LiCl-KCl中的电化学性质[J]. 过程工程学报, 2015, 15(4): 698-702. |
[12] | 王晓春李露杨冬伟王琴施锦. Au和Ag电极上CO2电还原反应的动力学特征对比[J]. , 2014, 14(6): 961-966. |
[13] | 常龙娇罗绍华郭克石吕方齐西伟汪应玲翟玉春. LiNO3-TiO2-尿素体系燃烧合成锂离子电池负极材料Li4Ti5O12及电化学性能[J]. , 2014, 14(5): 886-890. |
[14] | 齐灿灿华一新徐存英李坚张启波李艳. 离子液体电化学窗口的研究进展[J]. , 2014, 14(4): 694-707. |
[15] | 许剑轶胡峰王青春李霞王瑞芬张胤. La-Mg-Ni系贮氢合金相结构及电化学性能[J]. , 2014, 14(2): 335-339. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3092