关键词:孔与裂隙双重网络模型;微观渗流;多孔介质;微裂隙间隔;驱油效率 Abstract It is of great importance to understand the micro-seepage mechanism of water flooding in dual pore-fracture media, for the improvement of the recovery efficiency. The existence of micro-fractures can on the one hand increase the absolute permeability, on the other hand change the local fluid pressure distribution and flow in the porous media. The fracture flow prevails, the surrounding oil cannot be displaced, reducing the displacement efficiency. In this paper, a pore-fracture network model is used in the analysis, two parallel micro-fractures with equal length are set at the inlet. The effects of the relative interval (micro-fracture gap length/throat length) and the relative length (micro-fracture length/throat length) of the micro-fractures on micro-seepage are investigated. The results show that with the increase in relative length of micro-fractures, the displacement efficiency decreases, while the water saturation at the co-permeable zone and at the intersection of the relative permeability curve increase. With the increase of the relative interval between the two fractures, the pressure of the surrounding pores is approximately equivalent, and the oil displacement will not occur due to the capillary pressure, leading to water channeling and the decrease of the oil recovery.
岩心的孔隙结构一般通过压汞实验、核磁共振实验或者CT实验获取,不同的获取方法获得孔隙结构的精细程度有一定差别,但模拟 捕捉最主要的几何尺度和分布特征,保证在统计规律上是一致的,如图3所示,模拟过程中的喉道半径按照正态分布规律进行赋值. 显示原图|下载原图ZIP|生成PPT 图3近似截断正态分布的喉道半径分布. -->Fig. 3Approximate truncation of normal distribution of throat radius distribution -->
表1和表2给出了计算所采用的参数. 网络孔穴数为30 #x00D7;60=1 800. 喉道长度为300 m;喉道半径服从正态分布,分布范围:0.120 m,均值为10 m,标准差为6 m. 孔穴半径服从20 m30 m的均匀分布. 微裂隙数量为2个, 平行于流动方向, 微裂隙的相对间隔为4和10, 微裂隙等效半径为100 m;网络模型进口端压力为1.5 MPa,出口端压力为1.0 MPa,总的压差为0.5 MPa. 油和水的黏度分别为5 mPas和1 mPas,两相润湿角为30 #x00B0;,界面张力为0.032 N/m. Table 1 表 1 表 1计算所采用的参数 Table 1The parameters used in the calculation
为了探究2.1节中的结果,即微裂隙的相对间隔和相对长度越大,驱替相不能驱替到的面积越大,驱油效率越低. 图5和图6给出了驱替 结束状态对应的油水分布图和孔穴压力分布. 当微裂隙起点位于进口端时,由于微裂隙的存在导致微裂隙末端之前的基质部分孔穴压力差很小,即图5和图6中所示区域I位置, 出现了较多未被驱替的孔穴和喉道. 显示原图|下载原图ZIP|生成PPT 图5(a1)和(b1)分别为微裂隙无量纲间隔为4,微长度为30和50驱替结束情况下的油水分布(其中蓝色表示水相,红色表示油相); (a2)(b2)分别为与(a1)(b1)对应的模型孔穴压力分布,黑色虚线为裂隙末端所在位置. -->Fig. 5(a1) and (b1) respectively shows the oil-water distribution at the end of displacement the relative length of micro-fractures equals 30 and 50 in the case of the relative interval of the micro-fractures equals 4 (The red throats and fractures are filled with oil and the blue throats and fractures are filled with water); (a2) and (b2) are the pore fluid pressure distribution corresponding with (a1) and (b1) (The black dotted line is location of the end of the fracture) -->
显示原图|下载原图ZIP|生成PPT 图6(a1)和(b1)分别为无量纲为微裂隙无量纲间隔为10,微长度为20和40驱替结束情况下的油水分布(其中蓝色表示水相,红色 表示油相);(a2)(b2)分别为与(a1)(b1)对应的模型孔穴压力分布,黑色虚线为裂隙末端所在位置. -->Fig. 6(a1) and (b1) respectively shows the oil-water distribution at the end of displacement the relative length of micro-fractures equals 30 and 50 in the case of the relative interval of the micro-fractures equals 4 (The red throats and fractures are filled with oil and the blue throats and fractures are filled with water); (a2) and (b2) are the pore fluid pressure distribution corresponding with (a1) and (b1) (The black dotted line is location of the end of the fracture) -->
油水两相的相对渗透率是两相驱替模拟的关键参数. 根据驱替过程油水分布和 式(6)得到相对渗透率曲线. 图7给出了微裂隙相 对间隔分别为4和10时,油水两相相对渗透率的变化曲线. 随着微裂隙长度的增加,相对渗透率曲线整体向右推移,即束缚水的饱和度增加,初始油相的绝对饱和度减小. 虽然残余油饱和度减小,根据 式(8),可以得到驱油效率总体 减小. 显示原图|下载原图ZIP|生成PPT 图7油水两相的相对渗透率随裂隙相对长度变化曲线. -->Fig. 7The relative permeability of oil and water changes with the relative length of the fractures -->
以微裂隙间距为4的情况为例,等渗点处的相对渗透率值随着裂隙相对长度的增加近似线性减小,而等渗点处的水饱和度近似线性 增加. 共渗区范围大小取为,则共渗区范围大小随着微裂隙相对长度的增加而减小,如图8所示. 这些结果与图5中的油水分布和孔穴压力分布相对应,说明微裂隙的相对间隔距离越大,越容易导致水窜和绕流现象. 显示原图|下载原图ZIP|生成PPT 图8共渗区参数随微裂隙相对长度变化曲线. -->Fig. 8Curves of co-infiltration parameters with the change of the relative length of micro-fractures -->
3 结 论
针对含孔隙与微裂隙的双重介质,建立了孔隙--微裂隙网络模型,模拟了与驱替方向平行且起点在驱替端的微裂隙对微观渗流过程,分析了微裂隙长度、微裂隙间距对驱油效率、相对渗透率宏观参数的影响,解释了微裂隙引起的绕流、水窜现象的微观机制. 通过数值模拟分析得到如下认识: (1)驱油效率随微裂隙相对长度的增加而减小,微裂隙的相对间隔越大驱替相不能驱替的面积越大,导致驱油效率下降. 主要机制是微裂隙的存在使得周围基质孔穴压力差相近,克服不了毛管压力,导致驱替相绕流孔穴和喉道;随着微裂隙长度和相对间距增加,绕流面积增加,大部分油相不能被驱替. (2)随着微裂隙相对长度增加,束缚水饱和度增加,相对渗透率曲线整体向右偏移;等渗点处的水饱和度增加,而等渗点处的相对渗透率值和共渗区范围大小减小. 随着微裂缝相对长度的增加,双重网络的裂隙起点和末端间网络中的流动主要由微裂隙流动控制,而裂隙末端之后网络中的流动由毛管压力控制,随着微裂隙长度的增加,整个网络中的流动由微裂隙流动为主,出现窜流现象,大大降低驱油效率. The authors have declared that no competing interests exist.
(WuGuogan, FangHui, HanZheng, et al.Growth features of measured oil initially in place & gas initially in place during the 12th Five-Plan and its outlook for the 13th Five-Plan in China .Acta Petrolei Sinica, 2016, 37(9): 1145-1151 (in Chinese)) [本文引用: 1]
(TangXiaomei, ZengLianbo, HeYonghong, et al.Effect of deposition and diagenesis on tectonic fractures of sandstone reservoirs with ultra-low permeability in Jiyuan Oilfield .Journal of Oil and Gas Technology, 2012, 34(4): 21-25 (in Chinese)) [本文引用: 1]
(WuKeliu, LiXiangfang, ChenZhangxing, et al.Gas transport behavior through micro fractures of shale and tight gas reservoirs .Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 955-964 (in Chinese)) [本文引用: 1]
(DaiJinxing, SongYan, DaiChunsen, et al.The Formation Conditions of Inorganic Gas and Gas Reservoir in Eastern China. Beijing: Science Press, 1995 (in Chinese)) [本文引用: 1]
(WangLiansheng, GuoZhanqian, MaZhihong, et al.Geochemistry characters of inorganic natural gas .Journal of Jilin University( Earth Science Edition) , 2004, 34(4): 542-545 (in Chinese)) [本文引用: 1]
(ZouCaineng, TaoShizhen, BaiBin, et al.Differences and relations between unconventional and conventional oil and gas .China Petroleum Exploration, 2015, 20(1): 1-16 (in Chinese)) [本文引用: 1]
(DengLizheng.Features and influential factors of parameters of physical property of reservoir rock under conditions of underground .Journal of Mineralogy and Petrology, 1995(4): 44-50 (in Chinese)) [本文引用: 1]
(HaoChuenshan, LiZhiping, YangManping, et al.Research on deformation mechanism and petrophysical characteristics of deformable media .Journal of Southwest Petroleum Institute, 2003(4): 19-21(in Chinese)) [本文引用: 1]
(YangManping, WangZhengmao, LiZhiping.The influence factors for permeability of deformed media gas reservoir .Natural Gas Geoscience, 2003(5): 386-388 (in Chinese)) [本文引用: 1]
(YangManping.The study of oil-gas reservoir porosity mediums deformation theory and application. [PhD Thesis] . Chengdu: Southwest Petroleum Institute, 2004 (in Chinese)) [本文引用: 1]
(YaoTongyu, HuangYanzhang, LiJishan.Flow regim for shale gas in extra low permeability porous media .Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 990-995 (in Chinese)) [本文引用: 1]
(LiuZhanli, ZhuangZhuo, MengQingguo, et al.Problems and challenges of mechanics in shale gas efficient exploitation .Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 507-516(in Chinese)) [本文引用: 1]
(YeChenglin.Characteristics of natural fractures in Su53 block and their effects on hydraulic fracturing .Natural Gas Technology and Economy, 2016, 10(1): 8-11(in Chinese)) [本文引用: 1]
(NanJunxiang, WangSurong, YaoWeihua, et al.Micro-fractures in extra-low permeability reservoir of Yanchang Formation in Ordos Basin .Lithologic Reservoirs, 2007(4): 40-44 (in Chinese)) [本文引用: 1]
(XueYongchao, ChengLinsong.Experimental study on permeability variation with confining pressure in micro-fracture and low-permeability rock .Petroleum Geology & Experiment, 2007(1): 108-110(in Chinese)) [本文引用: 1]
(ShuWeibing, XuHehua, LiuTangwei, et al.Research on nonsteady shape factor of cross flow in low permeability fractured reserviors .Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 70-77 (in Chinese)) [本文引用: 1]
(WangPing.Development of sandstone reservoir with natural fractures .Acta Petrolei Sinica, 1993(4): 69-75(in Chinese)) [本文引用: 1]
[18]
FatI.The network model of porous media .Petroleum Trans AIME, 1956, 207: 144-181 [本文引用: 1]
[19]
WilkinsonD, WillemsenJF.Invasion percolation: A new form of percolation theory .Journal of Physics A: Mathematical and General, 1983, 16: 3365-3376 [本文引用: 1]
RaoofA, HassanizadehSM.A new method for generating pore-network models of porous media .Transport in Porous Media, 2010, 81(3): 391-407 [本文引用: 1]
[22]
SongR, LiuJ, CuiM.Single-and two-phase flow simulation based on equivalent pore network extracted from micro-CT images of sandstone core .Springer Plus, 2016, 5(1): 1-10 [本文引用: 1]
[23]
SholokhovaY, KimD, LindquistWB.Network flow modeling via lattice-Boltzmann based channel conductance .Advances in Water Resources, 2009, 32(2): 205-212 [本文引用: 1]
[24]
BarenblattG, ZheltovIP, KochinaI.Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks .Journal of Applied Mathematics and Mechanics, 1960, 24: 1286-1303 [本文引用: 1]
[25]
WarrenJ, RootPJ.The behavior of naturally fractured reservoirs .Society of Petroleum Engineering Journal, 1963, 3: 245-255 [本文引用: 1]
[26]
TsakiroglouCD.A multi-scale approach to model two-phase flow in heterogeneous porous media .Transport in Porous Media, 2012, 94: 525-536 [本文引用: 1]
[27]
WangPK, ZhangXH, LuXB, et al.A dual percolation model for predicting the connectivity of fractured porous media .Water Resources, 2016, 43: 95-110 [本文引用: 1]
[28]
LiuHJ, ZhangXH, LuXB, et al.Study on flow in fractured porous media using pore-fracture network modeling .Energies, 2017, 10(12): 1984 [本文引用: 2]
[29]
KimJG, DeoMD.Finite element, discrete-fracture model for multiphase flow in porous media .AIChE J, 2000, 46: 1120-1130 [本文引用: 1]
[30]
TangCA, ZhangYB, LiangZZ, et al.Fracture spacing in layered materials and pattern transition from parallel to polygonal fractures .Physical Review E, 2006, 73(5): 056120 [本文引用: 1]
[31]
DahleHK, CeliaMA.A dynamic network model for two-phase immiscible flow .Computers & Geosciences, 1999, 3: 1-22 [本文引用: 1]