1. 长安大学环境科学与工程学院,陕西 西安 710054
2. 长安大学旱区地下水文与生态效应教育部重点实验室,陕西 西安 710054
3. 陕西省土地整治重点实验室,陕西 西安 710054
收稿日期:
2017-10-27修回日期:
2017-12-25出版日期:
2018-08-22发布日期:
2018-08-15通讯作者:
李彦鹏基金资助:
能源微藻气浮采收体系中气-液-固三相相互作用的物理化学机制;中央高校基本科研业务费专项;特长隧道内机动车排放PM2.5和NO2的特征及对能见度的影响Novel method of buoy-bead flotation for harvesting micro-algae and its performance
Xiaotong ZOU1, Kaiwei XU1, Hao WEN1, Xiangying REN1, Zhou SHEN1, Yanpeng LI1,2,3*1. School of Environmental Science and Engineering, Chang?an University, Xi'an, Shaanxi 710054, China
2. Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang?an University, Xi'an,
Shaanxi 710054, China
3. Shaanxi Key Laboratory of Land Consolidation, Xi?an, Shaanxi 710054, China
Received:
2017-10-27Revised:
2017-12-25Online:
2018-08-22Published:
2018-08-15Contact:
Yan-Peng LI 摘要/Abstract
摘要: 采用低密度浮珠颗粒代替气泡的无泡采收方法,高效低成本采收能源微藻. 以常见能源微藻小球藻为例,以硅硼酸钠为浮珠,比较了浮珠浮选工艺与传统气浮法的区别,通过响应面法优化了浮珠浮选工艺. 结果表明,以硅硼酸钠为浮珠的无泡采收效果较理想,浮珠颗粒粒径、浓度和搅拌速率对采收率影响显著,颗粒直径56 ?m、浓度0.546 g/L、搅拌速率133 r/min的条件下采收率最好,达83.7%.
引用本文
邹小彤 徐开伟 文豪 任香萤 沈洲 李彦鹏. 能源微藻无泡采收新方法及其性能[J]. 过程工程学报, 2018, 18(4): 872-878.
Xiaotong ZOU Kaiwei XU Hao WEN Xiangying REN Zhou SHEN Yanpeng LI. Novel method of buoy-bead flotation for harvesting micro-algae and its performance[J]. Chin. J. Process Eng., 2018, 18(4): 872-878.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.217377
http://www.jproeng.com/CN/Y2018/V18/I4/872
参考文献
[1]Kerr R A.Do We Have the Energy For the Next Transition?[J].Science, 2010, 329(5993):780-1 [2]夏金兰, 万民熙, 王润民.微藻生物柴油的现状与进展[J].中国生物工程杂志, 2009, 29(7):118-126 [3]Christenson L, Sims R.Production and harvesting of microalgae for wastewater treatment,biofuels,and bioproducts[J].Biotechnology Advances, 2011, 29(6):686-702 [4]Jarvis P, Buckingham P, Holden B, et al.Low energy ballasted flotation[J].Water Research, 2009, 43(14):3427-34 [5] Zhao Y, Li Y P, Huang J, et al.Rebound and attachment involving single bubble and particle in the separation of plastics by froth flotation[J]. Separation & Purification Technology,2015, 144: 123-132.[J]., 2015, 144:123-132 [6]Toh P Y, Ng B W, Ahmad A L, et al.The role of particle-to-cell interactions in dictating nanoparticle aided magnetophoretic separation of microalgal cells[J].Nanoscale, 2014, 6(21):12838-48 [7]Tzikalos N, Belessi V, Lambropoulou D.Photocatalytic degradation of Reactive Red 195 using anatasebrookite TiO2 mesoporous nanoparticles: optimization using response surface methodology (RSM) and kinetics studies[J].Environmental Science & Pollution Research, 2013, 20(4):2305-20 [8]郑洪立, 高振, 黄和.响应面法优化自养小球藻产生物柴油油脂[J].中国生物工程杂志, 2010, 30(8):106-111 [9] 田泱源, 李瑞芳.响应面法在生物过程优化中的应用[J]. 食品工程, 2010, (2): 8-11.[J].食品工程, 2010, (2):8-11 [10] Hao W, Yanpeng L, Zhou S, et al.Surface characteristics of microalgae and their effects on harvesting performance by air flotation[J], 2017.[J].International journal of agricultural and biological engineering, 2017, 10(1):125-133 [11] Garg S, Wang L, Schenk P M.Effective harvesting of low surface-hydrophobicity microalgae by froth flotation[J]. Bioresour Technol, 2014, 159: 437-41.[J].Bioresour Technology, 2014, 159:437-41 [12]Li J, Peng J, Guo S, et al.Application of response surface methodology (RSM) for optimization of sintering process for the preparation of magnesia partially stabilized zirconia (Mg-PSZ) using natural baddeleyite as starting material[J].Ceramics International, 2013, 574(1):504-511 [13]Henderson R, Sharp E, Jarvis P, et al.Identifying the Linkage Between Particle Characteristics and Understanding Coagulation Performance[J].Water Science & Technology Water Supply, 2006, 6(1):31-38 [14]张彬, 谢明勇, 殷军艺.响应面分析法优化超声提取茶多糖工艺的研究[J].食品科学, 2008, 29(9):234-238 [15]Wang Y, Wang S, Guo Y, et al.Oxidative degradation of lurgi coal gasification wastewater: Optimization using response surface methodology[J].Environmental Progress & Sustainable Energy, 2015, 33(4):1258-1265 [16]张宁, 宋刚, 范瑞.用响应面分析法优化胞外多糖的发酵工艺[J].暨南大学学报自然科学与医学版, 2004, 25(5):642-646 [17]Sleiman M, Vildozo D, Ferronato C, et al.Photocatalytic degradation of azo dye Metanil Yellow: Optimization and kinetic modeling using a chemometric approach[J].Applied Catalysis B Environmental, 2007, 77(1):1-11 [18]Coward T, Lee J G M, Caldwell G S.Development of a foam flotation system for harvesting microalgae biomass[J].Algal Research, 2013, 2(2):135-144 |
相关文章 15
[1] | 张逸水 王霜 李法社. 地沟油生物柴油在旋流喷嘴中的雾化实验及模拟[J]. 过程工程学报, 2019, 19(5): 940-948. |
[2] | 晏冬霞 石春艳 吕兴梅 辛加余 王公应. 固定化离子液体高效催化废弃食用油合成生物柴油[J]. 过程工程学报, 2018, 18(S1): 129-137. |
[3] | 张德谨 谢永 李梦玉 徐开兵 吴晶玲 孙欢欢 童家横. 微波辅助玉米油基生物柴油制备及酯化反应动力学[J]. 过程工程学报, 2018, 18(4): 845-850. |
[4] | 李法社李明包桂蓉王华杜威苏成帅王峥. 添加剂对橡胶籽油生物柴油氧化稳定性的改进[J]. , 2014, 14(1): 145-150. |
[5] | 刘祥玉张贵峰张羽飞王平苏志国马光辉张松平. 化学-酶催化法合成基于鱼鳞胶原蛋白的脂肽类表面活性剂及其在提高原油采收率中的应用[J]. , 2013, 13(4): 654-661. |
[6] | 左霜林金清孙亚飞方国阳. SO3H-功能化季铵盐离子液体催化酯交换制备生物柴油[J]. , 2011, 11(1): 153-157. |
[7] | 曾宏李洪明方柏山. 生物柴油超临界甲醇法生产工艺全流程模拟与经济分析[J]. , 2010, 10(6): 1168-1174. |
[8] | 范明李强赵雪冰杜伟刘灿明刘德华. 泡沫分离法回收酶法生产生物柴油中的液体脂肪酶[J]. , 2010, 10(6): 1187-1192. |
[9] | 邢爱华马捷张英皓王垚金涌. 生物柴油全生命周期资源和能源消耗分析[J]. , 2010, 10(2): 314-320. |
[10] | 林喆匡亚莉郭进王章国. 微藻采收技术的进展与展望[J]. , 2009, 9(6): 1242-1248. |
[11] | 孙晋峰任天瑞薛思佳. 固体酸催化麻疯树油酯交换制备生物柴油[J]. , 2008, 8(6): 1167-1172. |
[12] | 杨庆利禹山林秦松. 海滨锦葵油超临界法制备生物柴油工艺优化[J]. , 2008, 8(5): 932-936. |
[13] | 王玉春曾建立. 生化法制备生物能源中的过程调控[J]. , 2008, 8(4): 667-675. |
[14] | 许赟珍欧先金郭妮妮刘德华. 生物柴油副产物甘油的高附加值利用[J]. , 2008, 8(4): 695-702. |
[15] | 侯继贤鲁吉珂聂开立王芳谭天伟. 固定化Candida sp.99-125脂肪酶催化大豆油合成脂肪酸乙酯[J]. , 2008, 8(2): 355-358. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3112