删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

水—粮食—能源纽带关系研究进展与展望

本站小编 Free考研考试/2021-12-29

林志慧,1, 刘宪锋,1,2, 陈瑛1, 傅伯杰21.陕西师范大学地理科学与旅游学院,西安 710119
2.中国科学院生态环境研究中心,北京 100085

Water-food-energy nexus: Progress, challenges and prospect

LIN Zhihui,1, LIU Xianfeng,1,2, CHEN Ying1, FU Bojie21. School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
2. Research Center for Eco-Environmental Sciences, CAS, Beijing 100085, China

通讯作者: 刘宪锋(1986-), 男, 黑龙江人, 副教授, 硕士生导师, 中国地理学会会员(S110001618M), 主要从事气候变化与生态水文研究。E-mail: liuxianfeng7987@163.com

收稿日期:2020-04-3修回日期:2020-10-12网络出版日期:2021-07-25
基金资助:国家自然科学基金项目.41991230
国家自然科学基金项目.41801333
陕西省自然科学基金项目.2020JQ-417
陕西省社会科学基金项目.2020D039
中央高校基本科研业务费专项.GK201901009
中央高校基本科研业务费专项.GK202003068


Received:2020-04-3Revised:2020-10-12Online:2021-07-25
Fund supported: National Natural Science Foundation of China.41991230
National Natural Science Foundation of China.41801333
Natural Science Foundation of Shaanxi Province.2020JQ-417
Social Science Foundation of Shaanxi Province.2020D039
Fundamental Research Funds for the Central Universities.GK201901009
Fundamental Research Funds for the Central Universities.GK202003068

作者简介 About authors
林志慧(1988-), 女, 黑龙江人, 博士生, 中国地理学会会员(S110014964M), 主要从事旅游经济与人地耦合研究。E-mail: huihui7987@163.com






摘要
水—粮食—能源纽带关系是实现社会经济可持续发展的重要支撑与关键途径。本文系统梳理了纽带关系的概念内涵,回顾了纽带关系的近今进展,发现当前学界对纽带关系的概念内涵和研究框架尚未达成较为一致的认识。在评估方法上,可归纳为基于关键过程视角的评估、基于系统整体视角的评估以及耦合纽带系统内外部要素的综合评估,呈现出由传统部门研究范式到自然科学和社会科学交叉的人地系统耦合研究范式的转变。文献计量分析表明,2000—2019年纽带关系研究发文量呈指数增长,且2015年之后增加尤为显著。在学科分布上,环境科学、食品科学和营养学是研究纽带关系的主要学科,未来应加强地理学的综合性和系统性思维在纽带关系研究中的应用。通过文献回顾发现,当前研究对纽带系统的互馈关系及其演化特征缺乏定量化理解,建议未来应重点关注以下五个前沿议题,即建立纽带关系多源信息数据库、揭示纽带关系耦合系统互馈机理、发展纽带关系耦合系统过程模型、搭建纽带关系耦合系统决策平台以及促进纽带关系多部门协同合作,旨在通过系统治理和科学管控,实现纽带关系系统协同可持续发展。
关键词: 纽带关系;粮食安全;水安全;能源安全;可持续发展;人地耦合

Abstract
The water-food-energy nexus (WFE) plays a key role in achieving sustainable development. In this study, we systematically analyzed the concept of the WFE nexus and review its recent progress. We found that the academic communities have not reached a unanimous understanding of the concept of the WFE nexus and research framework. The evaluation methodology of the WFE nexus presents a transition from the traditional sectoral research paradigm to the human-environment system paradigm that considers the intersection of natural science and social science. These methods can also be grouped into three categories: an evaluation based on a critical process, an evaluation based on the whole system, and a comprehensive evaluation that involves coupling the internal and external elements of the WFE nexus. A bibliometric analysis shows that the number of research papers concerning the WFE nexus increased exponentially during 2000 to 2019, and the increase was particularly significant after 2015. Environmental science, food science, and nutrition science are the three main disciplines in WFE nexus research. More important, we need to strengthen the application of geography thinking, that is, comprehensive and systematic thinking, to study the WFE nexus in the future. Based on the literature review, we found that existing research lacked a quantitative understanding of the mutual feedback among the WFE nexus and its evolution. Therefore, we suggest the following five priority areas for future research: establishing a multi-source database of the WFE nexus, revealing the mutual feedback mechanism of the WFE nexus, developing a coupling model of the WFE nexus, establishing a decision-making platform for the WFE nexus, and promoting the collaboration of multiple sectors related to the WFE nexus. This will help to achieve a synergetic sustainable development of the WFE nexus through system governance and scientific management.
Keywords:nexus;food security;water security;energy security;sustainable development;coupled human-environment system


PDF (1946KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
林志慧, 刘宪锋, 陈瑛, 傅伯杰. 水—粮食—能源纽带关系研究进展与展望. 地理学报[J], 2021, 76(7): 1591-1604 doi:10.11821/dlxb202107002
LIN Zhihui, LIU Xianfeng, CHEN Ying, FU Bojie. Water-food-energy nexus: Progress, challenges and prospect. Acta Geographica Sinice[J], 2021, 76(7): 1591-1604 doi:10.11821/dlxb202107002


1 引言

水—粮食—能源作为社会经济发展最重要的基础性资源,是人类实现社会—经济—环境永续发展的根本保障[1,2]。至21世纪中叶,人类对于粮食和能源的需求将分别保持50%和35%左右的增长[3,4],全球缺水比例将高达40%[5]。粮食与能源需求的增加和水资源供给的短缺间的矛盾将成为当今社会人类面临的最大挑战,如何满足人类对水—粮食—能源的基本需求成为全球战略的优先事项[6]。然而水—粮食—能源之间存在紧密而复杂的权衡关系,任一子系统变化均会对其他子系统产生不同程度的影响[7],因此亟需打破学科间的藩篱,开展系统性与综合性的集成研究,以保障全球水—粮食—能源系统协同可持续发展。而水—粮食—能源纽带关系连接了自然科学的资源系统和社会科学的宏观决策系统两个维度,被认为是实现社会经济可持续发展的重要支撑与关键途径,自提出以来受到了各国政府及学术界的高度关注与研究[8]

水—粮食—能源系统安全问题已成为全球三大风险源之一,是影响全球社会稳定和经济发展的关键因素[9],亦是实现联合国2030年可持续发展目标的核心内容[10],因而成为各国政府和学界共同关注的焦点问题。近年来,国内外机构和****从多学科、多视角开展了一系列卓有成效的研究工作,内容涉及纽带关系的概念辨析、基础研究框架的制定、互馈关系分析以及宏观土地利用政策模拟等[4, 6, 11-13],其中Hoff提出的以水资源为核心要素的研究框架,成为纽带关系研究的里程碑之作[13]。值得注意的是,纽带关系具有多系统、多要素、多尺度、多主体、综合性和系统性等诸多特征,同时纽带系统具有高度复杂性、不确定性和多层次性,是一个自然系统与社会系统高度交织的领域,开展纽带关系研究无论在理论上还是技术上均面临较大的挑战。目前多数研究从纽带关系的单一方面进行回顾与总结,且其定量研究方法仍处于探索阶段[14]。学界对纽带关系的全面系统认识尚未完全形成,因而有必要对纽带关系的概念内涵及进展进行全面梳理,旨在推进水—粮食—能源纽带关系研究,促进社会经济可持续发展。

系统认知水—粮食—能源纽带关系是人地系统耦合研究的重要内容,标志着资源治理范式由传统部门向跨部门、综合性转型[15]。同时纽带系统安全对于实现总体国家安全观具有至关重要的支撑作用,然而当前中国水、粮食和能源供需矛盾日趋严峻,三者之间相互依存、相互制约,严重阻碍了社会经济可持续发展[16]。随着一系列国家重大战略的实施和全面建成小康社会需求,如何确保水—粮食—能源系统安全,实现社会—经济—环境协同可持续发展,成为当前迫切需要解决的核心问题[17]。加之气候变化、人口增长和城市化等系统外部因素也将直接影响到纽带关系的变化[18]。因此,亟需同时在理论上和技术上取得突破,以应对气候变化与经济发展对纽带关系造成的影响。基于上述认识,本文从纽带关系的概念内涵、研究内容和评估方法进行系统梳理,揭示国内外纽带关系研究的发展历程和最新进展。在此基础上,提出目前纽带关系研究存在的问题与挑战,进而对纽带关系未来研究重点方向进行归纳与总结,以期有效促进纽带关系研究、切实保障2030年可持续发展目标进程的有序推进。

2 纽带关系的概念内涵

2011年在德国波恩召开的“水—粮食—能源安全纽带关系会议”上,首次提出了水安全、粮食安全和能源安全之间存在着复杂的互馈关系,并将水资源、粮食和能源之间的关系总结为一种纽带关系,成为纽带关系研究的里程碑事件[13]。Endo等认为纽带关系是为实现目标而连接不同利益相关者思想与行动的一个过程[4],而Conway等则将纽带关系视为资源间的悖论,以反映水、能源和粮食间的权衡取舍与潜在冲突[6]。从纽带关系提出的背景和宗旨来理解,纽带关系的本质是在可持续发展框架内,寻求一种能够综合考虑水—粮食—能源三者协同发展的策略,并将其纳入到宏观决策过程中,解决经济发展与资源短缺的矛盾,实现经济社会的可持续发展[19]。从实践操作层面上看,纽带关系连接了自然科学的资源系统和社会科学的宏观决策系统两个维度,倡导运用系统的、综合的方式衡量三者间的关系,并从要素协同、部门协作、系统管控的集成管理视角解决水—粮食—能源问题,推动自然—社会—经济系统的全面可持续发展。同年,斯德哥尔摩国际环境研究院提出了水—粮食—能源纽带关系概念框架,并认为可利用水资源量将是纽带关系研究中的核心要素[6, 20]图1)。应指出的是,水—粮食—能源之间存在复杂的、动态的和不确定的相互作用关系,因此不同地区由于资源禀赋和经济发展方面的差异,纽带系统的互馈关系和研究框架也会发生变化。

图1

新窗口打开|下载原图ZIP|生成PPT
图1水—粮食—能源纽带关系及其外部影响因素

注:根据文献[13]改绘。
Fig. 1Water-food-energy nexus and its external driving forces



2013年联合国亚太经济社会理事会发布了《亚太地区水—粮食—能源纽带关系报告》,提出纽带关系在时间和空间上具有紧密联系,认为气候变化、快速城市化、金融危机和过度消费等外部因素均会对纽带关系产生影响[21,22],如气候异常变化会对全球粮食生产造成显著影响,同时也会对水资源造成巨大威胁[23]。因此,纽带关系研究不仅要强调三者间的互馈关联和协同可持续发展分析,还应考虑纽带关系作为一个系统性整体与外部影响因素的相互作用机制。研究表明,一定流域内的水、粮食和能源等要素与流域外部存在频繁的显性和隐性流动,使得流域内要素的变动会对流域外要素的变化产生一定影响,即产生纽带关系的级联效应,其中显性流动指水、粮食和能源本身的贸易交换,而隐性流动则是从虚拟水的概念来理解农产品和能源生产过程中所消耗的水资源随粮食和能源贸易的流动。因此,纽带关系研究是一项系统性工程,内容涉及自然系统和社会经济系统的诸多方面,且不同历史时期纽带关系的驱动因素也会存在一定的差异。

3 纽带关系研究进展

3.1 纽带关系研究方法

纽带关系研究最早可追溯到20世纪70年代Meadows等出版的《增长的极限》,该书对全球人口增长、经济增长以及纽带系统供需等问题进行了详细探讨[4, 24]。研究初期,纽带关系研究主要探讨了水—能源、水—粮食以及粮食—能源等两个系统关系的改善,以及粮食和能源贸易过程中所引起的虚拟水流动等问题的探讨[25],而对水—粮食—能源三者间互馈关系的定量研究较为匮乏[26,27]。2011年发布的《全球风险报告》中第一次提出了“水资源—能源—粮食风险群”的概念,指出近年来最突出的非传统安全问题就是水资源—能源—粮食安全问题,并由此开启了纽带关系研究的热潮[7, 28]。在理论探讨层面上,国内外****也从不同领域、不同视角甚至不同尺度,对纽带关系的概念内涵提出了不同的表述和见解。在操作实现层面上,不同****亦采用了不同的研究方法对纽带关系开展研究,包括基于关键过程视角的评估、基于系统整体视角的评估以及耦合纽带系统内外部要素的综合评估(图2表1)。

图2

新窗口打开|下载原图ZIP|生成PPT
图2水—粮食—能源纽带关系研究的里程碑事件

Fig. 2Selected milestones of water-food-energy nexus research



Tab. 1
表1
表1纽带关系研究方法
Tab. 1Methodology of water-food-energy nexus
类别方法用途文献
纽带系统
关键过程分析
LEAP基于情景分析的自下而上的能源—环境核算工具[14]
WEAPSEI开发的用于水资源模拟评估、规划预测及优化配置的模型[59]
SWAT主要用于模拟和预测径流、土壤水和地下水等水资源优化配置分析[60]
一般均衡模型着眼于整个经济的商品和生产要素的价格及供求量决定分析方法。[61]
虚拟水用于定量刻画粮食或能源流动过程中所包含的虚拟水的流动[25]
纽带系统
整体分析
指标体系法采用指标和权重测度纽带关系系统的可持续发展能力和适应性[12]
生命周期评价该方法主要用于评估产品生命周期中的输入、输入和潜在环境影响[62]
投入产出分析用于研究国民经济各部门间平衡关系,推断某一部门产销对其他部门的影响[63]
社会网络分析以要素作为节点、以关系作为边,建立网络分析纽带关系关联性[64]
纽带系统与外部
因素综合分析
CLEWs用于分析气候、土地、能源和水等资源及其与社会经济发展关系的集成模型[50]
WEFO以生产成本、社会经济需求和环境约束为条件,模拟纽带关系的需求[52]
LIPSON以生产成本、社会经济需求和环境约束为条件,模拟纽带关系的需求[53]
WEF Nexus 2.0用于在线核算纽带关系及其与外部环境之间的关系的公共平台[51]
WEFSiM用于定量刻画水—能源—粮食模拟和优化分析的工具[54]
MuSIASEM用于定量分析多尺度水资源利用引起的社会—生态系统的响应特征[65]
系统动力学模型主要用于分析和模拟复杂反馈系统的计算机仿真方法[19]
多部门系统分析用于研究部门间的协同作用和物质能量的流动,提出不同配置方案[66]

新窗口打开|下载CSV

3.1.1 基于关键过程视角的评估 基于关键过程视角的评估认为系统中的关键过程对维持系统的协调可持续发展起到核心支撑作用[29]。因此,该方法是以部分优先为基本原则,着重探讨系统内部起到关键作用的单要素或双要素过程,如水—能源、水—粮食以及粮食—贸易等关键过程。常用的研究工具包括斯德哥尔摩环境研究所开发的用于水资源模拟评估、规划预测及优化配置的水资源评价与规划模型(Water Evaluation and Planning Model, WEAP),以及其与波士顿大学联合开发的基于情景分析的能源—环境核算方法长期能源规划模型(Long-range Energy Alternatives Planning, LEAP),另外还包括经济学和水文学中的相关模型,如一般均衡模型和SWAT模型等在纽带关系研究中的应用。国内****针对关键过程也进行了大量研究,如贾绍凤等对纽带系统中的水资源合理开发与保护进行研究,并以黄河流域为例分析了农业—能源—城市间的用水矛盾问题[30];张培丽等[31]和王春艳等[32]分别对系统内部水—粮食关键过程和水—能源关键过程进行了系统分析;唐霞等对中国能源生产与水资源间的供需矛盾进行全面分析[33];而杨鑫等则对中国粮食生产与水资源的时空匹配格局进行分析,发现不同区域间协调性差异显著,且中国东北地区和华北地区的粮食生产与水资源匹配度较差[34]

在粮食贸易研究中,Allan等于1993年开创性地提出了虚拟水的概念,虚拟水的定义也由最初的专指农产品生产过程中所消耗的水资源量,逐渐推广到生产所有产品和服务过程中所需要消耗的水资源数量。由于虚拟水研究视角和研究方法的新颖性,引起了国内外****的广泛关注,例如Salmoral等采用生命周期法分析了英国Tamar流域食物消费中所含虚拟水的变化特征[35]。中国****在水资源研究中同样强调了虚拟水的重要性,指出在社会经济运转过程中除了实体水的流动外,还有大量蕴含在产品中并通过贸易流动的虚拟水[36]。另外,有****指出纽带关系研究还应关注水、食物、能源的浪费与回收利用问题[37],以及水质变化等系统关键过程对纽带关系的影响,并认为不仅处理污水需要耗能,而且污水也会影响粮食生产[38]。需要说明的是,虽然基于关键过程视角的评估能够较好地阐明系统中的关键过程,但是难以顾及系统内部各个要素的均衡发展,因而较适用于干旱半干旱区等以水资源为主要限制要素的区域可持续发展评估。具体实践中,可先对不同区域的主要限制因素进行识别,筛选关键过程作为突破口进行评估。

3.1.2 基于系统整体视角的评估 基于系统整体视角的评估将纽带关系内部的各子系统视为同等重要,注重对系统整体的协调性进行评估[22, 39]。指标体系方法作为测度复杂系统协调性的有效方法,被广泛应用于基于系统整体视角的评估,即通过在不同系统中选取相应的表征指标,并根据指标重要性赋予相应权重的方法测度纽带系统的协调性和安全性[12]。目前国内外****采用该方法已开展大量的研究工作[39,40],孙才志等通过构建基于指标体系的耦合协调度模型,对中国纽带系统协调性和安全性进行了系统的评价[27];尹庆民等通过综合评价指标体系,评估了中国水—粮食—能源耦合系统的协调发展水平[41,42];李东林等则采用综合指标体系的方法对一带一路主体水资源区在非洲涉及的六个国家水—粮食—能源安全状况进行分析[43]。省域尺度上,方兰等[44]和邓鹏等[45]分别采用指标体系法刻画了陕西省和江苏省纽带关系耦合协调演化特征;张杰等则采用实测统计和定额推算相结合的方法,对鄂尔多斯能源开发利用和粮食生产的用水总量和过程进行分析[46]。值得一提的是,刘建国等也采用指标体系的方法在国际上首次系统评估了中国可持续发展目标发展状况[47]。综上所述,在尚未建立定量评估方法的过程中,指标体系法表现出了一定的优势,主要体现在操作简单、数据获取性强,能够通过一系列的指标关联表征纽带关系的发展状态。然而该方法的缺陷也相对明显,不同地区在资源禀赋、社会发展、经济基础和技术条件等方面的差异,导致评估中指标的选取不同,难以建立统一的评估框架,阻碍了区域间纽带关系研究现状的对比。

另外,一些经济学和社会学模型,如生命周期评价、投入产出分析和社会网络分析等方法也被广泛应用于纽带关系的评估中。Salmoral等认为生命周期评价是综合评估纽带关系的重要工具,并以英国塔马河流域为案例评估了粮食生产对本地和其他区域的能源与水资源的需求[48];而投入产出方法则主要运用经济结构矩阵和环境卫星矩阵,定量刻画纽带系统资源在经济系统中的投入与产出过程,并对资源足迹进行估算和解析,如孙艳芝等采用投入产出和线性规划模型,模拟了节能、节水和节能节水双重约束情景下晋陕蒙地区产业持续发展和资源高效利用的优化效果[49]。需要指出的是,基于系统整体视角的评估方法是以系统的观点描述了纽带关系的概念框架,基本实现了纽带关系研究从学术研讨层面向实践操作层面的过渡,且评估结果具有一定的表征意义。然而该方法在操作过程中并未考虑纽带关系各要素的互馈关联及其耦合机理,评估结果仍处于定性或半定量描述阶段,无法表征纽带关系时空动态特征,属于纽带关系静态评估框架。

3.1.3 耦合内外部要素的综合评估 气候变化和土地利用与纽带关系系统联系紧密,其任何变化势必会对纽带关系系统产生重要影响,因而学界逐渐将纽带关系研究从传统的三要素扩展到四要素(水—土地—能源—粮食)和五要素(水—土地—能源—粮食—气候变化)开展研究。同时,人口规模、经济贸易以及快速城市化等社会外部因素同样对纽带关系系统的互馈关系产生至关重要的影响。而耦合内外部要素的综合评估同时考虑了自然系统和社会系统的诸多要素和过程。当前国内外****对耦合内外部要素的综合评估模型进行了大量的探索,其中代表性的分析模型有斯德哥尔摩皇家理工学院Bazilian等开发的粮食—能源—水关联研究框架CLEW模型[50],该模型不仅考虑了能源(LEAP)、水文(WEAP)和农业(AEZ)模型,同时考虑了气候变化和土地利用等外部因素的影响[23],成为该领域的奠基成果。另外,Daher等开发的WEF Nexus Tool 2.0模型,主要用于在线核算纽带关系及其与外部环境之间的关系,为****们和决策者评估与确定资源分配方案提供了公共平台[51]。Zhang等基于生产系统构建的WEFO模型以及牛津大学开发的LIPSOM优化模型分别在生产成本、社会经济需求和环境约束等条件下,对纽带关系需求进行优化模拟,以实现资源高效利用和低成本管理[52,53]。就国家尺度而言,WEFSiM模型综合考虑了水—粮食—能源间的互馈关系,实现了资源供给和需求量的定量刻画,且该模型中的优化模块可提供多种资源管理的政策建议,不仅能够协助决策者选择适宜的资源分配方案和管理对策,而且能够对国家能源规划、水资源规划和粮食安全规划提供实践指导[54]。此外,最新提出的欧洲地平线项目亦将土地利用和气候变化等外部要素作为纽带关系研究的重要议题。

纽带关系系统搭建了知识与决策间的桥梁,实现了科学知识和宏观决策的有机结合。当前学界对纽带系统与政策的关系也开展了相关研究,如Petra Hellegers等剖析了政策导致的水资源、粮食和能源之间存在的冲突及其影响[55];Bojic等则强调了建立纽带关系模型时要考虑将政策部分纳入[56]。需要指出的是,耦合内外部要素的综合评估方法实现了自然系统与社会系统的集成,综合考虑了自然科学的资源系统和社会科学的决策系统,被认为是系统解决纽带关系系统和可持续发展问题的有效途径[57]。当前国内外机构和****开展了大量的研究工作,并在综合评估模型方面取得了一定的成果,代表性的社会—生态系统多尺度综合分析模型(MuSIASEM)已经被广泛应用于资源利用和政策实践的研究中[58]。然而耦合内外部要素的综合评估仍存在一系列瓶颈问题,如综合评估系统边界和研究框架的缺失、刻画纽带关系内部及其与外部相互作用的定量化过程耦合模型尚未建立。同时,耦合研究过程中所需的模型参数、数据获取等困难均阻碍了纽带系统由定性分析向定量模拟的过渡。

应指出的是,纽带关系的协调可持续发展是中国实现资源环境与社会经济高质量发展的重要前提与根本保障。作为世界第一人口大国,气候变化和快速城镇化导致中国不仅面临严重的水资源短缺威胁,也面临能源安全和粮食安全的双重压力;加之水资源与矿物能源、耕地资源的空间错位和人均占有量不足进一步加剧了纽带系统的风险[41]。然而目前国内纽带关系研究仍多集中在利用指标体系方法进行资源协调性评价,较少从互馈关系和耦合机理层面探讨纽带关系的相互作用机制及其模拟研究。同时,中国水—粮食—能源资源分属于不同的管理机构,难以进行统一规划和统筹管理[9],限制了纽带系统的协调可持续发展。因此,在学术层面上,亟需加强纽带系统互馈关系和耦合机理的研究和模拟;在实践层面上,应提高资源利用效率,加强资源空间管控和部门间合作,以资源约束倒逼产业结构转型,以应对资源短缺、能源危机和粮食安全的进一步恶化。而新时代背景下的国土空间规划体系与方法作为中国资源开发和社会经济发展的总体蓝图将会成为中国纽带关系研究的有力工具和有效途径。

3.2 纽带关系文献分析

为了更好揭示纽带关系研究的发展历程,本文进一步从文献计量分析视角全面系统回顾了2000—2019年纽带关系的发展脉络。检索中以“water-food-energy”和“水—粮食—能源”作为关键词在Web of Science核心数据库和中国知网进行主题检索(检索时段为2000—2019年,检索时间为2020年3月15日)。文献统计结果表明,2000—2019年研究水—粮食—能源纽带关系的文献发文量呈现指数增加态势,其中2015年之后增长态势尤为显著,说明纽带关系研究日益受到国内外****的广泛关注(图3a)。当前主要研究多分布在中国、欧洲、美国和澳大利亚等地区,进一步统计不同国家和研究机构的发文量发现,排在前5名的国家分别是美国、中国、英国、德国和澳大利亚;排名前5名的研究机构则分别是美国加州大学系统、中国科学院、法国科学院、荷兰瓦赫宁根大学和德国赫姆霍兹研究所。以上分析可以看出,当前主要关注纽带关系与可持续发展研究的地区仍集中在欧美发达国家、澳大利亚以及亚洲的中国、日本等地区。

图3

新窗口打开|下载原图ZIP|生成PPT
图32000—2019年水—粮食—能源纽带关系研究的文献计量分析

Fig. 3Bibliometric analysis of water-food-energy nexus from 2000 to 2019



纽带关系涉及自然科学和社会科学的诸多学科领域,如环境科学、粮食科学、能源、人口、经济和政策研究等。从学科分布来看,纽带关系研究所涉及的各个学科之间发文数量存在较大差异,发文数量前3名的学科为环境科学、粮食科学与技术和营养学,分别占全部发文数量的17%、11%和9%;排名其后的学科包括生态学、能源科学、绿色可持续发展科学以及水资源科学等(图3b)。以上分析可以看出,虽然水资源被广泛认为是纽带关系研究框架的核心要素,但是水资源科学发文量在纽带关系研究中却仅排在第十位。需要说明的是,地理学作为一门经世致用的交叉学科,其研究对象经历了单要素、多要素和全要素的嬗变过程,具有区域性、综合性和复杂性的学科属性[67]。就纽带系统而言,系统内部各要素间相互交织、相互反馈,形成了具有多要素、多尺度、多过程特征的复杂反馈系统,而地理学正是以理解不同尺度地理区域要素之间的相互作用和空间演变为主要特征的学科[68]。因此,地理学的综合性和系统性思维范式在解决纽带关系问题上具有明显的学科优势,如系统的地理科学可为理解纽带关系的内涵及外延、开展纽带关系立体化的监测、建立自然系统与社会系统耦合模型、以及提供可持续发展决策建议等方面提供强有力的支撑。然而,当前地理学在纽带关系研究中的作用稍显不足,亟需从地理学视角加强纽带关系系统研究,以突破纽带关系目前研究所面临的瓶颈问题。具体而言,针对不同时空尺度的纽带关系研究,笔者建议可采用“厘清要素本底→刻画互馈关系→识别限制因素→优化空间配置→实现协同发展”的研究思路进行案例研究和系统集成,以明晰纽带系统互馈关系和驱动机制的多尺度特征,形成地理学在纽带关系研究中的范式,为新时期国土空间规划、可持续发展等国家重大战略需求提供科学、合理的决策支持。

4 纽带关系研究的挑战与展望

2015年联合国制定了17项可持续发展目标,其中有3项目标(消除饥饿、清洁饮水和卫生设施、清洁能源)与纽带系统直接相关,其他14项也都不同程度地与纽带系统间接相关(图2)。需要说明的是,纽带关系作为解决跨学科、多层次复杂系统问题的有效方法,是实现可持续发展的重要基础和突破点,同时纽带关系具有从要素协同、部门协作的集成管理视角推动自然—社会—经济系统可持续发展的优势。然而,当前国内外学界针对纽带关系的研究仍主要集中在理论探讨层面,虽然针对系统中部分要素关系开展了大量的研究工作,但针对水—粮食—能源三者间互馈关联、耦合机理和定量化建模分析研究鲜有涉及[58, 69],导致目前对纽带关系中三者的演化关系缺乏定量化理解,尚未形成部门间相互协调的可持续发展战略规划[70,71]。因此,无论是在基础数据搜集、耦合系统机理、定量模拟模型、知识决策平台以及多部门协同管理机制等方面都亟需开展系统性和综合性的研究,以实现纽带关系从理论框架探讨向实践操作应用方向的全面系统推进(图4)。

图4

新窗口打开|下载原图ZIP|生成PPT
图4水—粮食—能源纽带关系未来重点研究方向

Fig. 4Priority directions of water-food-energy nexus



4.1 建立纽带关系多源信息数据库

多源信息数据库是开展纽带关系定量研究的基础。虽然纽带关系受到国内外政府和学界的高度关注,然而当前纽带关系研究仍多集中在概念框架和理论探讨层面,缺乏纽带系统互馈关系及耦合机理的定量刻画和模拟,难以为政府宏观决策提供充分的数据支撑[29],而数据缺失被认为是阻碍纽带关系研究由定性分析走向定量刻画的主要瓶颈。虽然当前空天地立体化观测网络显著提升了自然过程的监测能力,然而对社会经济过程的数据收集和空间化手段仍相对缺乏。因此,未来应加强支持定量研究的基础数据搜集工作,建立包括水、粮食、能源、土地等自然基础资源,以及人口、城市化、产业结构、气候信息、社会经济大数据等社会经济外部因素在内的多源信息数据库。需要说明的是,由于当前对纽带关系概念内涵及外延理解的界定仍存在分歧,由此导致的数据搜集在不同地区会存在差异,难以实现区域间或跨尺度的数据共享和分发,而建立统一规则的纽带关系数据账户是最有可能解决上述难题的关键环节。

纽带关系系统是自然系统和社会经济系统高度交织的复杂系统,然而用于刻画两个系统各要素的多源数据在时空尺度、数据格式和数据一致性等方面存在显著差异,难以直接为纽带关系定量研究提供有力支撑。例如,自然系统的气象站、水文站、农气站等站点观测数据和以遥感数据为代表的空间连续观测数据,以及社会经济系统中的人口、GDP和资源开采量等以行政区为统计口径的数据。因此,为了更好地整合纽带关系多源信息数据库,必要的技术与方法支持需要不断完善,如数据空间化、数据同化和数据衍生技术等,将不同来源和不同尺度数据在统一数据框架下进行集成,建立与评估框架相匹配的多源多尺度纽带关系数据库,推进纽带关系由定性描述向定量刻画的深入研究。

4.2 揭示纽带关系耦合系统互馈机理

水、粮食和能源三大系统之间存在复杂的相互依存关系,并通过生产、分配、消费等环节形成相互制约的权衡关系。深入阐明纽带关系各系统之间的互馈关系及耦合机理成为纽带关系研究的核心内容,并作为发展定量模型的关键支撑环节而受到了国内外学界的高度关注。然而当前刻画各系统间的关系研究中,仍集中于阐述两两系统间的互馈关联,如分析不同水资源约束条件下流域粮食产量变化特征,以及粮食生产过程对流域地表水和地下水资源的利用情况,或是分析水资源和能源生产之间的相互作用关系。上述分析并未考虑两系统相互作用过程中对其他系统的影响,即能源系统对水资源和粮食的需求或粮食系统对水资源和能源的需求,从而导致纽带关系内部各系统间的资源冲突和互馈机制难以显现。因此,应以动态视角刻画纽带关系各系统之间的关联特征,揭示纽带关系内部各系统间的互馈机理,促进水—粮食—能源纽带系统的协同可持续发展。

同时,气候变化、城市化和人口增加等系统外部要素将直接导致水—粮食—能源空间格局及互馈关系发生变化,然而当前学界对纽带关系变化的驱动机制的认识仍不全面,因此揭示气候变化与人类活动影响下纽带关系耦合系统演变驱动机制将成为系统研究纽带关系的核心议题。此外,随着全球贸易中各个资源要素的流动,区域内部纽带系统互馈关系的变化势必会对区外各个资源要素产生影响,并在全球范围内产生级联效应,如重点粮食主产区产量的变化会对全球粮食价格产生影响,然而当前研究仍集中在系统内部单一过程的探讨,缺乏纽带系统整体级联效应的探讨。因此,应加强纽带系统与外部要素之间的远程耦合和级联放大效应的关注,开展跨区域尺度纽带系统内外部要素的综合评估,提出促进纽带系统内部与外部要素可持续发展的系统解决方案。

4.3 发展纽带关系耦合系统过程模型

耦合系统过程模型是定量刻画系统中各要素流动和变化的理想工具,同时也是实现地表过程定性描述向定量刻画的关键环节。当前学界已开发大量水文模型、作物模型和能源模型用于模拟陆地水资源变化、作物生长过程以及能源生产过程。上述地表过程模型虽然考虑了外部因素对各自模拟过程的影响,但对水—粮食—能源三系统间的互馈关系描述不足,难以刻画纽带关系系统的权衡和协同关系。虽然国内外机构和****已致力于开发纽带系统模拟和分析模型[54],然而当前模型仍存在研究尺度单一、过程刻画不全等问题。因此,发展综合考虑水—粮食—能源互馈机理的纽带关系耦合系统过程模型是实现对纽带关系演变特征及其未来趋势定量模拟的重要保障。通过定量刻画系统各要素的变化特征,识别水资源利用、粮食生产和能源生产的安全阈值和各资源环境承载力,为纽带系统可持续发展提供决策依据。

社会过程与自然过程高度交织的社会—生态系统对于深入理解纽带关系内外部要素耦合互馈过程意义深远。然而当前地表过程模型多注重对自然过程的刻画,较少将社会经济系统过程纳入模型,难以对纽带关系进行全面系统的量化研究。因此,在集成水—粮食—能源等自然过程基础上,叠加城市化、经济活动和政策干预等人类过程的影响,发展能够表征复杂社会—生态系统的人地系统耦合模型被认为是最有可能推动人类社会可持续发展系统研究的重要举措。当前一些****已经开展并推进了人地系统耦合研究工作[72],相关人地系统耦合模型的基本框架已初现端倪,然而综合考虑政策规划的多尺度人地系统耦合模型尚未建立,需要地理学、农学、水文学、能源、社会经济和政策等多学科共同努力。

4.4 搭建纽带关系耦合系统决策平台

决策支持平台是连接纽带关系由学术理论探讨走向宏观实践决策的重要桥梁。当前研究仍处于纽带关系理论定性描述阶段,虽然发展了少量可用于支持纽带关系定量研究的相关模拟模型,然而模型模拟结果还仅用于学术理论探讨层面,尚未形成具有宏观实践支持功能的纽带系统知识决策平台,难以为政府宏观决策提供科学有效的定量数据支撑。因此,在纽带关系耦合系统过程模型基础上,搭建多时空尺度纽带系统评估决策平台将是今后纽带关系研究中亟待解决的关键问题。需要说明的是,纽带关系与联合国2030年可持续发展目标存在直接或间接的联系,在多尺度决策支持平台的建立中应充分考虑决策平台与17个可持续发展目标间的对应关系,建立既能为纽带关系研究提供宏观决策又能为可持续发展目标进行定量评估的综合性决策支持平台。

纽带关系耦合系统决策平台亦是黄河流域生态保护与高质量发展和“一带一路”倡议等重大国家战略实施的现实需求。黄河流域在中国经济社会发展和生态安全方面具有十分重要的地位[30],流域水资源发展既要满足生态系统保护的要求预留足够的生态需水,也要保障产业发展的合理需水。在实践层面上,应充分结合国土空间规划政策体系,将水—粮食—能源专项规划纳入纽带系统知识决策平台,以解决中国突出的资源供需矛盾问题,如中国水资源与耕地资源、矿产能源空间并不匹配,华北平原耕地面积占全国耕地的38%以上,而水资源仅占全国的6%[21, 73]。因此,水—粮食—能源纽带关系研究能够为水资源的空间调配提供重要依据,如南水北调、引汉济渭等工程。虽然目前学界主要强调以水资源为核心的纽带关系研究框架,然而不同区域资源禀赋和产业结构存在差异,主要限制因素和资源环境承载力也不同,因此应建立区域匹配的纽带关系研究框架,以适应区域可持续发展的内在需求。

4.5 促进纽带关系多部门协同合作

在学术研究层面上,纽带关系研究作为一项服务于可持续发展的系统解决方案被国内外学界广泛探讨;在实践层面上,纽带关系研究成果仍然尚未在宏观决策实践中予以关注和体现。究其原因可能存在以下方面的问题,如纽带关系多部门间缺乏交流、不同部门间的研究框架和利益冲突、部门间的权利和能力差异、以及因不同部门间缺乏信任而导致合作意愿匮乏等。因此,为整体推进纽带关系研究仍需纽带关系多部门间开放包容的通力合作,构建纽带关系多部门的命运共同体机构,完善纽带关系系统层面的政府考核机制和评价指标,建立健全国土空间规划动态监测评估预警和实施监管机制,使各部门能够在统一的科学框架和系统最优的前提下制定部门间相互协调的长远规划和行动方案,从而实现纽带关系多部门间的系统整合与集成。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

Karabulut A, Egoh B N, Lanzanova D, et al. Mapping water provisioning services to support the ecosystem-water-food-energy nexus in the Danube river basin
Ecosystem Services, 2016,17(8):278-292.

DOI:10.1016/j.ecoser.2015.08.002URL [本文引用: 1]

Zhou Luming, Xie Xinghua, Yu Li, et al. Water-energy-economy coupling relationship in water resources management
Water Resources and Power, 2019,37(4):144-147, 166.

[本文引用: 1]

[ 周露明, 谢兴华, 余丽, . 水资源管理中的水—能源—经济耦合关系
水电能源科学, 2019,37(4):144-147, 166.]

[本文引用: 1]

Bizikova L, Roy D, Swanson D, et al. The water-energy-food security nexus towards a practical planning and decision: Support framework for landscape investment and risk management
Winnipeg: International Institute for Sustainable Development (IISD), 2013.

[本文引用: 1]

Endo A, Tsurita I, Burnett K, et al. A review of the current state of research on the water, energy, and food nexus
Journal of Hydrology: Regional Studies, 2017,11(6):20-30.

DOI:10.1016/j.ejrh.2015.11.010URL [本文引用: 4]

Allan T, Keulertz M, Woertz E. The water-food-energy nexus: An introduction to nexus concepts and some conceptual and operational problems
International Journal of Water Resources Development, 2015,31(3):301-311.

DOI:10.1080/07900627.2015.1029118URL [本文引用: 1]

Conway D, van Garderen E A, Deryng D, et al. Climate and southern Africa's water-energy-food nexus
Nature Climate Change, 2015(5):837-846.

[本文引用: 4]

Al-Saidi M, Elagib N A. Towards understanding the integrative approach of the water, energy and food nexus
Science of the Total Environment, 2017,574(1):1131-1139.

DOI:10.1016/j.scitotenv.2016.09.046URL [本文引用: 2]

Chen Junyu, Wang Huimin, Liu Gang, et al. Evaluation of ecosystem services and its adaptive policies in the Hangjiahu region under water-energy-food nexus
Resources and Environment in the Yangtze Basin, 2019,28(3):542-553.

[本文引用: 1]

[ 陈骏宇, 王慧敏, 刘钢, . “水—能—粮”视角下杭嘉湖区域生态系统服务供需测度及政策研究
长江流域资源与环境, 2019,28(3):542-553.]

[本文引用: 1]

Zhang Lixiao, Zhang Pengpeng. The conceptual connotation and the practical challenge of nexus of FEW
Studies on Foreign Social Sciences, 2019(9):57-61, 84.

[本文引用: 2]

[ 张力小, 张鹏鹏. 食物—能源—水关联关系的概念内涵与现实挑战
国外社会科学前沿, 2019(9):57-61, 84.]

[本文引用: 2]

Zhang Junze, Wang Shuai, Zhao Wenwu, et al. Research progress on the interlinkages between the 17 Sustainable Development Goals and their implication for domestic study
Acta Ecologica Sinica, 2019,39(22):8327-8337.

[本文引用: 1]

[ 张军泽, 王帅, 赵文武, . 可持续发展目标关系研究进展
生态学报, 2019,39(22):8327-8337.]

[本文引用: 1]

Allam M M, Eltahir E A B. Water-energy-food nexus sustainability in the Upper Blue Nile (UBN) basin
Frontiers in Environmental Science, 2019,7(1):1-12.

DOI:10.3389/fenvs.2019.00001URL [本文引用: 1]

de Strasser L, Lipponen A, Howells M, et al. A methodology to assess the water-energy-food ecosystems nexus in Transboundary River Basins
Water, 2016,8(2):59. DOI: 10.3390/w8020059.

DOI:10.3390/w8020059URL [本文引用: 1]

Hoff H. Understanding the nexus. Background paper for the Bonn 2011 Conference: The water, energy and food security nexus
Stockholm: Stockholm Environment Institute, 2011.

[本文引用: 4]

Dai J Y, Wu S Q, Han G Y, et al. Water-energy nexus: A review of methods and tools for macro-assessment
Applied Energy, 2015,210(1):393-408.

DOI:10.1016/j.apenergy.2017.08.243URL [本文引用: 1]

Liu Qian, Zhang Yuan, Wang Yongsheng, et al. Urban WEF-nexus toward sustainable development: A bibliometric review
Urban Development Studies, 2018,25(10):4-17, 25.

[本文引用: 1]

[ 刘倩, 张苑, 汪永生, . 城市水—能源—粮食关联关系(WEF-Nexus)研究进展: 基于文献计量的述评
城市发展研究, 2018,25(10):4-17, 25.]

[本文引用: 1]

Bai Jingfeng, Zhang Haijun. Spatio-temporal variation and driving force of water-energy-food pressure in China
Scientia Geographica Sinica, 2018,38(10):1653-1660.

DOI:10.13249/j.cnki.sgs.2018.10.009 [本文引用: 1]
As the basis of regional development, water-energy-food (W-E-F) is usually a bottleneck too. China’s strategy of sustainable development has been threatened and challenged by the spatially unbalanced distribution and the insufficient total amount of the water-energy-food supply, and the unbalanced socioeconomic development. Each year from 1997 to 2015, three pressure indices (i.e. water pressure index, energy pressure index and food pressure index) were decomposed into three orthotropic vectors by using principal component analysis, and the W-E-F pressure index were then calculated and created by vector synthesis method. For the thirty province units in China (no data are available for Hong Kong, Macao and Taiwan and no energy data for Tibet), after the temporal variations of the water pressure index, the energy pressure index, the food pressure index and the W-E-F pressure index were checked, eight variables (i.e. degree of per capita education, per capita GDP, per capita farmland area, per capita meat production, per capita aquatic product, population density, effective irrigation area, urbanization rate) which related to the W-E-F pressure were employed and three cross-section (i.e. 1997, 2004 and 2015) were chosen to carry out the geographically weighted regression (GWR) analysis. In the three developed GWR models, the dependent variable was the z-score standardized W-E-F pressure index differences between the start year and the end year, i.e. 1997 and 2004 (for model 1), 2004 and 2015 (for model 2), 1997 and 2015 (for model 3), and the eight independent variables were the respective z-score standardized differences (i.e. for the eight employed variables) between the start year and the end year. The factors which influence the variation of W-E-F index can be discovered from the developed GWR models and the conclusions are as follows: 1) The W-E-F pressure index rose initially and then declined from 1997 to 2015. Spatially, the W-E-F pressure decreased progressively from Southeast China to Northwest China, and larger pressure happened in Northeast China and those coastal provinces where urbanization level was higher. 2) The energy pressure index had made more significant contribution to the W-E-F pressure index than the water pressure index and the food pressure index. The energy pressure index was higher in central and east China and the water pressure index was bigger for those provinces in the north of Huaihe river. However, the food pressure index was higher for those coastal provinces in the south of the Yangtze River and for those provinces in west China. 3) In China, the water pressure index rose in most provinces, and the energy pressure index and the food pressure index declined in most provinces from 1997 to 2015. 4) The driving forces of the W-E-F pressure changes were different for the different phases. Overall, the same change direction was observed between most of the variables and the W-E-F pressure index. However, the opposite change direction existed between degree of per capita education and the W-E-F pressure index, so did between per capita GDP and the W-E-F pressure index. The main causes of the increased W-E-F pressure were the increased population density, the changed component of food supply, the conditions of food production and the economic development. The influences of socioeconomic factors on the W-E-F pressure rose progressively from 1997 to 2015. The effectual ways to reduce the W-E-F pressure were to improve the degree of per capita education and to reshape the economic development.
[ 白景锋, 张海军. 中国水—能源—粮食压力时空变动及驱动力分析
地理科学, 2018,38(10):1653-1660.]

[本文引用: 1]

Wang Jinnan. A primary framework on protection of ecological environment and realization of high quality development for the Yellow River Basin
Environmental Protection, 2020,48(Suppl.1):18-21.

[本文引用: 1]

[ 王金南. 黄河流域生态保护和高质量发展战略思考
环境保护, 2020,48(Suppl.1):18-21.]

[本文引用: 1]

Xue Jingyan, Liu Gengyuan. Urban energy-water-food-land-climate change nexus in the flow and policy perspective: A review
Chinese Journal of Applied Ecology, 2018,29(12):4226-4238.

DOI:10.13287/j.1001-9332.201812.038PMID:30584752 [本文引用: 1]
Intricate associations exist between the internal elements of urban ecosystems, with the adjustment in one element can exert impacts of varying degrees on others. The rapid urbanization has brought numerous challenges on the urban sustainable development. To basically solve these problems, the nexus approach needs to be adopted. We clarified three application scenarios of nexus and their corresponding definitions. Meanwhile, the development of urban nexus theory was also provided. The analysis between any two characters among energy, water, food, land and climate change (EWFLC) systems was presented from the perspective of the physical nexus and policy effect nexus, respectively. From the perspective of the physical nexus, most the present stu-dies are concentrated on the urban scale, and aim at the direct nexus, lacking of indirect nexus reaches relatively. Most of the relationships between each two characters will have positive impacts on the society or economy. From the perspective of the policy effect nexus, current policies focused on the five systems are mostly oriented to directly solve problems of targeted system. The intermediate objectives of policy implementation are mostly quantifiable. There are generally multiple indicators of the policy effect evaluations. Furthermore, an analysis framework of urban EWFLC systems simultaneously combining physical and policy nexus was proposed in this study, which aimed to help make policy selections and realize urban sustainable development.
[ 薛婧妍, 刘耕源. 城市生态系统能—水—食物—土地—气候的“物理量与政策效果”双维耦合研究综述
应用生态学报, 2018,29(12):4226-4238.]

PMID:30584752 [本文引用: 1]

Li Guijun, Li Yulong, Jia Xiaojing, et al. Establishment and simulation study of system dynamic model on sustainable development of water-energy-food nexus in Beijing
Management Review, 2016,28(10):11-26.

[本文引用: 1]

[ 李桂君, 李玉龙, 贾晓菁, . 北京市水—能源—粮食可持续发展系统动力学模型构建与仿真
管理评论, 2016,28(10):11-26.]

[本文引用: 1]

Scott C A, Kurian M, Wescoat J L. The water-energy-food nexus: Enhancing adaptive capacity to complex global challenges
// Kurian A R. Governing the Nexus. Cham: Springer, 2015: 15-38.

[本文引用: 1]

Liu Bo. Research on water-energy-food nexus
Hebei Water Resources, 2019(4):22-23.

[本文引用: 2]

[ 刘博. 水—能源—粮食纽带关系的研究
河北水利, 2019(4):22-23.]

[本文引用: 2]

Zheng Renrui, Tang Jinrong, Jin Xi. Water-energy-food nexus: Cognition and solution of earth science
China Mining Magazine, 2018,27(10):36-41.

[本文引用: 2]

[ 郑人瑞, 唐金荣, 金玺. 水—能源—粮食纽带关系: 地球科学的认知与解决方案
中国矿业, 2018,27(10):36-41.]

[本文引用: 2]

Li Liang, Bi Jun, Zhou Yuanchun, et al. Research progress of regional environmental risk management: From the perspectives of food-energy-water nexus
China Population, Resources and Environment, 2018,28(7):85-92.

[本文引用: 2]

[ 李良, 毕军, 周元春, . 基于粮食—能源—水关联关系的风险管控研究进展
中国人口·资源与环境, 2018,28(7):85-92.]

[本文引用: 2]

Zhang Lixiao, Zhang Pengpeng, Hao Yan, et al. Urban food-energy-water (FEW) nexus: Conceptual frameworks and prospects
Acta Ecologica Sinica, 2019,39(4):1144-1153.

[本文引用: 1]

[ 张力小, 张鹏鹏, 郝岩, . 城市食物—能源—水关联关系: 概念框架与研究展望
生态学报, 2019,39(4):1144-1153.]

[本文引用: 1]

Allan J A. Fortunately there are substitutes for water otherwise our hydro-political futures would be impossible
Priorities for Water Resources Allocation and Management. London: ODA, 1993: 13-26.

[本文引用: 1]

Peng Shaoming, Zheng Xiaokang, Wang Yu, et al. Study on water-energy-food collaborative optimization for Yellow River Basin
Advances in Water Science, 2017,28(5):681-690.

[本文引用: 1]

[ 彭少明, 郑小康, 王煜, . 黄河流域水资源—能源—粮食的协同优化
水科学进展, 2017,28(5):681-690.]

[本文引用: 1]

Sun Caizhi, Yan Xiaodong. Security evaluation and spatial correlation pattern analysis of water resources-energy-food nexus coupling system in China
Water Resources Protection, 2018,34(5):1-8.

[本文引用: 2]

[ 孙才志, 阎晓东. 中国水资源—能源—粮食耦合系统安全评价及空间关联分析
水资源保护, 2018,34(5):1-8.]

[本文引用: 2]

Leck H, Conway D, Bradshaw M, et al. Tracing the water-energy-food nexus: Description, theory and practice
Geography Compass, 2015(9/8):445-460.

[本文引用: 1]

Chang Yuan, Xia Peng, Wang Jianping. The latest research progress in water-energy-food nexus and its enlightenment to our country
Water Resources Development Research, 2016,16(5):67-70.

[本文引用: 2]

[ 常远, 夏朋, 王建平. 水—能源—粮食纽带关系概述及对我国的启示
水利发展研究, 2016,16(5):67-70.]

[本文引用: 2]

Jia Shaofeng, Liang Yuan. Suggestions for strategic allocation of the Yellow River water resources under the new situation
Resources Science, 2020,42(1):29-36.

[本文引用: 2]

[ 贾绍凤, 梁媛. 新形势下黄河流域水资源配置战略调整研究
资源科学, 2020,42(1):29-36.]

[本文引用: 2]

Zhang Peili, Zhou Xiangfeng. The latest research progress in food security in foreign countries and its enlightenment to our country
Teaching and Research, 2014(7):93-101.

[本文引用: 1]

[ 张培丽, 周湘凤. 国外粮食安全研究的最新进展以及对我国的启示
教学与研究, 2014 (7):93-101.]

[本文引用: 1]

Wang Chunyan, Tian Lei, Yu Min, et al. Review of the studies on the water-energy nexus of the electricity sector
China Environmental Science, 2018,38(12):4742-4748.

[本文引用: 1]

[ 王春艳, 田磊, 俞敏, . 电力行业水—能耦合关系研究综述
中国环境科学, 2018,38(12):4742-4748.]

[本文引用: 1]

Tang Xia, Qu Jiansheng. Situation the water-energy nexus in China and countermeasures for sustainable utilization
Ecological Economy, 2015,31(10):50-52.

[本文引用: 1]

[ 唐霞, 曲建升. 我国能源生产与水资源供需矛盾分析和对策研究
生态经济, 2015,31(10):50-52.]

[本文引用: 1]

Yang Xin, Mu Yueying. Spatial-temporal matching patterns of grain production and water resources
Journal of South China Agricultural University (Social Science Edition), 2019,18(4):91-100.

[本文引用: 1]

[ 杨鑫, 穆月英. 中国粮食生产与水资源的时空匹配格局
华南农业大学学报(社会科学版), 2019,18(4):91-100.]

[本文引用: 1]

Salmoral G, Yan X Y. Food-energy-water nexus: A life cycle analysis on virtual water and embodied energy in food consumption in the Tamar catchment
Resources Conservation and Recycling, 2018,133(6):320-330.

DOI:10.1016/j.resconrec.2018.01.018URL [本文引用: 1]

Tian Guiliang. Research overview on impact of virtual water trade concerning water security and food security
Journal of Hohai University (Philosophy and Social Sciences), 2014,16(1):56-60, 91.

[本文引用: 1]

[ 田贵良. 虚拟水贸易影响水安全及粮食安全研究综述
河海大学学报(哲学社会科学版), 2014,16(1):56-60, 91.]

[本文引用: 1]

Machell J, Prior K, Allan R, et al. The water energy food nexus: Challenges and emerging solutions
Environmental Science: Water Research & Technology, 2015(1):15-16.

[本文引用: 1]

Hidayat Y M, Utami D N. Water quality characteristics to the water-energy-food (WEF) nexus
World Irrigation Forum (WIF3), 2019.

[本文引用: 1]

Wang Huimin, Hong Jun, Liu Gang. Simulation research on different policies of regional green development under the nexus of water-energy-food
China Population, Resources and Environment, 2019,29(6):74-84.

[本文引用: 2]

[ 王慧敏, 洪俊, 刘钢. “水—能源—粮食”纽带关系下区域绿色发展政策仿真研究
中国人口·资源与环境, 2019,29(6):74-84.]

[本文引用: 2]

Bi Bo, Chen Dan, Deng Peng, et al. The evolutionary characteristics analysis of coupling and coordination of regional water-energy-food
Water Conservancy and Hydropower in Rural China, 2018(2):72-77.

[本文引用: 1]

[ 毕博, 陈丹, 邓鹏, . 区域水资源—能源—粮食系统耦合协调演化特征研究
中国农村水利水电, 2018(2):72-77.]

[本文引用: 1]

Yin Qingmin, Wu Yi. Cases studies on water-energy-food coupling coordinated development in China
Resources and Industries, 2019,21(6):20-29.

[本文引用: 2]

[ 尹庆民, 吴益. 中国水—能源—粮食耦合协调发展实证分析
资源与产业, 2019,21(6):20-29.]

[本文引用: 2]

Liu Jing, Liu Cuishan, Li Xiao, et al. Security evaluation of water-energy-food nexus system in China
Hydro-science and Engineering, 2020(4):24-32.

[本文引用: 1]

[ 刘晶, 刘翠善, 李潇, . 中国水—能源—粮食关联系统协同安全评价
水利水运工程学报, 2020(4):24-32.]

[本文引用: 1]

Li Donglin, Liu Jianhua, Hao Lingang, et al. Analysis of water-food-energy safety in Africa area of "Belt and Road"
Water Resources Protection, 2018,34(4):22-28.

[本文引用: 1]

[ 李东林, 刘建华, 郝林钢, . “一带一路”非洲区水—粮—能安全分析
水资源保护, 2018,34(4):22-28.]

[本文引用: 1]

Fang Lan, Wei Qianqian. Analysis on coupling and coordinated development of water resources and energy system in Shaanxi province
Water Resources Development Research, 2019,19(1):43-47.

[本文引用: 1]

[ 方兰, 魏倩倩. 陕西省水资源与能源系统耦合协调发展分析
水利发展研究, 2019,19(1):43-47.]

[本文引用: 1]

Deng Peng, Chen Jing, Chen Dan, et al. The evolutionary characteristics analysis of the coupling and coordination among water, energy and food: Take Jiangsu Province as an example
Journal of Water Resources and Water Engineering, 2017,28(6):232-238.

[本文引用: 1]

[ 邓鹏, 陈菁, 陈丹, . 区域水—能源—粮食耦合协调演化特征研究: 以江苏省为例
水资源与水工程学报, 2017,28(6):232-238.]

[本文引用: 1]

Zhang Jie, Hao Chunfeng, Liu Haiying, et al. Analysis of the relationship between water, energy and food based on total water consumption
South-to-North Water Transfers and Water Science & Technology, 2020,18(1):194-201.

[本文引用: 1]

[ 张杰, 郝春沣, 刘海滢, . 基于用水总量的水、能源、粮食关系解析
南水北调与水利科技, 2020,18(1):194-201.]

[本文引用: 1]

Xu Z C, Chau S N, Chen X Z, et al. Assessing progress towards sustainable development over space and time
Nature, 2020,577(7788):74-78.

DOI:10.1038/s41586-019-1846-3URL [本文引用: 1]

Smajgl A, Ward J, Pluschke L. The water-food-energy nexus-realising a new paradigm
Journal of Hydrology, 2016,533(2):533-540.

DOI:10.1016/j.jhydrol.2015.12.033URL [本文引用: 1]

Sun Yanzhi, Zhang Tongsheng, Wang Zhiqiang. Research on the optimization of regional industrial structure in Shanxi province, Shaanxi province and Inner Mongolia autonomous region on the constraint of energy-water resources utilization
Development Finance Research, 2019,8(1):79-88.

[本文引用: 1]

[ 孙艳芝, 张同升, 王志强. 基于能—水资源约束的晋陕蒙地区产业结构优化研究
开发性金融研究, 2019,8(1):79-88.]

[本文引用: 1]

Hermann S, Rogner H H, Howells M, et al. In the CLEW model-developing an integrated tool for modeling the interrelated effects of climate, land use, energy, and water (CLEW)
// UNESCO. Proceedings of the 6th Dubrovnik Conference on Sustainable Development of Energy, Water and Environment System. Dubrovnik, 2011.

[本文引用: 1]

Daher B T, Mohtar R H. Water-energy-food (WEF) Nexus Tool 2.0: Guiding integrative resource planning and decision-making
Water International, 2015,40(5/6):748-771.

DOI:10.1080/02508060.2015.1074148URL [本文引用: 1]

Zhang X D, Vesselinov V V. Integrated modeling approach for optimal management of water, energy and food security nexus
Advances in Water Resources, 2017,101(3):1-10.

DOI:10.1016/j.advwatres.2016.12.017URL [本文引用: 1]

Leung Pah Hang M Y, Martinez-Hernandez E, Leach M, et al. Designing integrated local production systems: A study on the food-energy-water nexus
Journal of Cleaner Production, 2016,135(11):1065-1084.

DOI:10.1016/j.jclepro.2016.06.194URL [本文引用: 1]

Wicaksono A, Jeong G, Kang D. WEFSiM: A model for water-energy-food nexus simulation and optimization//Naddeo V, Balakrishnan M, Choo K H. Frontiers in Water-energy-nexus-nature-based Solutions, Advanced Technologies and Best Practices for Environmental Sustainability: Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable Development)
Cham: Springer, 2019.

[本文引用: 2]

Hellegers P, Zilberman D, Steduto P. Interactions between water, energy, food and environment: Evolving perspectives and policy issues
Water Policy, 2008,10(Suppl.1):1-10.

[本文引用: 1]

Bojic D, Vallee D. Managing complexity for sustainability. Experience from governance of water-food-energy nexus
World Irrigation Forum (WIF3), 2019.

[本文引用: 1]

Yang Yan, Jin Chenxi, Xia Peng. Cases studies in typical countries and its enlightenment of water-energy-food nexus
Water Resources Development Research, 2019,19(1):78-81.

[本文引用: 1]

[ 杨研, 金晨曦, 夏朋. “水—能源—粮食纽带关系”典型国家实践及启示
水利发展研究, 2019,19(1):78-81.]

[本文引用: 1]

Gu Alun, Jiang Dongmei, Zhang Yue. Review on energy-water nexus and implications for China
Ecological Economy, 2016,32(7):20-23, 28.

[本文引用: 2]

[ 顾阿伦, 姜冬梅, 张月. 能源—水关系研究现状及对我国的启示
生态经济, 2016,32(7):20-23, 28.]

[本文引用: 2]

Ge J P, Lei Y L. Policy options for non-grain bioethanol in China: Insights from an economy-energy-environment CGE model
Energy Policy, 2017,105(6):502-511.

DOI:10.1016/j.enpol.2017.03.012URL

Zhao Anzhou, Zhu Xiufang, Liu Xianfeng, et al. Impacts of land use change and climate variability on green and blue water resources in the Weihe River Basin of northwest China
Catena, 2016,137:318-327.

DOI:10.1016/j.catena.2015.09.018URL

Zhou Y C, Li H P, Wang K, et al. China's energy-water nexus: Spillover effects of energy and water policy
Global Environmental Change, 2016,40(9):92-100.

DOI:10.1016/j.gloenvcha.2016.07.003URL

Kurian M, Ardakanian R. Governing the Nexus Water, Soil and Waste Resources Considering Global Change
Cham: Springer International Publishing, 2015.



Soliev I, Wegerich K, Kazbekov J. The costs of benefit sharing: Historical and institutional analysis of shared water development in the Ferghana Valley, the Syr Darya Basin
Water, 2015,7(6):2728-2752.

DOI:10.3390/w7062728URL

Stein C, Barron J, Nigussie L, et al. Advancing the water-energy-food nexus: Social networks and institutional interplay in the Blue Nile
Colombo: International Water Management Institute, 2014.



Madrid C, Cabello V, Giampietro M. Water-use sustainability in socioecological systems: A multiscale integrated approach
Bioscience, 2013,63(1):14-24.

DOI:10.1525/bio.2013.63.1.6URL

Walker R V, Beck M B, Hall J W, et al. The energy-water-food nexus: Strategic analysis of technologies for transforming the urban metabolism
Journal of Environmental Management, 2014(141):104-115.



Song Changqing, Zhang Guoyou, Cheng Changxiu, et al. Nature and basic issues of Geography
Scientia Geographica Sinica, 2020,40(1):6-11.

DOI:10.13249/j.cnki.sgs.2020.01.002 [本文引用: 1]
A discipline has typically the following four key features, namely independent research objects, independent research questions, unique characteristics, and unique social services. This paper first discusses the nature of Geography from three aspects, to reveal the characteristics of modern Geography. First, the research object of Geography is changing from simple to complex evolution. In performing geographic research, we should well recognize the complexity of geographic systems. Second, the framework of geographic research questions is structured by the fusion among geographic features, space, and time. This paper explains the essential distinction between different geographic research questions, which promotes the development of the methods and technologies for answering these questions. Third, the philosophy of combining reductionism and holism is growing continuously. A new pattern of research has been formed based on new disciplines and technologies, which is the parallel development of the research on geographic features and that on systems. This paper then identifies the essential characteristics of geographic research, summarizes the key research questions in Geography, and discusses the multiple effects of driving mechanisms on the laws of Geography. An understanding of the fundamental characteristics and the modern value of Geography illustrated in this paper will be contribute to the societal development of Geography.
[ 宋长青, 张国友, 程昌秀, . 论地理学的特性与基本问题
地理科学, 2020,40(1):6-11.]

[本文引用: 1]

Song Changqing, Cheng Changxiu, Shi Peijun. Geography complexity: New connotations of geography in the new era
Acta Geographica Sinica, 2018,73(7):1204-1213.

DOI:10.11821/dlxb201807002 [本文引用: 1]
Since the 20th century, geography came into being with distinctive disciplinary characteristics by sustained effort of geographers. This paper puts forward predicament from cognitive and thought in the new era, and depicts new geographic characteristics from five aspects: new technology, new orders, new data, new approaches and new driving factors. According to new content of geo-regionality and new approaches of geo-comprehensiveness, the paper proposes that complexity research would be a successful new path in geography, and the complexity would be the third characteristic of geography. Then, the paper details some complex spatial patterns, complex time processes and complex spatio-temporal mechanisms in geography research. Based on the concept of a geographic complex system, this paper presents core issues and corresponding complex research tools. Finally, the paper puts forward new challenges and new requirements for geography in the new era.
[ 宋长青, 程昌秀, 史培军. 新时代地理复杂性的内涵
地理学报, 2018,73(7):1204-1213.]

[本文引用: 1]

Zhao Rongqin, Li Zhiping, Han Yuping, et al. The coupling interaction mechanism of regional water-land-energy-carbon system
Acta Geographica Sinica, 2016,71(9):1613-1628.

DOI:10.11821/dlxb201609012 [本文引用: 1]
Water, land, energy and carbon are key elements of earth's surface system. Researches on regional water-land-energy-carbon system (WLEC system) will not only help to reveal the impact mechanism of resource coupling exploitation on carbon emissions, but also has great significance to explore low-carbon development mode based on water, land and energy saving. Based on the literature review, this paper analyzed the element relationship of regional WLEC system, discussed the coupling interaction mechanism, research perspectives and impact factors of regional WLEC system, and put forward the future research points in this field. The main conclusions are as follows: (1) Regional WLEC system reflects the interactions among different spheres of earth's surface system. Through water cycle, land use, energy flow and carbon cycle, WLEC system becomes the core of regional natural-economic-social system. It not only reflects the matching relationship and exploitation efficiency of regional resources, but also embodies the impact extent of human activities on environment. (2) Regional WLEC system can be divided into three subsystems: water system, land system and energy system. They interacted with each other and together formed the resource base for the regional socio-economic development. Regional carbon emission intensity is mainly determined by the need relationship among three subsystems, industrial activities and energy structure. (3) Regional WLEC system can be studied from different perspectives such as microscopic view, industrial activities and land use. (4) Regional WLEC system is influenced by natural, economic, social and pressure factors, in which economic factor, especially economic development level, production efficiency and technology, is the determinant factor of the function and efficiency of regional WLEC system. (5) In the future, modeling of regional WLEC system, relationship between WLEC system and climate change and food security, carbon emission efficiency of resource coupling exploitation and the integrated evaluation and regulation of WLEC system should be strengthened.
[ 赵荣钦, 李志萍, 韩宇平, . 区域“水—土—能—碳”耦合作用机制分析
地理学报, 2016,71(9):1613-1628.]

[本文引用: 1]

Yu Chaoqing. Food and environmental security in China under water-nitrogen coupling mechanism
Scientia Sinica Terrae, 2019,49(12):2018-2036.

DOI:10.1360/SSTe-2019-0041URL [本文引用: 1]

[ 喻朝庆. 水—氮耦合机制下的中国粮食与环境安全
中国科学: 地球科学, 2019,49(12):2018-2036.]

[本文引用: 1]

Keairns D L, Darton R C, Irabien A. The energy-water-food nexus
Annual Review Chemical and Biomolecular Engineering, 2016,7(1):239-262.

DOI:10.1146/annurev-chembioeng-080615-033539URL [本文引用: 1]

Fu Bojie, Leng Shuying, Song Changqing. The characteristics and tasks of geography in the new era
Scientia Geographica Sinica, 2015,35(8):939-945.

DOI:10.13249/j.cnki.sgs.2015.08.939 [本文引用: 1]
Geography is a subject of "exploring the laws of nature, declaring the human essence", with characteristics of comprehensiveness and interactiveness. Since the 1980s, Geography plays an important role in global environmental change research programs. Theories, methods and techniques of Geography have become the basis for solving the problems of the sustainable development of human society is facing. Originated in the global environment change research, and combined with the social science research, The " Future Earth" research plan represents the direction of the development of Geography in the new period. In contemporary, Geography research methods have shift from survey, observation, and records, drawings and other traditional research methods to the modern scientific methods such as spatial statistics, earth observation, GIS, indoor and outdoor simulation and modeling, decision-making system, etc., and are gradually tend to comprehensive and quantitative. As the problems that Geography is facing are more complex and more comprehensive, the Geography research issues become more comprehensive and diverse, and attract more extensive subjects to participate in. In more and more field, the angle of Geography are considered. The discipline boundary that concepts and tools belonging to is blurring. In the new era, the geography, is heading for geographical science. China is an ideal geography test sites of studying the problem of the sustainable development of human society. The future development of Chinese Geography needs to deepen the comprehensive and integrated understanding of the complex man-land system, and strengthen the research of global problems. To achieve the goal of geographical science and social service value, the internationalization level of Chinese geographical science needs to be promoted, and the ability of using advanced technology to parse geographical phenomenon needs to be improved.
[ 傅伯杰, 冷疏影, 宋长青. 新时期地理学的特征与任务
地理科学, 2015,35(8):939-945.]

[本文引用: 1]

Wang Hao, Yang Guiyu, Yang Zhaohui. Thinking of agriculture development in China based on regional water resources and land cultivation
Bulletin of Chinese Academy of Sciences, 2013,28(3):329-336, 321.

[本文引用: 1]

[ 王浩, 杨贵羽, 杨朝晖. 水土资源约束下保障粮食安全的战略思考
中国科学院院刊, 2013,28(3):329-336, 321.]

[本文引用: 1]

相关话题/系统 能源 资源 过程 数据