MESO-MECHANICALLY INFORMED MACROSCOPIC CHARACTERIZATION OF DAMAGE-HEALING-PLASTICITY FOR GRANULAR MATERIALS
WangZenghui, LiXikui The State Key Laboratory of Structure Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China 中图分类号:O345 文献标识码:A
关键词:颗粒材料;梯度加强Cosserat连续体;离散颗粒集合体;二阶计算均匀化;各向损伤--愈合与塑性表征;热动力学 Abstract The multiscale characterization of coupled damage-healing and plasticity for granular materials is presented in the frame of second-order computation homogenization. The structure composed of granular materials is modeled as Cosserat continuum at the macroscale. The representation volume element (RVE) possessing the meso-structure of discrete particle assembly is assigned at each of the integration points of the finite element mesh generated in the macroscopic continuum. The incremental non-linear constitutive relation for the discrete particle assembly of RVE is established. The incremental forces and couple moments applied to the peripheral particles on the boundary of the RVE from the medium outside the RVE are expressed in terms of the incremental translational and rotational displacements of peripheral particles of the RVE, the elastic stiffness of the current deformed meso-structural RVE, and the incremental dissipative frictional forces condensed to the peripheral particles of the RVE. Based on the average field theory and the Hill’s lemma, meso-mechanically informed macroscopic incremental nonlinear constitutive relation is derived for the gradient-enhanced Cosserat continuum. The tensorial damage, healing factors, and the tensorial net damage factor combining the effects of both the damage and the healing and the plastic strain to characterize anisotropic damage-healing and plasticity of granular materials are defined in the isothermal thermodynamic framework. In addition, densities of damage and plastic dissipative energies, the density of healing energy are defined so that the damage, the healing and the plastic effects on the failure of granular material are quantitatively comparable. The results of the example problem of strain localization demonstrate validity of the proposed method for characterizing the damage-healing-plasticity occurring in granular materials.
Keywords:granular materials;gradient-enhanced Cosserate continuum;discrete granular aggregate;second-order computation homogenization;characterization of anisotropic damage-healing and plasticity;thermodynamics -->0 PDF (17140KB)元数据多维度评价相关文章收藏文章 本文引用格式导出EndNoteRisBibtex收藏本文--> 王增会, 李锡夔. 基于介观力学信息的颗粒材料损伤--愈合与塑性宏观表征[J]. 力学学报, 2018, 50(2): 284-296 https://doi.org/10.6052/0459-1879-17-362 WangZenghui, LiXikui. MESO-MECHANICALLY INFORMED MACROSCOPIC CHARACTERIZATION OF DAMAGE-HEALING-PLASTICITY FOR GRANULAR MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 284-296 https://doi.org/10.6052/0459-1879-17-362
平板压缩算例,如图2(a)所示. 忽略重力效应,因为满足对称性条件,数值模拟仅对1/4平板进行,如图2(b)所示,其中 m,被划分成 有限元网格. 方板与刚性板之间假设为理性粘结,使得方板上边界节点水平和垂直方向自由度分别施加于有限元分析 的边界条件如图1(b)所示. 显示原图|下载原图ZIP|生成PPT 图2方板压缩问题 -->Fig. 2Compression problem of a square panel -->
有限元网格中,每一个积分点处配置一个初始构形相同的表征元. 3种具有相同规则介观结构,但具有不同尺寸的表征元, 分别命名为RVE40, RVE60, RVE84,如图3所示,被用于考察表征元尺寸对宏观塑性--损伤--愈合效应表征的影响. 每一个表征元尺寸是 ,含 个颗粒,每个颗粒半径为0.02 m. 颗粒材料性质数据参见文献[39]. 文献[12]详细讨论了二阶计算均匀化方法下所构造混合有限元的收敛性以及不需要宏观唯象本构与破坏模型,可以模拟颗粒 材料失效与捕捉应变局部化现象. 显示原图|下载原图ZIP|生成PPT 图3相同介观结构但不同尺寸的表征元 -->Fig. 3Three samples of RVE with different RVE sizes but the same regular configuration -->
显示原图|下载原图ZIP|生成PPT 图5RVE40加载结束耗散能与愈合能密度分布(N/m) -->Fig. 5Contours of density of dissipative and healing energy distribution in the square panel at the end of the load history obtained by RVE40 (N/m) -->
显示原图|下载原图ZIP|生成PPT 图6RVE60加载结束耗散能与愈合能密度分布(N/m) -->Fig. 6Contours of density of dissipative and healing energy distribution in the square panel at the end of the load history obtained by RVE60 (N/m) -->
显示原图|下载原图ZIP|生成PPT 图7RVE84加载结束耗散能与愈合能密度分布(N/m) -->Fig. 7Contours of density of dissipative and healing energy distribution in the square panel at the end of the load history obtained by RVE84 (N/m) -->
图8所示为采用RVE40, RVE60, RVE84等3种具有相同介观结构而不同尺寸表征元样本的方板全域随加载过程的塑性总耗散能、 净损伤总耗散能与塑性--净损伤总耗散能的演变曲线. 可以看到,当采用RVE40样本时,导致结构失效的总净损伤耗散能远小于总塑性耗散能;当采用RVE60样本时,总净损伤耗散 能尚小于总塑性耗散能,但已较接近;而在采用RVE84样本的情况下,总净损伤耗散能与总塑性耗散能基本持平. 从这一方面看,表征元的大小对表征结果是有影响的. 另一方面,图9所示为分别采用RVE40, RVE60和RVE84三种样本情况下方板的塑性--净损伤总耗散能随加载过程 的演变曲线比较. 从图9可以看出,3条曲线比较接近,特别是在软化后直至加载结束这一后软化阶段的总耗散能曲线重合很好. 从这一方面看,表征结果并不病态地依赖于表征元尺寸. 图4显示,分别采用RVE40, RVE60和RVE84三种样本情况下方板的外力耗散功十分接近,表明本文多尺度表征工作所基于的协同(concurrent)二阶计算 均匀化过程的颗粒材料结构多尺度模拟[11,12]结果的可靠性,也即多尺度模拟结果不应病态地依赖于表征元的(窗口)尺寸. 图9所给出的多尺度表征结果与图4显示的多尺度模拟结果比较,验证了本文工作在数值误差意义上近似满足了结构的外力 耗散功模拟结果应等于结构的内耗散能表征结果这一基本要求,表明了本文提出的基于一致二阶计算均匀化过程的颗粒材料 塑性--损伤--愈合多尺度表征方法的有 效性. 显示原图|下载原图ZIP|生成PPT 图8由所有积分点处耗散能密度累计的方板塑性、净损伤和总耗散能随加载过程的演化 -->Fig. 8Evolutions of accumulated net damage, plasticity and total dissipative energies added up from those associated to all integration points of the square panel with increasing prescribed vertical displacement -->
显示原图|下载原图ZIP|生成PPT 图9由所有积分点处耗散能密度累计的方板总耗散能随加载过程的演化 -->Fig. 9Evolution of accumulated total dissipative energies added up from those associated to all integration points of the square panel with increasing prescribed vertical displacement -->
5 结论
颗粒材料在宏观和介观尺度分别模型化为梯度增强Cosserat连续体和离散颗粒集合体. 本文基于颗粒材料力学行为的协同二阶计算均匀化模拟,对具有离散颗粒介观结构的表征元建立了等价梯度增强Cosserat连续体的增量非线性本构关系. 在颗粒材料热动力学理论框架下,定义了基于介观结构与介观力学响应的塑性应变以及各向异性损伤、愈合因子张量和综合了各向异性损伤、愈合效应的净损伤因子张量,提出了以净损伤和塑性耗散能(标量)表示的多尺度表征方法. 应变局部化的数值例题结果显示了所提出表征方法的有效性. The authors have declared that no competing interests exist.
Alonso-marroquinF. Static equation of the Cosserat continuum derived from intra-granular stress ., 2011, 13(3): 189-196 [本文引用: 1]
[2]
ChangCS, KuhnMR.On virtual work and stress in granular media ., 2005, 42(13): 3773-3793 [本文引用: 1]
[3]
D’AddettaGA, RammE. A particle center based homogenization strategy for granular assemblies ., 2004, 21(2-3-4): 360-383 [本文引用: 1]
[4]
Li XK LiuQP, ZhangJB. A micro-macro homogenization approach for discrete particle assembly Cosserate continuum modeling of granular materials ., 2010, 47(2): 291-303 [本文引用: 2]
[5]
EhlersW, RammE, DiebelsS, et al.From particle ensembles to Cosserat continua: Homogenization of contact forces towards stresses and couple stresses ., 2003, 40(24): 6681-6702 [本文引用: 1]
[6]
KruytNP.Statics and kinematics of discrete Cosserat-type granular materials ., 2003, 40(3): 511-534 [本文引用: 1]
(TangBingtao.Prediction of forming limit of boron steel at elevated temperatrue based on CDM theory ., 2016, 48(1): 146-153 (in Chinese)) [本文引用: 1]
[16]
ChabocheJL.Continuum damage mechanics: Part I: General concept, Part II damage growth, crack initiation and crack growth ., 1988, 55(3): 59-71 [本文引用: 1]
[17]
ChowCL, WangJ.An anisotropic theory of elasticity for continuum damage mechanics ., 1987, 33(1): 3-16 [本文引用: 1]
(ChenJie, LiuJianxing, JiangDeyi, et al.An experimental study of strain and damage recovery of salt rock under confining pressures ., 2016, 37(1): 105-112 (in Chinese)) [本文引用: 1]
[26]
BarberoEJ, GrecoF, LonettiP.Continuum damage-healing mechanics with application to self-healing composites ., 2005, 14(1): 51-81 [本文引用: 2]
[27]
VoyiadjisGZ, ShojaeiA, LiG.A thermodynamic consistent damage and healing model for self healing materials ., 2011, 27(7): 1025-1044 [本文引用: 1]
[28]
VoyiadjisGZ, ShojaeiA, LiGQ, et al.Continuum damage-healing mechanics with introduction to new healing variables ., 2012, 21(3): 391-419 [本文引用: 1]
[29]
VoyiadjisGZ and KattanPI. Healing and super healing in continuum damage mechanics ., 2014, 23(2): 245-260 [本文引用: 1]
(FuYunwei, NiXinhua, LiuXiequan, et al.Micro-damage model of composite materials with particle and defect interaction ., 2016, 48(6): 1334-1342 (in Chinese)) [本文引用: 1]
(GuoHongbao, WangBo, JiaPurong, et al.Mesoscopic damage behaviors of plain woven ceramic composite under in-plane shear loading ., 2016, 48(2): 361-368 (in Chinese)) [本文引用: 1]
[38]
LiXK, DuYY, DuanQL, et al.Thermodynamic framework for damage-healing-plasticity of granular materials and net damage variable, , 2016, 25(2): 153-177 [本文引用: 2]
[39]
LiXK, WangZH, Liang, YB et al. Mixed FEM-crushable DEM nested scheme in second-order computational homogenization for granular materials ., 2016, 16(5): C4016004 [本文引用: 1]