删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

气候变化与多维度可持续城市化

本站小编 Free考研考试/2021-12-29

陈明星,1,2, 先乐1,2, 王朋岭3,4, 丁子津11.中国科学院地理科学与资源研究所 中国科学院可持续发展分析与模拟重点实验室,北京 100101
2.中国科学院大学资源与环境学院,北京 100049
3.中国气象局国家气候中心,北京 100081
4.兰州区域气候中心,兰州 730020

Climate change and multi-dimensional sustainable urbanization

CHEN Mingxing,1,2, XIAN Yue1,2, WANG Pengling3,4, DING Zijin11. Key Laboratory of Regional Sustainable Development Modeling, CAS, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
2. College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
3. National Climate Center, China Meteorological Administration, Beijing 100081, China
4. Lanzhou Regional Climate Center, Lanzhou 730020, China

收稿日期:2020-06-20修回日期:2021-07-8
基金资助:国家自然科学基金项目(41822104)
国家自然科学基金项目(42042027)
中国科学院基础前沿科学研究计划从0到1原始创新项目(ZDBS-LY-DQC005)
中国科学院战略性先导专项(XDA23100301)
中国科学院青年创新促进会会员人才专项(CAS2017072)


Received:2020-06-20Revised:2021-07-8
Fund supported: National Natural Science Foundation of China(41822104)
National Natural Science Foundation of China(42042027)
The Chinese Academy of Sciences Basic Frontier Science Research Program from 0 to 1 Original Innovation Project(ZDBS-LY-DQC005)
The Strategic Priority Research Program of the Chinese Academy of Sciences(XDA23100301)
Youth Innovation Promotion Association of the Chinese Academy of Sciences(CAS2017072)

作者简介 About authors
陈明星(1982-), 男, 安徽巢湖人, 博士, 研究员, 主要从事城镇化与区域发展研究。E-mail: chenmx@igsnrr.ac.cn






摘要
全球大规模城市化和气候变化已是不争的事实,这是全人类需要共同面对和关注的突出问题。当前对于两者之间的复杂关系以及城市化进程如何科学应对气候变化并不清晰,从科学、管理到实践都需要进一步加强探究,以实现全球和区域可持续发展。本文首先给出全球大规模城市化和气候变化发生的基本事实,综述归纳城市化与气候变化的相互影响以及可能机制,城市化导致热岛效应、降水分配不均以及极端天气,并具有局地—区域—全球多尺度叠加效应,加剧了全球气候变化问题;气候变化对城市化的影响主要表现为能源消费变化、死亡率与传染病传播、海平面上升、极端天气对基础设施的破坏、水资源短缺等方面。简要梳理相关的国际研究和行动联盟,从城市化的4个关键维度:人口、土地、经济和社会视角出发,提出适应与减缓气候变化的多维度可持续城市化的分析框架。呼吁加强自然与人文学科交叉,将城市化等人类活动纳入地—气系统,探究人—地—气复杂耦合过程,从城市化为代表的人类活动角度的适应与减缓,或许是应对气候变化的最关键和最现实的路径。
关键词: 可持续城市化;全球变化;交互作用;人—地—气耦合;适应与减缓

Abstract
It is disputable that global large-scale urbanization and climate change has become an outstanding issue, which requires the common concern of mankind. However, it is not yet clear what is the complex relationship between urbanization and climate change and how to scientifically deal with climate change in the process of urbanization. Further exploration from science and management to practice are needed in order to achieve global and regional sustainable development. This paper first displayed the basic facts of mass urbanization and climate change and summarized interactions and possible mechanisms of urbanization and climate change. Urbanization leads to heat island effect, uneven precipitation distribution and extreme weather, together with local-regional-global multi-scale superposition effect, which aggravates global climate change. The impact of climate change on urbanization is mainly manifested in the aspects such as changes of energy consumption, mortality and the spread of infectious diseases, sea level rise, extreme weather damage to infrastructure and water shortage. This paper also briefly reviewed relevant international research and joint actions, and put forward an analysis framework of multidimensional sustainable urbanization adapting to and mitigating climate change, from the perspective of key dimensions of urbanization, namely, population, land use, economy and society. We call on to strengthen the interdisciplinary research of science and humanities, take urbanization and other human activities into consideration of the land - atmosphere system, and explore the human-land-atmosphere coupling process. The adaptation and mitigation from the perspective of human activities represented by urbanization might be the most critical and realistic way to deal with climate change.
Keywords:sustainable urbanization;global change;interaction;human-land-atmosphere coupling;land-atmosphere coupling;adaptation and mitigation


PDF (2176KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
陈明星, 先乐, 王朋岭, 丁子津. 气候变化与多维度可持续城市化. 地理学报, 2021, 76(8): 1895-1909 doi:10.11821/dlxb202108006
CHEN Mingxing, XIAN Yue, WANG Pengling, DING Zijin. Climate change and multi-dimensional sustainable urbanization. Acta Geographica Sinice, 2021, 76(8): 1895-1909 doi:10.11821/dlxb202108006


1 引言

大量事实证明以全球大规模城市化进程为代表的人类活动是气候变化的重要驱动因素。城市人口快速增长、土地利用改变以及大量化石能源开发利用等人类活动,促进经济社会的快速发展,也导致一系列气候系统的变化。一些研究表明气候变化在某些区域一定程度上会产生减少供暖需求和对热能的依赖[3],提高部分地区农业作物产量[4],促进植物生长和生物圈活动增加[5]等积极影响。但更多研究和事实证明,气候变化给未来人类生存与可持续发展带来巨大风险和挑战。城市化过程中大量化石能源利用,导致全球3/4的温室气体排放,直接影响气候变化进程及其未来变化趋势。城市化可对局地气候产生强烈影响,如热岛效应[6,7,8,9],降水空间分配不均[10,11]和洪水、风暴等极端天气频发[12,13,14]。同时,城市已经集聚了全世界一半以上人口,是人类经济社会活动的主要承载体,受气候变化影响大[15]。气候变化对城市化的影响主要表现为能源消耗变化[16,17]、死亡率提高与传染病传播[18,19,20]、沿海及海岛城市安全[21,22,23]、基础设施破坏[24,25]和水资源短缺问题[26,27]。全球气候变化与人类活动相互作用是制约典型城市群地区未来可持续发展的重要瓶颈[28]

国际社会为应对气候变化的巨大挑战,早在1988年成立了政府间气候变化专门委员会(Intergovernmental Panel on Climate Change, IPCC),主要开展气候相关影响、适应、减缓和脆弱性等问题的科学研究。随后,多个跨区域多中心网络组织相继建立,如地方政府可持续发展理事会(1990年),C40城市气候领导小组(2005年)和100韧性城市(2013年)等[29]。2015年《巴黎协定》达成,推动各国节能减排措施执行,以大幅减少气候变化影响和风险。目前,适应与减缓为国际应对气候变化的两大策略。适应一般被描述为自然或人类系统对新环境或变化中的环境做出的调整[30]。减缓定义为减少温室气体排放或进入大气的行动或方法[31]。以往关于气候变化的城市问题和应对措施研究局限于某一领域,例如基于适应策略的城市排水系统设计[32,33,34]、绿色空间规划[35,36]、绿色基础设施应用[37,38,39]、城市治理方式[40]、减少气象灾害风险和危害[41]等;基于缓解策略的低能耗建筑[42,43]、冷屋顶和绿屋顶等新技术运用[44,45,46,47]、可替代能源开发和能源结构调整[48,49,50]等。在城市脆弱性、暴露度、社会适应力、风险和危害等多个方面叠加,产生协同作用和效果,将适应与减缓相结合的系统性方法才能实现长期的可持续发展目标。目前,总体上看,研究主要集中在工程技术、气象与气候学、建筑、能源等某一领域相对独立地进行,着重从地—气系统的变化事实、相互作用关系及其驱动机制阐释。对于人类城市化过程、地球表层变化、气候变化系统的协同相互关系解析仍然不足。从城市化为代表的人类活动角度的适应与减缓,或许是应对气候变化的最关键和最现实路径。更加充分认识大规模城市化进程的影响,从地—气耦合转向人—地—气耦合是未来一个阶段研究的趋势与方向。如何深入推动粗放型城市化向“以人为本”新型城市化转型[51],从过去对气候变化影响较大、不可持续的城市化向对气候变化影响较小的可持续城市化转型,减少气象灾害风险和危害、减缓气候变暖、提高城市社会适应力、降低城市脆弱性和暴露度等,亟待从自然科学与人文社会科学交叉多学科视角来增进认识。基于此,本文首先简要给出全球大规模城市化和气候变化的事实,综述归纳了城市化与气候变化的相互影响机制以及交互关系,建构适应与减缓气候变化的多维度可持续城市化分析框架,为实现全球和区域可持续发展目标提供科学基础和可能的路径选择。

2 全球大规模城市化和气候变化的事实

近几十年,全球经历着大规模、快速发展城市化进程,而且主要发生在发展中国家和地区。据2018年联合国城市化发展展望显示,目前全世界55%人口居住在城镇地区,并预计到2050年这个比例将达到68%[1]。亚洲和非洲虽然城市化率较低,分别为50%、43%,但城镇人口增长迅速。世界城镇人口从1950年7.51亿快速增长至2018年42亿,其中近90%城镇人口增长发生在亚洲和非洲(图1)。撒哈拉以南非洲、东亚、西亚、拉丁美洲以及加勒比地区等欠发达地区城市化速度比发达国家城市化的历史趋势更快。其中,东亚地区经历最快的城市化,1950—2015年的65年间,城市人口比例从18%增长至60%[1]。按现有速度增长,预计到2050年,中等收入国家将形成230座新的城市[52]。研究结果显示,2018年全球人居环境不透水表面达到797076 km²,是1990年的1.5倍,期间亚洲人居环境不透水面增长近3倍,为全球增长最快大洲[53]

图1

新窗口打开|下载原图ZIP|生成PPT
图11950—2050年世界城市与乡村人口变化和世界各地区城市人口随时间变化

注:据联合国人口司数据[1]绘制。
Fig. 1Urban and rural population in the world and urban population by region, 1950-2050



自人类进入工业化社会以来,极端天气频发、海洋变暖、冰川冰盖融化、海平面上升等一系列问题引发国际社会对全球气候变化的关注。根据IPCC第五次评估报告,1880—2012年全球平均陆地和海洋表面温度升高了0.85 ℃,全球气候变化是毋庸置疑的事实,并且气候系统变暖趋势将持续。2015—2019年是由完整气象观测记录以来最暖的5年,全球平均温度较工业化前时期高出1.1 °C;2019年7月欧洲多地遭受高温热浪侵袭成为现代气象观测史上最热的月份(图2)。1971—2010年在全球范围内海洋上层75 m海水每10年升温0.11 °C。同时,气候变暖导致陆地冰川和两极冰盖强烈融化,1993—2009年全球陆地冰川平均损失速率达275 Gt/年。至2011年全球大气主要温室气体二氧化碳(CO2)、甲烷(CH4)和氧化亚氮(N2O)的浓度较1750年分别上升40%、150%和20%,达到至少过去80万年以来前所未有的水平。由于冰川冰盖消融和海水热膨胀等因素,1901—2010年间全球平均海平面上升了0.19 m。自19世纪中叶以来,海平面上升的速度高于过去2000年来的平均速度,严重威胁世界上诸多沿海地区和低海拔岛屿[54]。由于气候变化将深刻影响人类社会经济和自然系统,气候行动成为联合国可持续发展目标(SDGs)中的关键目标之一。

图2

新窗口打开|下载原图ZIP|生成PPT
图22019年7月全球温度距平(相对于1951—1980年)

注:基于自然资源部标准地图服务网站GS(2020)4395号标准地图制作,底图边界无修改;数据来源NASA[2]
Fig. 2Global temperature anomalies in July, 2019 (vs 1951-1980)



3 城市化与气候变化的交互影响

3.1 城市化对气候变化的影响

3.1.1 对温度的影响 城市化导致热岛效应对局部地区升温作用显著。大量研究表明,城市地区经历了比非城市地区更强烈的变暖趋势[55]。即使在人口不足1万的小城镇也能检测到热岛效应[7]。研究表明,城市热岛的局部升温作用与城市建筑几何形状、土地覆盖、不透水表面、人为热、植被和水覆盖面积减少等相关[6, 56-57]。土地城市化导致城市地表反照率降低,粗糙度提高,使得城市在白天吸收更多短波辐射。这些吸收热量在夜晚逐渐释放,导致闷热夜晚的发生[58]。在太阳辐射较强情况下,城市化会诱发极端热浪天气的发生[8]。不合理的城市布局可能阻碍城镇空气流动,导致热量疏散减慢[59]。城市人口规模扩大导致从交通出行、住宅能耗、人体新陈代谢等各种来源产生的人为热增加,导致地表能量盈余[60]

3.1.2 对降水的影响 城市化导致降水空间分布的局部改变,尤其是增加了城市下风区降水。Li等通过对北京城市化进程中气候变化趋势分析,发现自20世纪70年代以来北京降水较多区域从城西转到东北部[10]。大量研究发现,城市化导致城市下风区降水增加[11]。Huff等检测圣路易斯、芝加哥、休斯顿、华盛顿等8座城市地区降水变化,发现其夏季降水最大值增加7%~19%,且主要发生在中心城区下风处16~56 km位置[12]。城市表面粗糙度的增加,有利于上升气流的大气辐合作用增强,促进降水[61]。而大量不透水地表,降低城市蒸发量,抑制降水。同时,工业排放增加气溶胶负荷,使大气稳定性提升,从而减少降水[8]

3.1.3 对极端天气的影响 城市化导致了高温热浪、暴雨、冰雹等极端天气和强对流天气明显增多、增强[13]。Huff等发现城市化导致美国中西部圣路易斯及周围地区暴雨最大值增加13%~47%,冰雹最大值增加90%~350%[12]。Kong等利用1961—2010年6—8月中国544个气象站点的日降水数据,得出中国城市化使得全国范围内极端降水阈值提升1.68%[14]。同时,由于大量不透水地表,使得地表径流时间缩短,径流峰值大于排水系统阈值,导致城市内涝甚至洪水等事件频发。由于人地关系紧张,不少河流三角洲地区的城市占用大面积洪涝缓冲区甚至湖泊、河道,使得城市在相同降水条件下遭受到更大的洪涝灾害[62]。地表径流短时间内将大量污染物带入河流或下渗进入地下水系统,导致水质恶化与水中溶解氧浓度降低[63]。研究估计,自20世纪50年代以来,温室气体排放和快速城市化带来的城市热岛增强等人为因素导致华东地区夏季极端高温事件频率增加60倍以上[64]。Wang等研究发现城市化使得京津冀地区热浪的平均温度提升约0.6 ℃[65]

3.1.4 对局地—区域—全球多尺度气候变化影响 城市化不仅能引起局地和区域气候变化(城市热岛、极端天气等),其排放的温室气体及大气污染物通过大气环流影响全球气候变化[15, 57]。自18世纪50年以来,尽管城市仅占地表面积0.4%~0.9%,却承担了世界上3/4能量消耗和温室气体排放,是全球气候变暖的重要原因。城市化进程中化石燃料燃烧以及汽车尾气排放导致大气氮氧化物浓度超高。Chase等模拟得出,区域内土地利用变化并不局限于当地,可能引起全球气候连锁反应[66]。城市化可以直接引起局地/区域气候变化,也能通过影响全球气候间接作用于局地/区域气候变化,产生尺度叠加效应(图3)。

图3

新窗口打开|下载原图ZIP|生成PPT
图3城市化对气候变化的多尺度叠加效应

Fig. 3The multiscale superposition effect of urbanization on climate change



3.2 气候变化对城市化的影响

气候变化主要通过全球变暖、海平面上升、极端事件、降水重新分配对城市化产生影响。其影响主要表现为5个方面:能源消耗变化、健康与传染病传播、沿海及海岛城市安全、基础设施破坏和水资源短缺等问题(图4)。并且随着气候变化幅度的增强,这种影响并非是线性增长关系,而可能随之呈现出非线性的快速增加。

图4

新窗口打开|下载原图ZIP|生成PPT
图4城市化与气候变化的关系

Fig. 4The interaction between urbanization and climate change



3.2.1 全球变暖改变能源消耗 升温改变人们住宅能耗季节性需求。经预测,温度升高1~5 ℃,中、高纬度地区和建筑供暖所需能源将减少,但用于城市室内制冷能源将显著增加,例如,由于空调大量使用,到2080年7月雅典能源需求将增加30%[17];至2050伦敦办公大楼预计增加10%能源消耗用于制冷,到2080年,将增加20%[16]。长三角地区年均气温上升1 ℃,将使纺织业的空调能耗增加10%[67]。此外,温度升高会降低热能发电能力,高温也会降低输电能力,造成更多能源损耗。

3.2.2 气候变化与人类健康 全球变暖和极端气候事件直接(热浪或者提高死亡率)或间接(传染病蔓延、病毒存活率等)影响人的身体和心理健康。研究表明,强热浪导致患有心血管或脑血管疾病老人的高死亡率,引发夏季死亡率的继发性高峰[18]。高温还会增加空气中臭氧和其他污染物的含量,从而加剧心血管和呼吸系统疾病[20]。Kovats等通过建模分析热浪对大伦敦地区住院率的影响,观察到在21.5 ℃基础上,每增加1 ℃,死亡率增加3.3%[68]。气候条件严重影响水媒疾病、蚊媒传染病(如登革热、罗斯河病毒疾病)、食源性传染病(包括由沙门氏菌、弯曲杆菌和许多其他微生物导致)和通过其他冷血动物传播的疾病[19]。气候变化使人畜共患寄生虫活动范围扩大,提高寄生虫病患病率[69]。城市化和相关的城市土地扩张使夏季热指数增加75%,降低城市居民生活舒适度[70]

3.2.3 沿海及海岛城市安全 海平面上升威胁沿海及海岛城市安全。数据表明,人口超过500万的城市中,约65%位于低海拔的沿海地带[71]。超过50%的世界人口居住在低洼地区,潜在容易受到海平面上升的影响[72]。海平面上升的直接影响包括洪水泛滥、海岸侵蚀、暴风潮、咸潮、沿海水位上升和排水不畅通,造成建筑和基础设施破坏、土地流失等灾害。间接影响包括底层沉积物分布的变化、沿海生态系统结构和功能的变化以及对休闲活动的影响[23]。据计算,至2030年长三角的海堤至少需要加高1~1.5 m,一旦溃堤整个上海市、太湖流域和南通、嘉兴将全部淹没[67]

3.2.4 极端天气气候事件破坏基础设施 洪水、暴风雨等极端天气使城镇遭受财产损失和人员伤亡,也对基础设施、工业生产、废物污水处理系统和其他公用设施造成极大破坏[24]。气候变化使水循环加速、极端降水增多,从而直接影响地表径流和洪水频率及强度[73]。由于大面积不透水地表以及排水系统能力有限,城市更容易遭受内涝、洪水等灾害[25]。考虑到人口和经济集聚,全球大都市、城市群等地区,风险显著提高。2010年长三角地区江苏和浙江受洪涝灾害面积共达773万hm2,绝收面积达22.6万hm2;2013年,浙江省因台风“菲特”造成直接经济损失达124.05亿元[28]。此外,与极端天气相关的自然灾害还包括飓风、山体滑坡、泥石流等,对城镇地区产生更大危害[74]

3.2.5 水质恶化与水资源短缺 气候变化影响地球淡水资源可获得性和水质,导致一些地区缺水情况更加严峻。通过改变降水模式、升温使蒸发增强等,有些地区变得潮湿,有些地区会变得干燥,特别是干旱与半干旱地区,淡水资源更易受到气候变化影响。气候变化造成12.6%干旱区沙漠化,影响2.13亿人口,其中有90%的人口位于发展中国家[75]。而城镇人口迅速增长以及大规模工业化极大加重水资源短缺问题[27, 76]。研究表明,每升温1 ℃,全球范围内受水资源减少影响人口将增加7%[77]。此外,强降水事件使得大量污染物通过更高的径流和渗透,污染河流和地下水系统,导致城市用水水质下降。

4 适应和减缓气候变化的多维度可持续城市化调控

4.1 国际上可持续城市化相关的研究和行动联盟

1987年布伦特兰报告提出了可持续发展概念,即既满足当代人需求,又不对后代人满足其自身需求的能力构成危害,从社会、经济、环境3个维度维护人类福祉。针对城市可持续发展所面临难题,全球已有200多个多尺度跨区域的城市网络成立,打破了静态且孤立的科学、实践和政策格局,促进利益相关者跨越城市治理、知识创新与城市行动等系统边界的交流,表1列举了许多杰出示例[29]。这些网络可分为研究类合作(如IPCC、城市气候变化研究网络)和行动类合作(如C40城市气候领导小组)。前者提供城市对适应与缓解决策的科学依据,后者提供城市间点对点学习的机构。这些网络加强了科学—实践者—决策者互动,为可持续城市化转型创造有力条件[78]。2012年“未来地球”计划被正式提出,通过建立跨越自然、人文、社会和工程等学科领域的全球研究网络,实现全球的可持续发展[79]。跨学科、跨领域、跨地域的合作联合是解决人类可持续发展问题的大势所趋。

Tab. 1
表1
表1多尺度跨区域的城市合作网络示例(引自文献[29],有修改)
Tab. 1Examples of cross-regional urban cooperation network at different scales
多尺度网络核心领域关键举措
联合国可持续发展目标SDGs全球综合性可持续发展目标2030议程
政府间气候变化专门委员会
(IPCC)
全球气候变化的科学、技术和社会经济信息评估综合与专题评估报告
未来地球计划跨自然、人文、工程等学科领域的全球研究网络,可持续发展解决途径科学计划,未来地球计划中国国家委员会等分区推进
100韧性城市城市行动,韧性措施,当地领导,全球影响100韧性城市网络
C40城市气候领导小组气候适应,减缓措施,空气质量,能源和建筑,食物,水资源与浪费,交通与城市规划期限2020
城市联盟全球南方城市,城市贫民窟,城市与可持续发展创新议程
城市转型联盟经济学,政策选项,金融资助城市转型
全球气候与能源市长公约数据,金融,创新应对气候变化创新4城
地方可持续发展协会(ICLEI)低排放,基于自然,循环的,具有韧性的,公平的和以人为本的发展路径塔拉诺阿对话,100%可再生能源城市和区域网络
大都市城市外交和大都市倡议,城市治理能力大都市城市创新,大都市天文台
世界城市和地方联合组织
(UCLG)
大都市地区,中等城市,地区,当地可持续发展目标学习UCLG
城市气候变化研究网络具体到城市气候变化需求的城市气候变化问题的科学评估(如城市热岛效应、空气质量、城市设计)城市气候变化评估(ARC3)
城市知识行动网络城市科学与政策和实践连接,合作设计可持续的城市未来建造能力城市和气候变化科学会议,自然和城市中心评估,
区域网络
非洲中心城市召集人和知识中心节点驱动基于实证的政策对非洲的影响城市实验议程,NOTRUC措施,MOVE议程
加拿大城市联盟代表所有加拿大城市的组织者,召集人和市政出资人气候创新市政局
城市抵御极端天气可持续性研究网络将城市科学与政策,规划和管理连接通过与当地或区域利益相关者合作设计的韧性城市的建造能力

新窗口打开|下载CSV

4.2 多维度可持续城市化

4.2.1 从地—气耦合到人—地—气耦合 1864年George的著作《人和自然》首次关注人对全球变化作用。2000年诺贝尔奖得主Crutzen提出“人类世”的概念,人类活动在全球过程的多个方面扮演重要角色,引发科学界对人类活动的广泛关注[80]。2009年国际地层委员会成立人类世工作组(Anthropocene Working Group, AWG)展开对是否将“人类世”纳入地质时间尺度的研究。期间,人们发现能区别于其他地质层的人类活动特征,包括黑炭、塑料、混凝土以及239+240Pu沉积等新标志[81]。人类活动正使全球生物多样性发生地理变化,且对海洋生物多样性变化最为强烈和多变[82]。虽然对于人类世能否正式使用,学界仍在探讨,但将人类活动作为全球变化的重要驱动因素,分析框架从地—气耦合到人—地—气耦合的转变至关重要。近年来,不少自然科学关注到人类活动过程的重要性,但对复杂的人类活动缺乏全面的理解和分析。而从事人类活动研究的社会学科往往对人类影响的全球变化未有高度重视和关注[83]。因此将人类活动作为全球和区域气候变化的关键因素,推动学科融合,引入人文视角,从过去地—气耦合系统研究转向人—地—气耦合系统,能在全球变化问题上获得更加全面的科学认识。大规模城市化是人类活动的集中体现,千万规模人口的大城市、城市群和城市连绵带等的出现也是人类世的主要特征之一。地理视角的城市化是人类生产生活方式从农村向城市的变化过程及其空间上的演变过程,包括人口城乡结构、土地覆被、生产方式和社会适应等。城市化和城市能否可持续在未来全球和区域适应和减缓气候变化及可持续发展中发挥着至关重要作用。

4.2.2 多维度可持续城市化调控 城市化是地理学关键科学问题之一,其内涵丰富,不仅包括人口城乡过程,也包括土地利用变化、经济非农化与社会领域城市化等综合变化过程[84]。从适应和减缓气候变化角度来看,对城市化多维过程进行解构,从人口、土地、经济与社会等分别采取科学应对措施以促进可持续城市化,实现适应和减缓气候变化与推动全球可持续发展目标的实现(图5)。

图5

新窗口打开|下载原图ZIP|生成PPT
图5应对气候变化的多维度可持续城市化

Fig. 5Multidimensional sustainable urbanization adapting to and mitigating climate change



(1)人口维度:人口空间适度均衡与基础设施。人口空间适度均衡可以缓解超大城市的环境压力,提高城市应对气候变化的适应力。研究表明,大规模人口产生的人为热加剧城市热岛效应。人口向大城市集中的空间分布比空间均衡分布有更高的城市平均热岛强度[85]。世界上一半以上的超大城市或城市群都分布在沿海地区,且越来越多人口向这些地区集聚[71],增加城市的暴露度、脆弱性和气候变化风险。关注中等城市发展,实现人口空间适度均衡发展,可减小城市对气候的影响以及降低城市的气候变化风险水平。

人口空间适度均衡不是人口空间分布均等,而是与城市资源和环境承载力结合的相对概念。研究发现,当城市具有较低失业率与较好的基础设施条件时,人口规模与气候变化适应力负相关关系不显著[86]。由于人口快速涌入,城市弱势群体(如农民工、低收入人群等)只能挤在地价低、风险高的边缘地带,基础设施和公共服务薄弱,则更易遭受气候变化影响[87]。因此建设应对气候变化的基础设施,有利于改善城市弱势群体居住环境,显著减少城市暴露度和脆弱性,减少城市风险[15]

适应和减缓气候变化的基础设施建设和改造包括可持续水管理系统和新型建筑等。由于气候变化不确定性,传统排水系统难以应对暴雨、洪水等极端天气[88,89]。目前,国内外已有对可持续水管理系统的试验和研究,其原理主要为:利用绿/蓝色空间、渗透过滤带、蓄水措施以及防洪建筑等模拟自然水循环,提高城市土地渗透和蒸发速率,从而减少地表径流与河流污染物负荷,如美国低影响开发(LID)[32]、欧盟的可持续排水系统(SUDs)[34]以及中国的海绵城市[90]等。Özerol等认为应该建立适应气候变化的水管理框架,分为水敏感社区和网络、集水区和生态服务,建立评估指数,便于监测管理[91]

利用新材料、新技术改造建筑墙体、屋顶、道路等新型基础设施将有效缓解城市热岛效应[47, 92]。Santamouris研究发现绿屋顶和冷屋顶使城镇反照率上升0.1,预计能使平均温度降低率分别在0.3~3 K和0.1~0.33 K[45]。冷屋顶可以使以制冷为主的典型住宅每年节省约170~700 kw·h能耗,使办公建筑每年节省约500~1000 kw·h能耗[46]。高热容的蓄热材料(如PCMs)和光伏技术(PV)等可以减少向环境释放的热量,减缓升温[44]。密封芯片、彩色混泥土、草料混泥土和排水透水路面等辅路材料,也能减缓城市对局地气候的影响[46]

(2)土地维度:紧凑城市、土地利用集约与蓝/绿色空间布局。紧凑城市具有相对较高的密度、混合土地利用、高强度开发利用、通过完善的公共交通系统紧密连结的特点[93],使城市居民减少长距离交通使用,节省出行能源消耗。在有效交通和基础设施的位置和路线上扩展住宅区,激励人们更多使用公共交通。对于处于快速发展阶段的城市,紧凑的城市发展可以促进更高的人口密度,适当的土地利用规划,减少基础设施投入,保护绿色空间和生态环境承载力,抑制城市热岛[48]。其次,紧凑的空间布局有利于减少住宅和服务建筑耗能,节省基础设施投入。Wende等研究发现紧凑和高体积的建筑形状比低体积的建筑更节能,如相同住户数,带状排屋的能源需求仅为独栋住宅的56%左右[42]

土地集约利用是城市要素合理布局,实现土地产出效率最高以及资源的最佳利用[94]。城市扩展过程中应遵循“精明增长”,集约利用土地资源,增强土地利用强度,充分利用地上地下立体空间,避免城市粗放式的无序蔓延。对于超大城市或部分大城市,在原城市中心近邻建设紧凑的新城区,将有效降低城市平均热岛强度[85];同时,也能避免重复基础建设造成的资源浪费以及长距离交通导致较高能耗、高污染。中等规模城市具有更大的可塑性,较小路径依赖的影响,更便于紧凑的城市设计与土地集约利用。

城市绿/蓝色空间包括公园、绿道、私家花园、绿色屋顶、湖泊、河流等。大量研究表明,城市绿/蓝色空间具有调节气候,降低城市温度,减少城市碳排放,增加社区可居住性,有利于城市生态系统生物多样性等综合作用[41, 95]。绿/蓝色空间通过提供遮阳和增加蒸发蒸腾降低空气和地表温度[39]。研究证实,绿地地表温度显著低于住宅、工厂建筑及铺有路面的建成区等其他地表覆盖类型[95,96],但绿化区域的降温范围大概在几百米范围内,且其冷空气流动会受到拥挤的交通或高层建筑阻碍[36]。利用绿/蓝色空间建设城市风道,有利于城市空气流通和热量疏散。此外,城市绿化可以储存CO2,减少城市碳排放。例如,在莱斯特城市植被中储存碳总量达31.6 t/hm2 [97]。Chen[38]研究了中国35个主要城市绿色基础设施的碳汇作用,得出平均碳汇强度为21.34 t/hm2,2010年平均年固碳率为2.16 t/hm2。城市绿地和绿屋顶还能减缓径流流速[98],截留雨水,增加土壤的渗透和蓄水能力,减少地表径流中的污染负荷,从而大大改善城市排水系统[41, 99]

(3)经济维度:低碳经济与创新驱动经济。城市经济发展依赖能源生产和消费。传统工业的化石燃料燃烧是温室气体主要来源,是导致全球变暖的主要因素。2003年英国政府在《我们的未来:创建低碳经济》白皮书中提出低碳经济的发展模式。通过能源结构调整、产业结构创新、节能减排技术提高等,实现低消费、低污染和低排放。

采用多样化能源结构,低碳能源或无碳能源逐步替代传统化石能源,建立可持续的能源体系[49]。化石能源中煤炭单位热值最高,减少煤炭在能源消耗比重,提高石油和天然气替代技术,对煤炭进行低碳化和无碳化处理,有效降低碳排放。目前,国家政策在提高能效和可再生能源比例上发挥巨大作用,如《能源发展战略行动计划(2014—2020)》(中国)、《2020气候和能源一揽子计划》(欧盟)、《清洁能源计划》(美国)等[100]。研究表明,价格和基于市场的政策更有利于技术研发和创新,促使企业提高能源利用率,降低工业能源强度。以市场为基础的政策包括征收碳税碳排放许可交易、产品低碳标识等,如美国的二氧化硫市场和欧盟的碳排放交易体系[101]

工业制造业、交通运输业和建筑业需要消耗大量能源,而第三产业碳足迹最低[102]。调整产业结构,发展创新驱动经济,减少经济增长对重化工业的依赖,降低产业能源强度,同时增加就业机会。

(4)社会维度:绿色社区。绿色社区包括绿色交通出行、降低居住能耗、适度消费等绿色生活方式和观念,达到低能耗、低排放的目的。

绿色交通出行:以人为本的绿色交通设计与城市规划,采用以步行、自行车、公共交通为主的多模式交通网络,较为汽车设计的城市结构更激励人们绿色出行[103]。过度铺设城市道路具有“交通诱导”作用,形成对汽车的依赖,从而刺激城市道路的进一步扩展[49]。此外,通过无私车日、限制停车位、增加公共交通等强制政策措施可以实现短期交通排放的下降,如巴黎、米兰、成都、布鲁塞尔、哥本哈根等[104]。但强制减少机动车使用会加大居民出行不便,产生新的不平等问题。因此,可持续城市化需要建立多模式人性化的交通体系,提高公共交通的可达性和便利性,满足人口流动需求。

低能耗建筑:目前许多国家和地区已建立建筑能源消耗标准,如美国ASHRAE标准、欧盟接近零能耗建筑(nZEB)。低能耗建筑技术包括使用节能建筑材料,提高住宅隔热性能,智能中央空调控制系统(HVAC),热电一体化系统,自然通风等[42-43, 46]。设计综合智能能源系统将降低30%~40%的能源消耗和温室气体排放[105]。据估计,以中国北方为例,每新建5亿m2的建筑面积中10%居住建筑达到被动式低能耗标准,则北方地区每年可节约一次能源约85亿kw·h,可减少CO2排放283万t。

适度消费:通过宣传教育,提高社会可持续发展意识,将奢侈消费方式转向适度消费,如减少“一次性”消费、光盘行动、处理闲置物品、选择低碳产品等。过度消费增加资源的压力、产生过多生活垃圾以及增加制造生产中能源消耗。提倡绿色出行,减少对汽车依赖,将有效降低个人碳足迹[102]

5 结论与讨论

(1)已有大量研究证明全球大规模城市化与气候变化的科学事实,解决适应与减缓气候变化的问题迫在眉睫。以城市化为代表的人类活动是气候变化的重要驱动因素,将城市化过程纳入地气系统耦合过程,建立人—地—气系统耦合分析框架,更好的理解气候变化过程与未来趋势,以更好地科学应对气候变化。

(2)城市化与气候变化之间存在着复杂的交互作用与尺度效应。城市化主要通过化石能源消耗、地表下垫面改变等,导致了热岛效应、降水空间分配不均与极端天气频发,并通过尺度叠加效应,导致气候变暖与区域空气污染。气候变化主要通过全球/区域升温、海平面上升、极端事件、水资源对城市化产生影响,主要表现为能源消耗变化、健康与传染病传播、沿海及海岛城市安全、基础设施破坏和水资源短缺问题。

(3)可持续城市化是人类社会应对气候变化的必然选择,以人地关系协调为前提,充分认识可持续城市化内涵,可从人口、土地、经济和社会4个关键维度,建构具有气候韧性的可持续城市化分析框架。人口空间均衡与基础设施建设和改造,紧凑城市、土地利用集约与绿/蓝空间布局,发展低碳经济与创新驱动经济,建设绿色社区与低能耗建设,倡导适度消费等可持续的社会观念等是实现气候韧性城市与人类可持续发展目标的路径选择。

从总体上看,当前对城市化与气候变化两者关系的认识和理解仍处于探索阶段,对城市化与气候变化交互作用关键机制、局地—区域—全球多尺度效应、人—地—气耦合过程与复杂界面过程等关键科学问题的认知很不充分。而适应和减缓气候变化、推动可持续发展目标实现的需求又十分紧迫,如何建立人地气耦合系统分析范式和视角,通过多维度可持续城市化来适应和减缓气候变化提供了可能,亟待开展跨学科的深入探究。应对气候变化需要自然和人文的学科交叉,以及科学—政策—实践的紧密合作。地理学具有综合性和交叉性的学科优势,与气候、水文、人口、城市、经济、社会等学科高度关联,有利于探索气候变化与可持续城市化问题的综合解决方案[106,107]

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

UN. World Urbanization Prospects: The 2018 Revision
2018-05-16. https://www.un.org/development/desa/publications/2018-revision-of-world-urbanization-prospects.html.

URL [本文引用: 3]

NASA GISS. GISTEMP version 4 Database
2019-06-14. https://data.giss.nasa.gov/gistemp/.

URL [本文引用: 1]

Yalew S G van Vliet M T H, Gernaat D E H J,, et al. Impacts of climate change on energy systems in global and regional scenarios
Nature Energy, 2020, 5(10):794-802.

DOI:10.1038/s41560-020-0664-zURL [本文引用: 1]

Wu D R, Wang P J, Jiang C Y, et al. Measured phenology response of unchanged crop varieties to long-term historical climate change
International Journal of Plant Production, 2019, 13(1):47-58.

DOI:10.1007/s42106-018-0033-zURL [本文引用: 1]

Peñuelas J, Filella I. Responses to a warming world
Science, 2001, 294(5543):793-795.

PMID:11679652 [本文引用: 1]

Oke T R. City size and the urban heat island
Atmospheric Environment (1967), 1973, 7(8):769-779.

DOI:10.1016/0004-6981(73)90140-6URL [本文引用: 2]

Karl T R, Diaz H F, Kukla G. Urbanization: Its detection and effect in the United States climate record
Journal of Climate, 1988, 1(11):1099-1123.

DOI:10.1175/1520-0442(1988)001<1099:UIDAEI>2.0.CO;2URL [本文引用: 2]

Zhong S, Qian Y, Zhao C, et al. Urbanization-induced urban heat island and aerosol effects on climate extremes in the Yangtze River Delta region of China
Atmospheric Chemistry and Physics, 2017, 17(8):5439-5457.

DOI:10.5194/acp-17-5439-2017URL [本文引用: 3]

Peng Shaolin, Zhou Kai, Ye Youhua, et al. Research progress in urban heat island
Ecology and Environment, 2005, 14(4):574-579.

[本文引用: 1]

[ 彭少麟, 周凯, 叶有华, . 城市热岛效应研究进展
生态环境, 2005, 14(4):574-579.]

[本文引用: 1]

Li Shuyan, Chen Hongbin, Li Wei. The impact of urbanization on city climate of Beijing region
Plateau Meteorology, 2008, 27(5):1102-1110.

[本文引用: 2]

[ 李书严, 陈洪滨, 李伟. 城市化对北京地区气候的影响
高原气象, 2008, 27(5):1102-1110.]

[本文引用: 2]

Shepherd J M, Burian S J. Detection of urban-induced rainfall anomalies in a major coastal city
Earth Interactions, 2003, 7(4):1-17.

[本文引用: 2]

Huff F A, Changnon S A Jr. Climatological assessment of urban effects on precipitation at St. Louis
Journal of Applied Meteorology, 1972, 11(5):823-842.

DOI:10.1175/1520-0450(1972)011<0823:CAOUEO>2.0.CO;2URL [本文引用: 3]

Jauregui E, Romales E. Urban effects on convective precipitation in Mexico City
Atmospheric Environment, 1996, 30(20):3383-3389.

DOI:10.1016/1352-2310(96)00041-6URL [本文引用: 2]

Kong Feng, Wang Yifei, Fang Jian, et al. Spatial pattern of summer extreme precipitation and its response to urbanization in China (1961-2010)
Resources and Environment in the Yangtze Basin, 2018, 27(5):996-1010.

[本文引用: 2]

[ 孔锋, 王一飞, 方建, . 中国夏季极端降水空间格局及其对城市化的响应(1961—2010)
长江流域资源与环境, 2018, 27(5):996-1010.]

[本文引用: 2]

Zhai Panmao, Yuan Yufeng, Yu Rong, et al. Climate change and sustainable development for cities
Chinese Science Bulletin, 2019, 64(19):1995-2001.

[本文引用: 3]

[ 翟盘茂, 袁宇锋, 余荣, . 气候变化和城市可持续发展
科学通报, 2019, 64(19):1995-2001.]

[本文引用: 3]

LCCP. London's Warming: The Impacts of Climate Change on London
2002-11-02. http://climatelondon.org/publications/londons-warming/.

URL [本文引用: 2]

Giannakopoulos C, Psiloglou B E. Trends in energy load demand for Athens, Greece: Weather and non-weather related factors
Climate Research, 2006, 31:97-108.

DOI:10.3354/cr031097URL [本文引用: 2]

Alcoforado M J, Marques D, Garcia R A C, et al. Weather and climate versus mortality in Lisbon (Portugal) since the 19th Century
Applied Geography, 2015, 57:133-141.

DOI:10.1016/j.apgeog.2014.12.017URL [本文引用: 2]

Wu X X, Lu Y M, Zhou S, et al. Impact of climate change on human infectious diseases: Empirical evidence and human adaptation
Environment International, 2016, 86:14-23.

DOI:10.1016/j.envint.2015.09.007URL [本文引用: 2]

Paz S, Negev M, Clermont A, et al. Health aspects of climate change in cities with Mediterranean climate, and local adaptation plans
International Journal of Environmental Research and Public Health, 2016, 13(4):438.

DOI:10.3390/ijerph13040438URL [本文引用: 2]

de Sherbinin A, Schiller A, Pulsipher A. The vulnerability of global cities to climate hazards
Environment and Urbanization, 2007, 19(1):39-64.

DOI:10.1177/0956247807076725URL [本文引用: 1]

Takagi H, Thao N, Anh L. Sea-level rise and land subsidence: Impacts on flood projections for the Mekong Delta's largest city
Sustainability, 2016, 8(9):959. DOI: 10.3390/su8090959.

URL [本文引用: 1]

Hunt A, Watkiss P. Climate change impacts and adaptation in cities: A review of the literature
Climatic Change, 2011, 104(1):13-49.

DOI:10.1007/s10584-010-9975-6URL [本文引用: 2]

Kirshen P, Knee K, Ruth M. Climate change and coastal flooding in Metro Boston: Impacts and adaptation strategies
Climatic Change, 2008, 90(4):453-473.

DOI:10.1007/s10584-008-9398-9URL [本文引用: 2]

Huong H T L, Pathirana A. Urbanization and climate change impacts on future urban flooding in Can Tho city, Vietnam
Hydrology and Earth System Sciences, 2013, 17(1):379.

DOI:10.5194/hess-17-379-2013URL [本文引用: 2]

Milly P C, Dunne K A, Vecchia A V. Global pattern of trends in streamflow and water availability in a changing climate
Nature, 2005, 438(7066):347-350.

DOI:10.1038/nature04312URL [本文引用: 1]

Kummu M, Ward P J, de Moel H, et al. Is physical water scarcity a new phenomenon? Global assessment of water shortage over the last two millennia
Environmental Research Letters, 2010, 5(3):034006. DOI: 1.1088/1748-9326/5/3/034006.

URL [本文引用: 2]

Zhu Cheng, Jiang Fengqing, Wu Li, et al. On the problems of urbanization in the Yangtze River Delta under the background of global change
Acta Geographica Sinica, 2017, 72(4):633-645.

DOI:10.11821/dlxb201704006 [本文引用: 2]
Urbanization is an inevitable way for China's modernization and the long-term national policy making of sustainable economic development. In the context of global change, some scientific issues, such as the influences of climate change on the development of urbanization, the response mechanism and adaptation model to the climate change in the rapidly urbanized region and the strategies for sustainable development of urbanization, have not been responded. Thus, this paper analyzes the scientific problems of urbanization in the Yangtze River Delta, a rapidly urbanized region in China, under the background of the global change. Firstly, we briefly review the progress of the research on the response of urbanization to the global change, and then based on the relevant research results we aim to focus on some problems in the urbanization in the Yangtze River Delta under the background of global change. Furthermore, from the perspective of environmental archaeology we mainly discuss the evolution of the relationship between regional climate change and urbanization development in the Yangtze River Delta. We analyze the impacts of global warming, extreme climate and human activities on the development of urbanization in the Yangtze River Delta based on the historical data of disasters and environmental problems. We think that, in the process of urbanization, the human and economic geography research should be strengthened. Finally, some priority research areas related to urbanization in this delta region are suggested.
[ 朱诚, 姜逢清, 吴立, . 对全球变化背景下长三角地区城镇化发展科学问题的思考
地理学报, 2017, 72(4):633-645.]

[本文引用: 2]

Bai X M, Colbert M, McPhearson T, et al. Networking urban science, policy and practice for sustainability
Current Opinion in Environmental Sustainability, 2019, 39:114-122.

DOI:10.1016/j.cosust.2019.08.002URL [本文引用: 3]

IPCC. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the IPCC. Cambridge: Cambridge University Press, 2007: 2-22.
[本文引用: 1]

IPCC. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014: 1113-1114.
[本文引用: 1]

Eckart K, McPhee Z, Bolisetti T. Performance and implementation of low impact development: A review
Science of the Total Environment, 2017, 607:413-432.

[本文引用: 2]

Xia J, Zhang Y Y, Xiong L H, et al. Opportunities and challenges of the Sponge City construction related to urban water issues in China
Science China Earth Sciences, 2017, 60(4):652-658.

DOI:10.1007/s11430-016-0111-8URL [本文引用: 1]

Gimenez-Maranges M, Breuste J, Hof A. Sustainable Drainage Systems for transitioning to sustainable urban flood management in the European Union: A review
Journal of Cleaner Production, 2020, 255:120191. DOI: 10.1016/j.jclepro.2020.120191.

URL [本文引用: 2]

Maimaitiyiming M, Ghulam A, Tiyip T, et al. Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation
ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 89:59-66.

DOI:10.1016/j.isprsjprs.2013.12.010URL [本文引用: 1]

Hamada S, Ohta T. Seasonal variations in the cooling effect of urban green areas on surrounding urban areas
Urban Forestry & Urban Greening, 2010, 9(1):15-24.

[本文引用: 2]

Derkzen M L, van Teeffelen A J A, Verburg P H. Green infrastructure for urban climate adaptation: How do residents' views on climate impacts and green infrastructure shape adaptation preferences?
Landscape and Urban Planning, 2017, 157:106-130.

DOI:10.1016/j.landurbplan.2016.05.027URL [本文引用: 1]

Chen W Y. The role of urban green infrastructure in offsetting carbon emissions in 35 major Chinese cities: A nationwide estimate
Cities, 2015, 44:112-120.

DOI:10.1016/j.cities.2015.01.005URL [本文引用: 2]

Demuzere M, Orru K, Heidrich O, et al. Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure
Journal of Environmental Management, 2014, 146:107-115.

DOI:S0301-4797(14)00374-0PMID:25163601 [本文引用: 2]
In order to develop climate resilient urban areas and reduce emissions, several opportunities exist starting from conscious planning and design of green (and blue) spaces in these landscapes. Green urban infrastructure has been regarded as beneficial, e.g. by balancing water flows, providing thermal comfort. This article explores the existing evidence on the contribution of green spaces to climate change mitigation and adaptation services. We suggest a framework of ecosystem services for systematizing the evidence on the provision of bio-physical benefits (e.g. CO2 sequestration) as well as social and psychological benefits (e.g. improved health) that enable coping with (adaptation) or reducing the adverse effects (mitigation) of climate change. The multi-functional and multi-scale nature of green urban infrastructure complicates the categorization of services and benefits, since in reality the interactions between various benefits are manifold and appear on different scales. We will show the relevance of the benefits from green urban infrastructures on three spatial scales (i.e. city, neighborhood and site specific scales). We will further report on co-benefits and trade-offs between the various services indicating that a benefit could in turn be detrimental in relation to other functions. The manuscript identifies avenues for further research on the role of green urban infrastructure, in different types of cities, climates and social contexts. Our systematic understanding of the bio-physical and social processes defining various services allows targeting stressors that may hamper the provision of green urban infrastructure services in individual behavior as well as in wider planning and environmental management in urban areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

Broto V C, Boyd E, Ensor J. Participatory urban planning for climate change adaptation in coastal cities: Lessons from a pilot experience in Maputo, Mozambique
Current Opinion in Environmental Sustainability, 2015, 13:11-18.

DOI:10.1016/j.cosust.2014.12.005URL [本文引用: 1]

Zimmermann E, Bracalenti L, Piacentini R, et al. Urban flood risk reduction by increasing green areas for adaptation to climate change
Procedia Engineering, 2016, 161:2241-2246.

DOI:10.1016/j.proeng.2016.08.822URL [本文引用: 3]

Wende W, Huelsmann W, Marty M, et al. Climate protection and compact urban structures in spatial planning and local construction plans in Germany
Land Use Policy, 2010, 27(3):864-868.

DOI:10.1016/j.landusepol.2009.11.005URL [本文引用: 3]

Lim J, Yun G. Cooling energy implications of occupant factor in buildings under climate change
Sustainability, 2017, 9(11):2039. DOI: 10.3390/su9112039.

URL [本文引用: 2]

van Bijsterveld W T, Houben L J M, Scarpas A, et al. Using pavement as solar collector: Effect on pavement temperature and structural response
Transportation Research Record: Journal of the Transportation Research Board, 2001, 1778(1):140-148.

[本文引用: 2]

Santamouris M. Cooling the cities: A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments
Solar Energy, 2014, 103:682-703.

DOI:10.1016/j.solener.2012.07.003URL [本文引用: 2]

Akbari H, Matthews H D. Global cooling updates: Reflective roofs and pavements
Energy and Buildings, 2012, 55:2-6.

DOI:10.1016/j.enbuild.2012.02.055URL [本文引用: 4]

Qi J D, He B J, Wang M, et al. Do grey infrastructures always elevate urban temperature? No, utilizing grey infrastructures to mitigate urban heat island effects
Sustainable Cities and Society, 2019, 46:101392. DOI: 10.1016/j.scs.2018.12.020.

URL [本文引用: 2]

Creutzig F, Baiocchi G, Bierkandt R, et al. Global typology of urban energy use and potentials for an urbanization mitigation wedge
PNAS, 2015, 112(20):6283-6288.

DOI:10.1073/pnas.1315545112PMID:25583508 [本文引用: 2]
The aggregate potential for urban mitigation of global climate change is insufficiently understood. Our analysis, using a dataset of 274 cities representing all city sizes and regions worldwide, demonstrates that economic activity, transport costs, geographic factors, and urban form explain 37% of urban direct energy use and 88% of urban transport energy use. If current trends in urban expansion continue, urban energy use will increase more than threefold, from 240 EJ in 2005 to 730 EJ in 2050. Our model shows that urban planning and transport policies can limit the future increase in urban energy use to 540 EJ in 2050 and contribute to mitigating climate change. However, effective policies for reducing urban greenhouse gas emissions differ with city type. The results show that, for affluent and mature cities, higher gasoline prices combined with compact urban form can result in savings in both residential and transport energy use. In contrast, for developing-country cities with emerging or nascent infrastructures, compact urban form, and transport planning can encourage higher population densities and subsequently avoid lock-in of high carbon emission patterns for travel. The results underscore a significant potential urbanization wedge for reducing energy use in rapidly urbanizing Asia, Africa, and the Middle East.

Wang B, Wang Q, Wei Y M, et al. Role of renewable energy in China's energy security and climate change mitigation: An index decomposition analysis
Renewable and Sustainable Energy Reviews, 2018, 90:187-194.

DOI:10.1016/j.rser.2018.03.012URL [本文引用: 3]

Paszkowski Z W, Golebiewski J I. The renewable energy city within the city. The climate change oriented urban design-Szczecin Green Island
Energy Procedia, 2017, 115:423-430.

DOI:10.1016/j.egypro.2017.05.039URL [本文引用: 1]

Chen Mingxing, Ye Chao, Lu Dadao, et al. Cognition and construction of the theoretical connotation for new-type urbanization with Chinese characteristics
Acta Geographica Sinica, 2019, 74(4):633-647.

DOI:10.11821/dlxb201904002 [本文引用: 1]
Since the reform and opening up, China's rapid urbanization has boosted the development of economy and society, but it is also confronted with tremendous challenges. The multidisciplinary research has promoted the issue of National New-type Urbanization Planning, which indicates the transformation of China's urbanization strategy. Further research, however, is needed to explore the theoretical construction of China's new-type urbanization. The paper summarizes the development process of China's urbanization and points out its characteristics, which includes peri-urbanization, special national conditions, complicated factors and governance system. China's urbanization makes a great contribution to the world. Moreover, the literature demonstrates the significance of urbanization to the discipline of human and economic geography and the scientific connotations of new-type urbanization, which refers to peiple-oriented, harmonious, inclusive and sustainable. Under the background of the humanism transformation, new-type urbanization should transform from population urbanization to people-oriented urbanization. There are six crucial scientific issues: people-oriented urbanization and equalization of basic public services, urbanization with integrated and coordinated development of urban and rural, urbanization in the context of resources and environment carrying capability and climate change, diverse regional modes, spatial effect and mechanism, as well as big data and innovation of technical methods. The paper makes efforts to illustrate a framework of China's new-type urbanization connotation, which provides references for theoretical research and policy formulation.
[ 陈明星, 叶超, 陆大道, . 中国特色新型城镇化理论内涵的认知与建构
地理学报, 2019, 74(4):633-647.]

[本文引用: 1]

UNDP. Sustainable Urbanization Strategy: UNDP's support to sustainable, inclusive and resilient cities in the developing world
New York: UNDP, 2016: 1-11.

[本文引用: 1]

Gong P, Li X C, Wang J, et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018
Remote Sensing of Environment, 2020, 236:111510. DOI: 10.1016/j.rse.2019.111510.

URL [本文引用: 1]

IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014: 2-8.
[本文引用: 1]

Sun Y, Zhang X B, Ren G Y, et al. Contribution of urbanization to warming in China
Nature Climate Change, 2016, 6(7):706-709.

DOI:10.1038/nclimate2956URL [本文引用: 1]

Peng Baofa, Shi Yishao, Wang Hefeng, et al. The impacting mechanism and laws of function of urban heat islands effect: A case study of Shanghai
Acta Geographica Sinica, 2013, 68(11):1461-1471.

DOI:10.11821/dlxb201311002 [本文引用: 1]
Urban heat island is the interactive result between human factors and the local weather conditions. In terms of human factors, land use and land cover change, anthropogenic heat and atmospheric emissions of pollutants caused by the interaction between industrialization and urbanization are particularly important. This article reveals the impacting mechanism of urban heat islands effect from the three aspects including scale and intensity, types and layout, and patterns of land use changes exemplified by Shanghai. Empirical evidences show that: (1) Land urbanization is the most important factor affecting urban heat island intensity in Shanghai. In terms of the influence of built-up area expansion on heat island intensity, accumulative effect is greater than incremental effect; (2) Industrialization, real estate development, and population growth are the second more important factors impacting urban heat island intensity in Shanghai. As far as the influence of economic development and energy consumption on heat island intensity is concerned, density effect is often greater than size effect; in terms of the influence of floor space of completed buildings and buildings with over 20 storeys on heat island intensity, accumulative effect is less than incremental effect; as for the influence of population growth on heat island intensity, density effect and size effect are approximately equivalent; (3) Dissimilar urban land properties or types and urban development modes lead to spatial disparity in urban heat island intensity.
[ 彭保发, 石忆邵, 王贺封, . 城市热岛效应的影响机理及其作用规律: 以上海市为例
地理学报, 2013, 68(11):1461-1471.]

[本文引用: 1]

Luo Xinyue, Chen Mingxing. Research progress on the impact of urbanization on climate change
Advances in Earth Science, 2019, 34(9):984-997.

[本文引用: 2]

[ 罗鑫玥, 陈明星. 城镇化对气候变化影响的研究进展
地球科学进展, 2019, 34(9):984-997.]

[本文引用: 2]

Si P, Zheng Z F, Ren Y, et al. Effects of urbanization on daily temperature extremes in North China
Journal of Geographical Sciences, 2014, 24(2):349-362.

DOI:10.1007/s11442-014-1092-4URL [本文引用: 1]

Lau K L, Ng E. An investigation of urbanization effect on urban and rural Hong Kong using a 40-year extended temperature record
Landscape and Urban Planning, 2013, 114:42-52.

DOI:10.1016/j.landurbplan.2013.03.002URL [本文引用: 1]

Mahmood R, Pielke R A Sr, Hubbard K G, et al. Land cover changes and their biogeophysical effects on climate
International Journal of Climatology, 2014, 34(4):929-953.

DOI:10.1002/joc.3736URL [本文引用: 1]

Thielen J, Wobrock W, Gadian A, et al. The possible influence of urban surfaces on rainfall development: A sensitivity study in 2D in the meso-γ-scale
Atmospheric Research, 2000, 54(1):15-39.

DOI:10.1016/S0169-8095(00)00041-7URL [本文引用: 1]

Wei K, Ouyang C J, Duan H T, et al. Reflections on the catastrophic 2020 Yangtze River basin flooding in Southern China
The Innovation, 2020, 1(2):100038. DOI: 10.1016/j.xinn.2020.100038.

URL [本文引用: 1]

Astaraie-Imani M, Kapelan Z, Fu G T, et al. Assessing the combined effects of urbanisation and climate change on the river water quality in an integrated urban wastewater system in the UK
Journal of Environmental Management, 2012, 112:1-9.

DOI:10.1016/j.jenvman.2012.06.039PMID:22854785 [本文引用: 1]
Climate change and urbanisation are key factors affecting the future of water quality and quantity in urbanised catchments and are associated with significant uncertainty. The work reported in this paper is an evaluation of the combined and relative impacts of climate change and urbanisation on the receiving water quality in the context of an Integrated Urban Wastewater System (IUWS) in the UK. The impacts of intervening system operational control parameters are also investigated. Impact is determined by a detailed modelling study using both local and global sensitivity analysis methods together with correlation analysis. The results obtained from the case-study analysed clearly demonstrate that climate change combined with increasing urbanisation is likely to lead to worsening river water quality in terms of both frequency and magnitude of breaching threshold dissolved oxygen and ammonium concentrations. The results obtained also reveal the key climate change and urbanisation parameters that have the largest negative impact as well as the most responsive IUWS operational control parameters including major dependencies between all these parameters. This information can be further utilised to adapt future IUWS operation and/or design which, in turn, should make these systems more resilient to future climate and urbanisation changes.Copyright © 2012 Elsevier Ltd. All rights reserved.

Sun Y, Zhang X B, Zwiers F W, et al. Rapid increase in the risk of extreme summer heat in Eastern China
Nature Climate Change, 2014, 4(12):1082-1085.

DOI:10.1038/nclimate2410URL [本文引用: 1]

Wang M N, Yan X D, Liu J Y, et al. The contribution of urbanization to recent extreme heat events and a potential mitigation strategy in the Beijing-Tianjin-Hebei metropolitan area
Theoretical and Applied Climatology, 2013, 114(3-4):407-416.

DOI:10.1007/s00704-013-0852-xURL [本文引用: 1]

Chase T N, Pielke R A Sr, Kittel T G F, et al. Simulated impacts of historical land cover changes on global climate in northern winter
Climate Dynamics, 2000, 16(2-3):93-105.

DOI:10.1007/s003820050007URL [本文引用: 1]

Gu Chaolin, Zhang Xiaoming, Wang Xiaodan. Climate change, urbanization and the Yangtze River Delta
Resources and Environment in the Yangtze Basin, 2011, 20(1):1-8.

[本文引用: 2]

[ 顾朝林, 张晓明, 王小丹. 气候变化·城市化·长江三角洲
长江流域资源与环境, 2011, 20(1):1-8.]

[本文引用: 2]

Kovats R S, Hajat S, Wilkinson P. Contrasting patterns of mortality and hospital admissions during hot weather and heat waves in Greater London, UK
Occupational and Environmental Medicine, 2004, 61(11):893-898.

PMID:15477282 [本文引用: 1]
Epidemiological research has shown that mortality increases during hot weather and heat waves, but little is known about the effect on non-fatal outcomes in the UK.The effects of hot weather and heat waves on emergency hospital admissions were investigated in Greater London, UK, for a range of causes and age groups. Time series analyses were conducted of daily emergency hospital admissions, 1 April 1994 to 31 March 2000, using autoregressive Poisson models with adjustment for long term trend, season, day of week, public holidays, the Christmas period, influenza, relative humidity, air pollution (ozone, PM10), and overdispersion. The effects of heat were modelled using the average of the daily mean temperature over the index and previous two days.There was no clear evidence of a relation between total emergency hospital admissions and high ambient temperatures, although there was evidence for heat related increases in emergency admissions for respiratory and renal disease, in children under 5, and for respiratory disease in the 75+ age group. During the heat wave of 29 July to 3 August 1995, hospital admissions showed a small non-significant increase: 2.6% (95% CI -2.2 to 7.6), while daily mortality rose by 10.8% (95% CI 2.8 to 19.3) after adjusting for time varying confounders.The impact of hot weather on mortality is not paralleled by similar magnitude increases in hospital admissions in the UK, which supports the hypothesis that many heat related deaths occur in people before they come to medical attention. This has evident implications for public health, and merits further enquiry.

Gordon C A, McManus D P, Jones M K, et al. The increase of exotic zoonotic helminth infections: The impact of urbanization, climate change and globalization
Advances in Parasitology, 2016, 91:311-397.

[本文引用: 1]

Wang F Y, Duan K Q, Zou L. Urbanization effects on human-perceived temperature changes in the North China plain
Sustainability, 2019, 11(12):3413. DOI: 10.3390/su11123413.

URL [本文引用: 1]

McGranahan G, Balk D, Anderson B. The rising tide: Assessing the risks of climate change and human settlements in low elevation coastal zones
Environment and Urbanization, 2007, 19(1):17-37.

DOI:10.1177/0956247807076960URL [本文引用: 2]

IPCC. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007: 315-357.
[本文引用: 1]

Arnone E, Pumo D, Francipane A, et al. The role of urban growth, climate change, and their interplay in altering runoff extremes
Hydrological Processes, 2018, 32(12):1755-1770.

DOI:10.1002/hyp.v32.12URL [本文引用: 1]

Douglas I, Alam K, Maghenda M, et al. Unjust waters: Climate change, flooding and the urban poor in Africa
Environment and Urbanization, 2008, 20(1):187-205.

DOI:10.1177/0956247808089156URL [本文引用: 1]

Burrell A L, Evans J P, De Kauwe M G. Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification
Nature Communications, 2020, 11(1):3853. DOI: 10.1038/s41467-020-17710-7.

PMID:32737311 [本文引用: 1]
Drylands cover 41% of the earth's land surface and include 45% of the world's agricultural land. These regions are among the most vulnerable ecosystems to anthropogenic climate and land use change and are under threat of desertification. Understanding the roles of anthropogenic climate change, which includes the CO fertilization effect, and land use in driving desertification is essential for effective policy responses but remains poorly quantified with methodological differences resulting in large variations in attribution. Here, we perform the first observation-based attribution study of desertification that accounts for climate change, climate variability, CO fertilization as well as both the gradual and rapid ecosystem changes caused by land use. We found that, between 1982 and 2015, 6% of the world's drylands underwent desertification driven by unsustainable land use practices compounded by anthropogenic climate change. Despite an average global greening, anthropogenic climate change has degraded 12.6% (5.43 million km) of drylands, contributing to desertification and affecting 213 million people, 93% of who live in developing economies.

Lu Dadao, Chen Mingxing. Several viewpoints on the background of compiling the "National New Urbanization Planning (2014-2020)"
Acta Geographica Sinica, 2015, 70(2):179-185.

DOI:10.11821/dlxb201502001 [本文引用: 1]
The "National New Urbanization Planning (2014-2020)" (hereinafter referred to as "Planning") marks a significant transformation in China's urbanization development process, with the core of human urbanization, and the general requirement of seeking advance in stability. This paper elaborates the authors' preliminary thoughts on the formation of the "Planning" mainly from the speed and quality aspects of the urbanization development. Urbanization level should be consistent with industrial restructuring, the amount of new jobs, the actual ability of absorbing rural population, and water-soil resource and environment capacity of the urban area, etc. The large scale and high speed urbanization development in China has resulted in severe environment pollution, great pressures on the infrastructure, and huge challenge to the supporting capacity of natural resources. Urbanization is an important frontier scientific issue with obvious cross disciplinary feature, which is also a complex system. The interdisciplinary human economic geography has outstanding advantages and solid research foundation in the field of urbanization research. Therefore, facing the significant realistic demand of the national new urbanization, we should do some in-depth research and tracking studies in this field.
[ 陆大道, 陈明星. 关于“国家新型城镇化规划(2014—2020)”编制大背景的几点认识
地理学报, 2015, 70(2):179-185.]

[本文引用: 1]

Qin Dahe. Climate change science and sustainable development
Progress in Geography, 2014, 33(7):874-883.

DOI:10.11820/dlkxjz.2014.07.002 [本文引用: 1]
Since the Fourth Assessment Report (AR4) was released by the Intergovernmental Panel on Climate Change (IPCC) in 2007, new observations have further proved that the warming of the global climate system is unequivocal. Each of the last three successive decades before 2012 has been successively warmer at global mean surface temperature than any preceding decade since 1850. 1983-2012 was likely the warmest 30-year period of the last 1400 years. From 1998 to 2012, the rate of warming of the global land surface slowed down, but it did not reflect the long-term trends in climate change. The ocean has warmed, and the upper 75 m of the ocean warmed by more than 0.11℃ per decade since 1970. Over the period of 1971 to 2010, 93% of the net energy increase in the Earth's climate system was stored in the oceans. The rate of global mean sea level rise has accelerated, which was up to 3.2 mm yr-1 between 1993 and 2010. Anthropogenic global ocean carbon stocks were likely to have increased and caused acidification of the ocean surface water. Since 1971, the glaciers and the Greenland and Antarctic ice sheets have been losing mass. Since 1979, the Arctic sea ice extent deceased at 3.5% to 4.1% per decade, and the Antarctic sea ice extent in the same period increased by 1.2% to 1.8% per decade. The extent of the Northern Hemisphere snow cover has decreased. Since the early 1980s, the permafrost temperatures have increased in most regions. Human influence has been detected in the warming of the atmosphere and the ocean, changes in the water cycle, reductions in snow and ice, global mean sea level rise, and changes in climate extremes. The largest contribution to the increase in the anthropogenic radiative forcing was by the increase in the atmospheric concentration of CO2 since 1750. It led to more than half of global warming since the 1950s (with 95 % confidence). It is predicted using Coupled Model Intercomparison Project Phase 5 (CMIP5) and Representative Concentration Pathways (RCPs) that the global mean surface temperature will continue to rise for the end of this century, the frequency of extreme events such as heat waves and heavy precipitation will increase, and precipitation will present a trend of "the dry becomes drier, the wet becomes wetter". The temperature of the upper ocean will increase by 0.6 to 2.0℃ compared to the period of 1986 to 2005, heat will penetrate from the surface to the deep ocean which will affect ocean circulation, and sea level will rise by 0.26 to 0.82 m in 2100. Cryosphere will continue to warm. To control global warming, humans need to reduce the greenhouse gas emissions. If the increase in temperature is higher than 2℃ than before industrialization, the mean annual economic losses worldwide will reach 0.2% to 2.0% of income, and cause large-scale irreversible effects, including death, disease, food insecurity, inland flooding and water logging, and rural drinking water and irrigation difficulties that affect human security. If taking prompt actions, however, it is still possible to limit the increase in temperature within 2℃. To curb the gradually out-of-control global warming and achieve the goal of sustainable development of the human society, global efforts to reduce emissions are needed.
[ 秦大河. 气候变化科学与人类可持续发展
地理科学进展. 2014, 33(7):874-883.]

[本文引用: 1]

Rosenzweig C, Solecki W. Action pathways for transforming cities
Nature Climate Change, 2018, 8(9):756-759.

DOI:10.1038/s41558-018-0267-xURL [本文引用: 1]

Zhou Tianjun, Chen Xiaolong, Wu Bo. Frontier issues on climate change science for supporting Future Earth
Chinese Science Bulletin, 2019, 64(19):1967-1974.

[本文引用: 1]

[ 周天军, 陈晓龙, 吴波. 支撑“未来地球”计划的气候变化科学前沿问题
科学通报, 2019, 64(19):1967-1974.]

[本文引用: 1]

Crutzen P J. Geology of mankind//Paul J. Crutzen: A Pioneer on Atmospheric Chemistry and Climate Change in the Anthropocene
Switzerland: Springer, 2016: 211-215.

[本文引用: 1]

Waters C N, Zalasiewicz J, Summerhayes C, et al. The Anthropocene is functionally and stratigraphically distinct from the Holocene
Science, 2016, 351(6269):aad2622. DOI: 10.1126/science.aad2622.

[本文引用: 1]

Blowes S A, Supp S R, Antão L H, et al. The geography of biodiversity change in marine and terrestrial assemblages
Science, 2019, 366(6463):339-345.

DOI:10.1126/science.aaw1620PMID:31624208 [本文引用: 1]
Human activities are fundamentally altering biodiversity. Projections of declines at the global scale are contrasted by highly variable trends at local scales, suggesting that biodiversity change may be spatially structured. Here, we examined spatial variation in species richness and composition change using more than 50,000 biodiversity time series from 239 studies and found clear geographic variation in biodiversity change. Rapid compositional change is prevalent, with marine biomes exceeding and terrestrial biomes trailing the overall trend. Assemblage richness is not changing on average, although locations exhibiting increasing and decreasing trends of up to about 20% per year were found in some marine studies. At local scales, widespread compositional reorganization is most often decoupled from richness change, and biodiversity change is strongest and most variable in the oceans.Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

Zalasiewicz J, Williams M, Haywood A, et al. Introduction: The anthropocene: A new epoch of geological time?
Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 2011, 369(1938):835-841.

[本文引用: 1]

Chen Mingxing, Lu Dadao, Zhang Hua. Comprehensive evaluation and the driving factors of China's urbanization
Acta Geographica Sinica, 2009, 64(4):387-398.

[本文引用: 1]

[ 陈明星, 陆大道, 张华. 中国城市化水平的综合测度及其动力因子分析
地理学报, 2009, 64(4):387-398.]

[本文引用: 1]

Yang L, Niyogi D, Tewari M, et al. Contrasting impacts of urban forms on the future thermal environment: Example of Beijing metropolitan area
Environmental Research Letters, 2016, 11(3):034018. DOI: 10.1088/1748-9326/11/3/034018.

URL [本文引用: 2]

Filho W L, Balogun A L, Olayide O E, et al. Assessing the impacts of climate change in cities and their adaptive capacity: Towards transformative approaches to climate change adaptation and poverty reduction in urban areas in a set of developing countries
Science of the Total Environment, 2019, 692:1175-1190.

DOI:10.1016/j.scitotenv.2019.07.227URL [本文引用: 1]

O'Brien K L, Leichenko R M. Double exposure: Assessing the impacts of climate change within the context of economic globalization
Global Environmental Change, 2000, 10(3):221-232.

DOI:10.1016/S0959-3780(00)00021-2URL [本文引用: 1]

Stancu M, Cheveresan M, Zaharia V, et al. Climate change adaptation in urban areas. Case study for the Tineretului area in Bucharest
Procedia Engineering, 2017, 209:188-194.

DOI:10.1016/j.proeng.2017.11.146URL [本文引用: 1]

Jato-Espino D, Sillanpää N, Charlesworth S M, et al. A simulation-optimization methodology to model urban catchments under non-stationary extreme rainfall events
Environmental Modelling & Software, 2019, 122:103960. DOI: 10.1016/j.envsoft.2017.05.008.

[本文引用: 1]

Chan F K S, Griffiths J A, Higgitt D, et al. "Sponge City" in China: A breakthrough of planning and flood risk management in the urban context
Land Use Policy, 2018, 76:772-778.

DOI:10.1016/j.landusepol.2018.03.005URL [本文引用: 1]

Özerol G, Dolman N, Bormann H, et al. Urban water management and climate change adaptation: A self-assessment study by seven midsize cities in the North Sea Region
Sustainable Cities and Society, 2020, 55:102066. DOI: 10.1016/j.scs.2020.102066.

URL [本文引用: 1]

Rossi F, Pisello A L, Nicolini A, et al. Analysis of retro-reflective surfaces for urban heat island mitigation: A new analytical model
Applied Energy, 2014, 114:621-631.

DOI:10.1016/j.apenergy.2013.10.038URL [本文引用: 1]

Stevens M R. Does compact development make people drive less?
Journal of the American Planning Association, 2017, 83(1):7-18.

DOI:10.1080/01944363.2016.1240044URL [本文引用: 1]

Ma Li, Jin Fengjun. Evaluation of Chinese urban compactness
Progress in Geography, 2011, 30(8):1014-1020.

[本文引用: 1]

[ 马丽, 金凤君. 中国城市化发展的紧凑度评价分析
地理科学进展, 2011, 30(8):1014-1020.]

[本文引用: 1]

Guo Z, Wang S D, Cheng M M, et al. Assess the effect of different degrees of urbanization on land surface temperature using remote sensing images
Procedia Environmental Sciences, 2012, 13:935-942.

DOI:10.1016/j.proenv.2012.01.087URL [本文引用: 2]

Li J X, Song C H, Cao L, et al. Impacts of landscape structure on surface urban heat Islands: A case study of Shanghai, China
Remote Sensing of Environment, 2011, 115(12):3249-3263.

DOI:10.1016/j.rse.2011.07.008URL [本文引用: 1]

Davies Z G, Edmondson J L, Heinemeyer A, et al. Mapping an urban ecosystem service: Quantifying above-ground carbon storage at a city-wide scale
Journal of Applied Ecology, 2011, 48(5):1125-1134.

DOI:10.1111/jpe.2011.48.issue-5URL [本文引用: 1]

Jacobson C R. Identification and quantification of the hydrological impacts of imperviousness in urban catchments: A review
Journal of Environmental Management, 2011, 92(6):1438-1448.

DOI:10.1016/j.jenvman.2011.01.018PMID:21334133 [本文引用: 1]
Urbanisation produces numerous changes in the natural environments it replaces. The impacts include habitat fragmentation and changes to both the quality and quantity of the stormwater runoff, and result in changes to hydrological systems. This review integrates research in relatively diverse areas to examine how the impacts of urban imperviousness on hydrological systems can be quantified and modelled. It examines the nature of reported impacts of urbanisation on hydrological systems over four decades, including the effects of changes in imperviousness within catchments, and some inconsistencies in studies of the impacts of urbanisation. The distribution of imperviousness within urban areas is important in understanding the impacts of urbanisation and quantification requires detailed characterisation of urban areas. As a result most mapping of urban areas uses remote sensing techniques and this review examines a range of techniques using medium and high resolution imagery, including spectral unmixing. The third section examines the ways in which scientists and hydrological and environmental engineers model and quantify water flows in urban areas, the nature of hydrological models and methods for their calibration. The final section examines additional factors which influence the impact of impervious surfaces and some uncertainties that exist in current knowledge.Copyright © 2011 Elsevier Ltd. All rights reserved.

Davis A P, Hunt W F, Traver R G, et al. Bioretention technology: Overview of current practice and future needs
Journal of Environmental Engineering, 2009, 135(3):109-117.

DOI:10.1061/(ASCE)0733-9372(2009)135:3(109)URL [本文引用: 1]

Ge Quansheng, Liu Yang, Wang Fang, et al. Simulated CO2 emissions from 2016-2060 with comparison to INDCs for EU, US, China and India
Acta Geographica Sinica, 2018, 73(1):3-12.

DOI:10.11821/dlxb201801001 [本文引用: 1]
Examining the CO2 emissions by country in the future whether the mitigation plans are implemented or not, as well as their comparison with INDCs, is important to promote the ambition and cooperation on global long-term goal of climate change. A dynamic model of CO2 emissions from fuel combustion is established based on statistical analysis between economy and energy development using the latest data from the World Bank and International Energy Agency. Extending and planning scenarios are designed according to whether there exist additional and explicit efforts to mitigate climate change. Then annual CO2 emissions during 2016-2060 for the European Union, the United States, China and India are simulated and compared with INDCs respectively, from which three main conclusions are derived. (1) In planning scenario China will achieve its INDCs. For detail, the CO2 emissions per unit of GDP in China will be 63.6% lower than the level of 2005 and the share of non-fossil fuels in primary energy consumption will increase to 24.7%. Besides, China will reach the emission peak 11277±643 Mt CO2 in 2030, which is 10 years earlier and almost 3000 Mt CO2 lower than the peak of extending scenario. (2) In planning scenario, the CO2 emissions of EU and US will significantly decrease and the growth rate of India will slow down, which makes EU and India achieve their INDCs likely but US still has a gap around 300 Mt CO2. (3) INDCs are ambitious for all countries, especially for China and US. However, making further efforts on global warming mitigation to control the temperature rise below 2 ℃ or even 1.5 ℃, which requires the developed countries to play an important role on policy, technique and finance, including promoting carbon capture and storage technique, achieving negative growth of CO2 emissions, and providing support for developing countries.
[ 葛全胜, 刘洋, 王芳, . 2016—2060年欧美中印CO2排放变化模拟及其与INDCs的比较
地理学报, 2018, 73(1):3-12.]

[本文引用: 1]

Mi Z F, Guan D B, Liu Z, et al. Cities: The core of climate change mitigation
Journal of Cleaner Production, 2019, 207:582-589.

DOI:10.1016/j.jclepro.2018.10.034URL [本文引用: 1]

Isman M, de Archambault M, Racette P, et al. Ecological Footprint assessment for targeting climate change mitigation in cities: A case study of 15 Canadian cities according to census metropolitan areas
Journal of Cleaner Production, 2018, 174:1032-1043.

DOI:10.1016/j.jclepro.2017.10.189URL [本文引用: 2]

Nieuwenhuijsen M J. Urban and transport planning, environmental exposures and health-new concepts, methods and tools to improve health in cities
Environmental Health, 2016, 15(1):161-171.

[本文引用: 1]

Nieuwenhuijsen M J, Khreis H. Car free cities: Pathway to healthy urban living
Environment International, 2016, 94:251-262.

DOI:10.1016/j.envint.2016.05.032URL [本文引用: 1]

Brown M A, Southworth F. Mitigating climate change through green buildings and smart growth
Environment and Planning A: Economy and Space, 2008, 40(3):653-675.

DOI:10.1068/a38419URL [本文引用: 1]

Chen Mingxing. Research progress and scientific issues in the field of urbanization
Geographical Research, 2015, 34(4):614-630.

DOI:10.11821/dlyj201504002 [本文引用: 1]
In 2014, the "National New Urbanization Planning" was issued, which indicates that China's urbanization has entered into a transition period from "quantity growth" to "quality improvement". New urbanization will be an important work for the future China in quite a long period of time, which provides a significant opportunity for urbanization field research. This paper gives a general review on the domestic and foreign research progress in time. Internationally, the basic theory and theoretical system of urbanization have come into being. They have been enriched gradually with the deepening of the research. The research field has been expanded. The research methods have been improved. As for China's urbanization research, it developed fast despite a late start, and has made remarkable achievements in many fields, such as the scientific cognition and thoughts of a reasonable urbanization process with Chinese characteristics. In the future, five front scientific issues and their sub-issues in urbanization research have been put forward, such as the interdisciplinary features of urbanization and the establishment of urbanization discipline; the concept, principle, and method of the construction of urbanization basic theoretical system; the regional characteristics of urbanization and relationships between urban and rural integration; the developing model and spatial pattern research of sustainable development; the integration research and simulation platform of urbanization system based on the big data.
[ 陈明星. 城市化领域的研究进展和科学问题
地理研究, 2015, 34(4):614-630.]

[本文引用: 1]

Fu Bojie. Geography: From knowledge, science to decision making support
Acta Geographica Sinica, 2017, 72(11):1923-1932.

DOI:10.11821/dlxb201711001 [本文引用: 1]
Geography is a subject to explore spatial distribution, time evolution and regional characteristics of geographical elements or geographical complexes. Geography is unique in bridging social sciences and natural sciences, and has characteristics of comprehensiveness, interdisciplinary research and regionalism. With the development of geographical science technology and research methods, geography is in the gorgeous historical process towards geographical science. Research themes of geography are focusing on the comprehensive research on the earth surface. The research paradigms of geography are shifting from geography knowledge description, coupling pattern and process, to the simulation and prediction of complex human and earth system. The development of Chinese geography needs to be rooted in the major needs of national strategy, and plays important roles in the studies of urbanization development, coupling ecological processes and services, water resources management and geopolitics. Under the country's major needs, China's geography tends to achieve the geography theory innovation, new method and technology application and developed disciplinary system with Chinese characteristics, and make more contribution to national and global sustainable development.
[ 傅伯杰. 地理学:从知识、科学到决策
地理学报, 2017, 72(11):1923-1932.]

[本文引用: 1]

相关话题/城市 人口 人类 能源 科学