CONTACT FABRIC CHARACTERISTICS OF GRANULAR MATERIALS UNDER THREE DIMENSIONAL STRESS PATHS1)
LiuJiaying*, ZhouWei*,2),, MaGang*, LiYiao*, LiuQiweny *State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan 430072, ChinaGuizhou Survey & Design Research Institute for Water Resources and Hydropower, Guiyang 550002, China 中图分类号:TU43,TV641 文献标识码:A
摘要 颗粒材料的宏观应力变形特征与其微观接触力、组构等紧密相关.一般而言,强接触系统属于颗粒内部体系的传力结构,其对应的组构张量是影响宏观应力性质的重要因素.细观数值方法(如离散单元法)能够反映物理试验的基本规律,并且可以方便地提取宏微观数据来研究颗粒体系的应力变形机制.采用离散单元法(discrete element method,DEM)进行一系列等$p$等$b$应力路径下颗粒材料的真三轴试验,在此基础上研究了三维应力路径下颗粒材料的宏微观力学参数的演化过程、三维组构张量与应力张量多重联系以及强接触体系反映的宏观应力特征.研究表明:颗粒体系偏应力峰值状态和临界状态均存在与加载路径无关的宏微观特征;三维应力路径下组构张量与应力张量存在非共轴性,但其联合不变量演化过程表现出加载路径无关的特征;与弱接触系统的组构张量相比,强接触系统的组构张量更能反映宏观应力张量的特征;强弱接触体系的组构张量对颗粒体系宏观响应的贡献不同,其分界点存在一定取值范围,但采用平均接触力较为简单合理.
关键词:颗粒材料;离散元;三维应力路径;接触组构;强接触体系 Abstract Macroscopic mechanical characteristics of granular materials are closely related to the microscopic contact force and fabric. Generally speaking, the strong contact system contributes to the force transmission of internal granular system, and then its corresponding fabric tensor has important influence on the macroscopic stress. Microscopic numerical methods, such as discrete element method, can reproduce the laboratory tests with reasonable macroscopic responses and extract macro- and micro-data conveniently for investigating the underlying mechanism of the granular system. Based on discrete element method (DEM), a series of true triaxial tests for granular materials under constant $p$ and constant $b$ stress paths are carried out, and the evolutions of macro- and micro-mechanical parameters of granular materials, the multiple relationship between three-dimensional fabric tensor and stress tensor and the macro-stress characteristics reflected by strong contact system are studied. The results demonstrate that some macro- and microscopic parameters at the stress peak and critical state in the granular system are independent on the loading path. Non-coaxiality between fabric tensor and stress tensor is observed under three-dimensional stress path, but the evolution of the joint invariant of the two tensors is independent on the 3D loading path. Compared to fabric tensor of weak contact system, the fabric tensor of strong contact system reflects better the characteristics of macroscopic stress tensor. Fabric tensors of strong and weak contact systems contribute differently to the granular macroscopic response. To divide the strong and weak contact system, there is a range for the threshold, however adopting the average contact force is relatively simple and reasonable.
Keywords:granular materials;DEM;three-dimensional stress path;contact fabric;strong contact system -->0 PDF (3814KB)元数据多维度评价相关文章收藏文章 本文引用格式导出EndNoteRisBibtex收藏本文--> 刘嘉英, 周伟, 马刚, 李易奥, 刘其文. 颗粒材料三维应力路径下的接触组构特性1)[J]. 力学学报, 2019, 51(1): 26-35 https://doi.org/10.6052/0459-1879-18-338 LiuJiaying, ZhouWei, MaGang, LiYiao, LiuQiweny. CONTACT FABRIC CHARACTERISTICS OF GRANULAR MATERIALS UNDER THREE DIMENSIONAL STRESS PATHS1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 26-35 https://doi.org/10.6052/0459-1879-18-338 颗粒材料是一种普遍存在于自然界中的物质,在生产生活方面得到了广泛的应用,如土木水利工程、化学工程、食品加工工程等领域.在水工结构工程中,土石坝中的堆石料、心墙防渗土料、位于坝基的土质覆盖层均是典型的颗粒材料,这类材料的应力变形性质将直接影响工程的安全;而岩土工程中的土质边坡、软土地基与基础、地下工程等都迫切需要土体颗粒材料的稳定性研究.无论是筑坝颗粒类材料、还是覆盖层土料或是边坡土质,从本质上讲都是岩土类摩擦耗散型颗粒材料,属于不连续介质,其宏微观的力学机制在某种程度上是相通的. 对岩土类颗粒材料力学特性的研究,主要通过土力学中土工测试的方法得到土体的强度和变形特性,进而建立合理的本构模型以描述岩土体宏观的连续介质特征.然而粗粒土、砂土等类型的岩土材料属于非关联弹塑性材料,是由大量粒径不等、形状不同的土石颗粒以不同的排列方式堆积而成,颗粒间没有黏聚力,高压下存在颗粒破碎,力学性质看似简单实则复杂,表现出的应力应变关系通常具有非线性、弹塑性、压硬性和剪胀性、应变硬化与应变软化、各向异性以及应力路径相关性等[1- 3].在失稳破坏时,还存在液化、应变局部化等多种模式,涉及分岔与混沌问题[4- 9].因此,若要对这类摩擦性颗粒材料建立一个统一的完备的本构模型,是极具挑\战的. 颗粒材料往往是孔隙和颗粒固体共同构成的复杂体系,从材料内部的微观颗粒和接触到宏观的连续介质,颗粒材料涉及多个层次的结构体系,具有典型的多尺度特征.各个尺度之间相互联系与影响,决定了颗粒材料的宏观力学上的强度和变形等特性.从微观角度出发,探索颗粒材料本质属性,并建立起多重尺度结构之间的合理联系,有利于合理地描述颗粒材料的宏观本构行为.目前由于试验设备的完善及微观观测手段的发展,使对物理试验中材料的微细观结构的演化探究成为可能,如许多****通过光弹试验研究颗粒材料内部的力链结构[10].此外,不连续数值模拟方法得到了广泛应用,如离散单元法(discreteelement method, DEM) [11 -16]、连续-离散耦合分析方法(combined finite and discreteelement method, FDEM) [17-20]. 与有限元方法(finiteelement method, FEM)、有限差分方法(finite difference method,FDM)等不同,这类离散数值方法通过建立微观离散体之间的接触本构关系,并基于一定的运动学定律,对大量微观颗粒构成的集合进行显式计算并统计分析. 颗粒材料宏观上的复杂物理力学性质,是其微观结构的几何、拓扑、力学等统计特征决定的.基于颗粒间接触的组构张量(fabrictensor)自提出以来,已大量应用于岩土类颗粒材料的应力变形分析中:如Rothenburg和Bathurst[21]、Chantawarungal[22]分别推导了二维和三维条件下的应力-接触力-组构(stress-force-fabric)关系;Zhao和 Guo[23]研究了三维条件下颗粒体系内组构张量和应力张量的共轴性.颗粒体系内的接触体系存在强弱之分,一般以平均接触力为界,Radjai等[24-25]针对二维颗粒体系的接触统计特征,研究了强弱接触体系的概率密度分布及其对应力张量的影响.真三轴应力路径能够反映颗粒材料的真实状态.三维应力路径下,颗粒材料的临界状态和剪胀特性有别于轴对称的应力条件[16-17,26- 31].此时颗粒体系的组构、强弱接触体系与宏观响应之间呈现出更复杂的联系[31],需要从微观层面进行更为细致的分析,进而研究三维应力路径下颗粒体系的应力变形机制. 本文将基于颗粒材料真三轴离散元数值试验结果,分析三维应力路径下颗粒材料的宏微观力学响应,并通过组构张量特征及强弱接触体系划分研究,对颗粒体系三维宏微观特征的统一性及强弱接触体系对宏观应力张量的贡献进行深入探讨.
显示原图|下载原图ZIP|生成PPT 图5$\pi $平面内的应力演化过程... -->Fig.5Stress evolution at $\pi $ plane -->
采用不同围压、不同控制方式的真三轴数值试验数据绘制临界状态线(criticalstate line, CSL),如图6所示.可以发现真三轴条件下的宏观临界状态线是唯一的,三维应力路径下宏观临界状态的唯一性已从理论研究[31]、数值试验[23]中得到了证实. 显示原图|下载原图ZIP|生成PPT 图6临界状态线... -->Fig.6Critical state line -->
2.3 微观标量特征
从微观结构考量,分析配位数和接触力的分布特征,如图7和图8所示. 由图7(a)可知,试样在各加载路径下的平均配位数随偏应变的演化规律一致,该细观结构量基本呈现出路径无关的特性;加载过程中,平均配位数出现了骤减,以使试样的接触状态能够适应加载的各向异性;试样达到临界状态后,其配位数基本保持不变.结合图7(b)中配位数的分布情况,可以看出从初始状态到临界状态,配位数的众数发生了左移,试样的平均接触数有所减小.配位数能够在一定程度上反映试样内部的体积变化,配位数越高,则颗粒之间的相互作用更加紧密,因而颗粒周边的孔隙会减小;反之,配位数越低,颗粒周边则更容易产生较大的孔隙结构而产生体积膨胀.因此,从配位数角度来看,颗粒集合体在真三轴应力条件下的临界状态体积应变或是孔隙比与围压的关系是唯一的. 显示原图|下载原图ZIP|生成PPT 图7配位数演化与分布... -->Fig.7Evolution and distribution of coordination number -->
显示原图|下载原图ZIP|生成PPT 图8临界状态接触力特征... -->Fig.8Contact force characteristics at critical state -->
显示原图|下载原图ZIP|生成PPT 图11强接触系统组构与应力张量的联合不变量$K_{strong$的演化过程\\ -->Fig.11Evolution of joint invariant $K_{strong }$(between fabric tensor of strong contact system and stress tensor) -->
3.3 组构偏值及强弱接触体系的划分
偏张量的第二不变量可用来量化组构各向异性,令$a$为组构张量\textbf{$\varPhi$}的偏张量,则其第二不变量计算如下 $$a = \sqrt {\dfrac{3}{2}a:a} \tag12$$ 图12为峰值状态和临界状态条件下组构张量\textbf{$\varPhi$}}的各向异性不变量(anisotropy invariant,即$a)$在$\pi$}平面内的分布情况, 其形状与应力张量在$\pi$}平面内的形状呈相反的趋势,这也进一步说明了组构张量与应力张量的"互补"关系. 显示原图|下载原图ZIP|生成PPT 图12峰值状态与临界状态的组构张量各向异性不变量... -->Fig.12Anisotropy invariants of fabric tensor at $\pi $ plane for stress peak and critical state -->
在前述的分析中,强弱接触体系的划分采用了传统的平均接触力,即$\zeta$=1.为了区分不同阈值划分的强接触系统组构张量的区别,图13给出了不同阈值判定的强接触系统临界状态下$a$值在$\pi$}平面内的分布. 可以看出,不同$\zeta$值对应于不同的形状的临界面,且在$\zeta $为0.8$\sim$1.5时,其形状与应力张量在$\pi$}平面内的分布高度相似(图5). 当$\zeta$$<$0.8时,其形状类似于图13,体系内部存在大量对组构几何特性影响显著的弱接触,因此不能完全体现宏观的应力不变量三维临界状态特征;当$\zeta$$>$1.5时,组构张量的形状趋于畸形,这是由于此时系统内部的接触较少,强接触之间的联系较少,不能形成有效的微观结构来支撑整体的外荷载,尤其是对于三轴拉伸情况,$\zeta$$>$1.5时的$a$值在呈现出凹陷的趋势. 显示原图|下载原图ZIP|生成PPT 图13临界状态下不同强接触系统组构张量偏值在$\pi $平面内的分布... -->Fig.13Deviatoric invariant of fabric tensor for different strong contact systems at $\pi $ plane -->
考虑不同强接触系统组构张量的主值差异,图14为临界状态下不同$\zeta$值对应的强接触系统的$b_{\varPhi }$.除轴对称加载路径外,$b_{\varPhi }$随着$\zeta$的增大而减小,当$\zeta $为1或者略大于1时,$b_{\varPhi}$恰好为宏观应力张量的$b$值.因此,从三维张量主值的差异来看,大多数文献[24,25]中推荐强接触系统采用$\zeta$ = 1的值是合理的.结合本节前述分析,强弱接触系统的分界线可能存在一个取值范围,当0.8$\le \zeta \le$1.5时,组构与应力的共轴性、组构的各向异性等均基本能反映宏观的应力状态,但采用$\zeta$=1来划分强弱接触体系更为简单有效。 显示原图|下载原图ZIP|生成PPT 图14临界状态下$b_{\varPhi }$与$\zeta $的关系... -->Fig.14Relationship between $b_{\varPhi }$ and $\zeta $ at critical state -->
4 结论与展望
本文采用离散元方法,进行了颗粒材料多种应力路径下的真三轴试验,并对等$p$等$b$应力路径的真三轴试验进行了多重的宏微观分析,重点研究了三维应力路径下颗粒体系的组构张量特性和强弱接触系统,具体结论如下: (1)颗粒体系偏应力峰值状态和临界状态下的偏应力在不同的三维应力路径下存在差异,体积应变、临界状态线、配位数分布以及接触力分布等宏微观指标与加载路径无关; (2)三维应力路径下组构张量与应力张量存在非共轴性,但二者的联合不变量在整个三维加载过程中的演化表现出独立于加载路径的一致性; (3)强接触系统的组构张量更能反映宏观应力张量的特征,其主值差异系数、各向异性不变量等张量特征值与应力张量一致;强弱接触体系的组构张量对颗粒体系宏观响应的贡献不同,其分界点存在一定取值范围,但采用平均接触力较为简单合理.本文的研究结论中关于组构张量及强弱接触体系的三维分析得到的初步结论,有助于进一步理解颗粒体系内部的结构特征.在后续的研究中,作者拟从强弱接触体系的组构特征入手,辅以必要的物理试验,从微观层面出发分析模拟颗粒体系的本构行为.此外,颗粒形态对于颗粒体系的力学行为也有不可忽略的影响,本文所得的结论及颗粒体系后续的研究应在不同形态的颗粒体系中进行进一步分析与验证,使颗粒力学相关的体系更为完善. The authors have declared that no competing interests exist.
(HuangMaosong, YaoYangping, YinZhenyu, et al.Progress in the study of elementary mechanical behaviors, constitutive modeling and failure criterion of soils//The 12th National Conference on Soil Mechanics and Geotechnical Engineering of , 2015 (in Chinese)) [本文引用: 1]
[4]
DarveF, LaouafaF.Instabilities in granular materials and application to landslides. Mechanics of Cohesive-frictional , 2000, 5(8): 627-652 [本文引用: 1]
[5]
NicotF, DarveF.A micro-mechanical investigation of bifurcation in granular materials . , 2007, 44(20): 6630-6652URL
[6]
NicotF, DarveF.The H-microdirectional model: Accounting for a mesoscopic scale . , 2011, 43(12): 918-929URL
[7]
SmallM, Walker DM, TordesillasA, et al.Characterizing chaotic dynamics from simulations of large strain behavior of a granular material under biaxial compression . , 2013, 23(1): 013113
[8]
ZhouW, LiuJ, MaG, et al.Macroscopic and microscopic behaviors of granular materials under proportional strain path: A DEM study . , 2016, 40(18): 2450-2467 [本文引用: 1]
(QianJiangu, HuangMaosong.Bifurcation of soils at inception of shear band under axisymmetric conditions . , 2003, 25(4): 400-404 (in Chinese))URL [本文引用: 1]
[10]
DrescherA, JongGDJD.Photoelastic verification of a mechanical model for the flow of a granular material . , 1972, 20(5): 337-340 [本文引用: 2]
(WangYuting.The influence of friction properties on macro-mechanical characteristics of granular materials. [Master Thesis] . , 2017 (in Chinese)) [本文引用: 2]
(QianJinsong, ChenKangwei, ZhangLei.Simulation and micro-mechanics analysis of inherent anisotropy of granular by distinct element method . , 2018, 50(5): 1041-1050 (in Chinese))
(XiongXun, LiTianmi, MaQiqi, et al.Discrete element simulations of the high velocity expension and fragmentation of qartz glass rings . , 2018, 50(3): 622-632 (in Chinese))URL
(ZhouBo, HuangRuiqiu, WangHuabin, et al.Study of evolution of sand crushability based on discrete elements method . 2014, 35(9): 2709-2716 (in Chinese))
(LiuJiaying, MaGang, ZhouWei, et al.Three-dimensional critical state and dilatancy of granular materials based on DEM . , 2017, 48(9): 1107-1117 (in Chinese)) [本文引用: 4]
(ZhouWei, LiuDong, MaGang, et al.Numerical simulation of true triaxial tests on mechanical behaviors of rockfill based on stochastic granule model . , 2012, 34(4): 748-755 (in Chinese))URL [本文引用: 3]
[18]
ZhouW, MaG, ChangX, et al.Influence of particle shape on behavior of rockfill using a three-dimensional deformable DEM . , 2013, 139(12): 1868-1873URL
[19]
MaG, ZhouW, NgTT, et al.Microscopic modeling of the creep behavior of rockfills with a delayed particle breakage model . , 2015, 10(4): 481-496
[20]
MaG, RegueiroRA, ZhouW, et al.Role of particle crushing on particle kinematics and shear banding in granular materials . , 2018(6): 1-18 [本文引用: 1]
[21]
RothenburgL, BathurstRJ.Analytical study of induced anisotropy in idealized granular materials . , 1989, 39(4): 601-614 [本文引用: 1]
[22]
ChantawarangulK.Numerical simulations of three-dimensional granular assemblies. [Ph D Thesis]. University, , 1993 [本文引用: 1]
[23]
ZhaoJ, GuoN.Unique critical state characteristics in granular media considering fabric anisotropy . , 2013, 63(8): 695-704URL [本文引用: 5]
[24]
RadjaiF, JeanM, MoreauJJ, et al.Force Distributions in Dense Two-Dimensional Granular Systems . , 1996, 77(2): 274-277 [本文引用: 3]
[25]
RadjaiF, WolfDE, JeanM, et al.Bimodal character of stress transmission in granular packings . , 1998, 80(1): 61-64 [本文引用: 2]
(ZhangMin, XuChengshun, DuXiuli, et al.True triaxial experimental research on shear behaviors of sand under different intermediate principal stresses and different stress paths . , 2015, 46(9): 1072-1079 (in Chinese))URL [本文引用: 1]
[27]
HuangX, HanleyKJ, O'SullivanC, et al. DEM analysis of the influence of the intermediate stress ratio on the critical-state behaviour of granular materials . , 2014, 16(5): 641-655URL
[28]
MaG, Chang XL, ZhouW, et al.Mechanical response of rockfills in a simulated true triaxial test: A combined FDEM study . , 2014, 7(3): 317-333
[29]
ZhouW, LiuJ, MaG, et al. Three-dimensional DEM investigation of critical state and dilatancy behaviors of granular materials . , 2017, 12(3): 1-14
(BaiBing, ZhouJian.Application and progress of scanning electron microscopy testing technology in geotechnical engineering . , 2001, 20(2): 154-160 (in Chinese)) [本文引用: 1]
[33]
YangJ, YangZX, LiXS.Quantifying and modelling fabric anisotropy of granular soils . , 2008, 58(4): 237-248
[34]
HallSA, BornertM, DesruesJ, et al.Discrete and continuum analysis of localised deformation in sand using X-ray CT and volumetric digital image correlation . , 2010, 60(5): 11-20
(DaiBeibing, YangJun, ZhouCuiying.Numerical study on instability behavior of sand . , 2013, 35(9): 1737-1745 (in Chinese))URL [本文引用: 1]
[39]
SibilleL, HaddaN, NicotF, et al.Granular plasticity, a contribution from discrete mechanics . , 2015, 75: 119-139 [本文引用: 1]
[40]
LathamJP, MunjizaA, GarciaX, et al.Three-dimensional particle shape acquisition and use of shape library for DEM and FEM/DEM simulation . , 2008, 21(11): 797-805URL [本文引用: 1]
[41]
ZhouW, YangL, MaG, et al.Macro-micro responses of crushable granular materials in simulated true triaxial tests . , 2015, 17(4): 497-509
[42]
AlaeiE, MahboubiA.A discrete model for simulating shear strength and deformation behaviour of rockfill material, considering the particle breakage phenomenon . , 2012, 14(6): 707-717URL
[43]
YuanC, ChareyreB, DarveF.Pore-scale simulations of drainage in granular materials: Finite size effects and the representative elementary volume . , 2015, 95: 109-124 [本文引用: 1]
[44]
LadePV, DuncanJM.Elasto-plastic stress-strain theory for cohesionless soil . , 1975, 101(1): 1037-1053 [本文引用: 1]
[45]
MatsuokaH, NakaiT.Relationship among Tresca, Mises, Mohr-Coulomb and Matsuoka-Nakai failure criteria . , 2008, 25(4): 123-128 [本文引用: 1]