删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

自然地理学创新发展与展望

本站小编 Free考研考试/2021-12-29

刘昌明,1,2, 郑度1,3, 崔鹏1,3, 葛全胜1,3, 刘纪远1,3, 吴绍洪,1,3, 汤秋鸿1,2, 宋献方1,2, 杨林生1,31.中国科学院地理科学与资源研究所,北京 100101
2.中国科学院陆地水循环与地表过程重点实验室,北京 100101
3.中国科学院陆地表层格局与模拟重点实验室,北京 100101

Innovative development and prospect of physical geography

LIU Changming,1,2, ZHENG Du1,3, CUI Peng1,3, GE Quansheng1,3, LIU Jiyuan1,3, WU Shaohong,1,3, TANG Qiuhong1,2, SONG Xianfang1,2, YANG Linsheng1,31. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
2. Key Laboratory of Water Cycle and Related Land Surface Processes, CAS, Beijing 100101, China
3. Key Laboratory of Land Surface Pattern and Simulation, CAS, Beijing 100101, China

通讯作者: 吴绍洪(1961-), 男, 广东潮州人, 博士, 研究员, 博士生导师, 中国地理学会会员(110000894M), 主要从事自然地理学综合研究、气候变化影响与风险研究。E-mail: wush@igsnrr.ac.cn

收稿日期:2020-10-27修回日期:2020-11-29网络出版日期:2020-12-25
基金资助:国家自然科学基金重点项目.41530749


Received:2020-10-27Revised:2020-11-29Online:2020-12-25
Fund supported: Key Project of National Natural Science Foundation of China.41530749

作者简介 About authors
刘昌明(1934-), 男, 湖南汨罗人, 研究员, 中国科学院院士, 博士生导师, 中国地理学会会员(S110001654H), 主要从事水文学与水资源研究。E-mail: liucm@igsnrr.ac.cn











摘要
自然地理学自中国科学院地理科学与资源研究所建立以来一直是立所的核心学科,长期以服务国家重大需求为使命,在综合自然地理、气候、地貌、水文、土壤地理、生物地理、化学地理等各学科领域取得一批重要科技成果和进展,奠定了自然地理各分支学科在国内外的优势,为国家科技创新、区域经济社会可持续发展做出了重要贡献。本文回顾了中国科学院地理科学与资源研究所自然地理学的创新发展历程,总结了自然地理学取得的学术成就与标志性进展,并展望了中国科学院地理科学与资源研究所自然地理学未来发展,提出以陆地表层要素—过程交互作用机制,陆地表层格局动态研究,陆地表层系统过程的综合集成与模拟,陆地表层系统有序人类活动的可持续范式和调控机制为核心的发展战略。
关键词: 自然地理学;创新发展;成果;发展战略;地理科学与资源研究所

Abstract
Physical geography (PG) has always been the core discipline of the Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (IGSNRR, CAS) since its establishment in 1940. It aims to serve the grand needs of national development. PG has made significant scientific and technological achievements and progress in the fields of comprehensive physical geography, climatology, geomorphology, hydrology, soil geography, biogeography, chemical geography, etc. These achievements have set up the worldwide priority status of PG, and made great contributions to the scientific and technological innovation, regional sustainable economic and social development. This paper reviews the innovative development of PG in the IGSNRR, summarizes the academic achievements and landmark progress, and looks forward to the future development strategy. Four key points are presented including the interaction mechanism of land surface elements-process, the dynamics of land surface pattern, the comprehensive integration and simulation of process of land surface system, and the sustainable paradigm and regulation mechanism of orderly human activities of land surface system.
Keywords:physical geography;innovative development;achievements;development strategy;Institute of Geographic Sciences and Natural Resources Research


PDF (1176KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
刘昌明, 郑度, 崔鹏, 葛全胜, 刘纪远, 吴绍洪, 汤秋鸿, 宋献方, 杨林生. 自然地理学创新发展与展望. 地理学报[J], 2020, 75(12): 2547-2569 doi:10.11821/dlxb202012002
LIU Changming, ZHENG Du, CUI Peng, GE Quansheng, LIU Jiyuan, WU Shaohong, TANG Qiuhong, SONG Xianfang, YANG Linsheng. Innovative development and prospect of physical geography. Acta Geographica Sinice[J], 2020, 75(12): 2547-2569 doi:10.11821/dlxb202012002


1 发展历程

自然地理学自中国科学院地理科学与资源研究所(简称地理资源所)1940年建立以来一直是立所的核心学科之一。自然地理学作为地理学的二级学科,以服务国家重大需求为使命,在自然地理的基础学科如气候、地貌、水文、土壤地理、生物地理、化学地理等领域对陆地表层系统自然营力所造成的自然地理过程方面做了大量工作,奠定了自然地理各分支学科在国内外的优势。早在1940年8月中英庚款董事会在重庆北碚创建中国地理研究所时,自然地理学科组就是最早设立的四个学科组之一。历经1947年夏中国地理研究所由重庆北碚迁至江苏南京,1950年6月筹建中国科学院地理研究所(简称地理所)时,自然地理学是设立三大研究组(地理、制图和大地测量)之一地理组中的核心学科。1958年中国科学院地理研究所迁址北京,自然地理学科开始了系统建设,设立了自然地理、地貌、气候、水文等四个研究室。1963年研究所在北京筹建了第一个野外试验站——自然地理综合试验站,并先后建立了流水地貌实验室、径流模拟实验室、化学分析实验室和孢粉实验室等室内实验室;1981年正式建立中国科学院北京农业生态系统实验站;1983年建立中国科学院禹城综合试验站;1992年设立生态环境物理实验室,并先后建立了14C实验室、树木年轮实验室和坡地实验室。1999年9月根据中国科学院知识创新工程建设体系的要求,中国科学院地理研究所和自然资源综合考察委员会(1955年成立)整合而成中国科学院地理科学与资源研究所。为了“面向世界科技前沿、面向国家重大需求、面向国民经济主战场,率先实现科学技术跨越发展、率先建成国家创新人才高地、率先建成国家高水平科技智库、率先建设国际一流科研机构”,地理资源所围绕陆地表层关键要素的物理、化学和生物过程开展研究,于2002年和2014年先后建设了中国科学院陆地水循环及地表过程重点实验室和陆地表层格局与模拟重点实验室。

伴随着自然地理学科的发展,研究所诞生了以黄秉维为代表的一批在国内外久负盛名的中国自然地理学大师。自然地理学家黄秉维、左大康、郑度、刘燕华、刘纪远、葛全胜先后担任地理所、地理资源所所长。地理资源所是中国培养自然地理学人才的高地,先后有4批国务院授予的博士生导师,培养了一大批人才,早在1956年开始招收硕士研究生,是首批硕士点之一;1978年恢复招生,1981年获得博士点,1997年、2000年先后两次被评为“中国科学院博士生重点培养基地”,是中国科学院地学领域博士生培养示范单位,2012年获评中国科学院重点学科,作为中国科学院大学地理学一级学科的重要组成部分,在全国第四次学科评估获得A+,推动了中国自然地理学科国内外合作交流。

2 研究方向

地理资源所的自然地理学研究注重综合自然地理与部门地理以及相邻学科的结合。早在20世纪50年代,黄秉维提出自然地理学研究的三个方向:地表热量与水分平衡(研究自然地理作用及自然地带性规律)、化学元素迁移和转化(地球化学景观)、生物地理群落(以生物为主导因素,研究物质能量在自然综合体中的交换)。以此为指导,针对学科前沿和国家重大需求,在地理所形成了综合自然地理学、地貌学、气候学、水文地理学、土壤地理学、生物地理学、化学地理等学科的深入研究。沈玉昌、罗来兴在地貌学研究中开拓了流水地貌及黄土地貌研究的新领域;郭敬辉、刘昌明在水文学研究提出资源的概念,开拓水资源研究的领域;左大康开创辐射气候学的研究;章申、谭见安等开创了化学地理学,长期进行地方病的化学地理成因研究,并率先与环境保护相结合,开展污染物的迁移转化和环境影响评价研究;郑度在综合自然地域系统中与生态学相结合,研究生态地理地域系统;石玉林以土地适宜性评估为基础,创立土地资源学的研究;赵松乔以土地类型为基础,开拓综合自然地理学综合研究“自下而上”与“自上而下”结合的方法论,引领土地科学的深入研究;王荷生首次系统阐述植物区系地理的研究历史、理论、方法、趋势和新方向,阐明了中国植物区系的性质和各成分间的关系并揭示了中国植物特有科属区系地理特征;张荣祖对动物地理的深入研究,诠释中国陆栖脊椎动物地理特征;夏军建立径流形成与转化的时变非线性理论,并在实践中得到应用;崔鹏在泥石流形成、运动和成灾机理研究中,建立土力类泥石流起动理论,推动灾害风险防范;葛全胜应用自然地理学综合研究的思想与方法论,将历史气候学研究与国际全球变化研究前沿相结合,重建了过去2000年中国气候变化,诊断了历朝气候变化与农业、经济、人口、疆域、战争等的可能联系。目前,一批中青年****在学科方向的框架下,开展学科前沿研究,力求更有效地发挥综合自然地理学及其基础的气候、地貌、水文、土壤地理、生物地理等学科在解决中国所面临的资源与环境等重大问题中的作用。

2.1 综合自然地理学

综合自然地理作为地理学的基础学科和重点关注领域之一,强调从系统的角度出发,研究自然地理环境各组成要素间的物质能量关系,揭示自然地理环境的历史形成、现代过程、类型结构、地域分异和发展演变。中国地域广阔、资源环境条件存在显著的空间差异,综合自然地理研究通过将一定区域中复杂的自然现象系统化,为农业生产布局、资源环境开发利用、国土整治、生态建设和可持续发展提供区域框架和参考[1,2,3]。综合自然地理强调从系统的角度开展研究,一直以来都是地理资源所重点关注的传统优势学科和前沿领域,多位院士致力于自然地理综合研究,为国家资源环境管理与社会经济重大建设发展规划提供了有力的科技支撑。“综合是地理学存在的依据”成为黄秉维主要学术思想之一。综合自然地理研究不断开拓与创新,依托国家重大科研任务,把握国际研究热点,聚焦国家需求,开展了卓有成效的研究工作,在解决综合自然地理基础性、应用性、关键性重大科技问题,培养高层次科研人才,以及开展国内外综合自然地理交流与合作等方面做出了重要贡献。

(1)地域系统理论、方法与划分方案。1940年黄秉维发表了《中国之植物区域》,开创了中国自然地域系统研究[3]。20世纪50年代以来,中国地域系统研究不仅促进了地理学等相关学科大力发展,同时也为社会经济发展做出了重要贡献。地理资源所先后开展了自然地域系统[4]、生态地理区域系统[5]、综合地域系统[6,7,8,9,10]等研究工作。地域系统研究始终致力于综合分析构成陆地表层格局的物质、能量基础;确定在全球变化、全球一体化和国家转型期新形势下的区划目标,拟订相应的区划原则、途径和方法、指标体系;探讨不同区域的空间排序和组合结构;明晰自然要素变化与社会经济发展的时空分异规律,构建区划方案。地域系统研究不断拓展方向,结合地域系统理论方法及其区域特征,通过创新发展研究范式,开展气候变化影响与风险评估、重大自然灾害风险定量评估、多灾种风险过程机理与防范体系建设等,为国家防灾减灾提供科技支撑;并通过应用数理、遥感、地理信息、大数据与人工智能等技术,开展从定性到定量的综合集成,利用新的技术方法以实现格局表达精准化、定量化和智能化。

(2)综合自然地域系统动态及关键要素。全球环境变化影响不断增强、社会发展与环境保护矛盾日益突出,综合自然地域系统研究重点从以静态刻画为主,向揭示动态演变规律深化[11]。****对中国东部地区温度带普遍北移的特征取得了较为一致的认识,干湿格局响应气候变化则更为复杂[12,13,14,15]。在明确陆地表层要素变化及其相互作用过程的基础上,评估气候变化和不同社会经济发展模式对陆地表层要素与格局变化的影响,预估陆地表层格局的发展趋势。这也是实现“未来地球”计划推进社会过渡到可持续发展战略的一个重要方向。近年来以气候模式集合和多排放情景为主,对未来格局动态趋势的研究不断深入和综合[12, 16]

“人类世”阶段自然生态—社会经济复合系统的脆弱性发生复杂变化,气候极端事件和自然灾害影响加剧,研究气候变化与人类活动对地域系统热量温度指标、干湿指数与植被状况[17,18,19,20]等关键要素变化特征、相互作用与影响,揭示构成地域系统的自然与人文要素耦合、指标要素的时空分异过程及其驱动机制,阐明自然灾害风险及其防范、气候变化综合影响与风险等成为全球变化新趋势下的研究重点。

2.2 气候学

气候学领域以研究中国气候特征及成因机制为开端,坚持基础研究与国家战略需求相结合,先后发展了季风气候、海洋气候、辐射气候、农业气候、农田小气候、气候灾害、物候、历史气候、城市气候、气候变化影响等多个研究方向。特别是在发展过程中,根据气候科学的发展趋势与国家战略需求,不断拓展气候学的研究领域,包括从辐射气候到辐射遥感,从季风气候、气候时空特征到全球变化,从气候形成的自然因子到人类活动对气候变化影响,从农业气候、农业气候区划到气候资源与气候灾害研究,从海洋气候到海洋气候图集编制,从物候观测到物候应用研究等;并在强调气候、物候观测与分析研究的同时,发展了利用史料研究气候变化及影响,利用树轮、孢粉等重建气候变化以及气候模拟等手段与方法。气候学当前重点研究方向主要包括历史气候变化、物候学、气候变化影响与适应、陆气相互作用等。

2.3 地貌学

地貌学主要研究地球表层形态特征的成因及其演化过程。研究方向涵盖了流水、风沙、构造、喀斯特、冰川、河口海岸等地貌分支,以及青藏高原、黄土高原、长江中下游、黄淮海平原、东北黑土区、南方红壤区、西南喀斯特区、丹霞、张家界、新疆、南极等区域地貌。1958年地理所地貌室成立后,曾形成国内地貌学研究的一支最大队伍,建立了国内一流的流水地貌、坡地、孢粉、沉积物和14C实验室,产生了诸多高水平的成果。早期地理资源所的地貌研究主要结合地理专项考察,包括黄土高原水土流失调查、长江上游河谷地貌和南水北调考察、汉水流域考察、黄泛区调查、成渝成昆等铁路选线等,并组织和领导全国地貌****,完成了黄土高原“多沙粗沙区”范围界定、中国地貌区划和制图等工作。其中,黄秉维、罗来兴通过大量实地考察,摸清了黄土地貌发育规律和空间分布格局,编制了黄河中游流域土壤侵蚀分区图,提出“全面规划、综合治理、工程与生物措施相结合”的治理方针,为黄土高原水土流失的治理起了奠基作用。沈玉昌在长江上游河谷、长江中下游、黄河和渭河下游河流地貌等方面的开创性工作,不仅使地理资源所河流地貌研究长期处于全国的引领地位,也为中国江河流域规划、重大水利工程建设等提供了重要的科学依据。地貌学近期主要研究方向集中在风水营力作用下的地表过程及其环境效应,包括坡面侵蚀与沟谷发育机理、流域/区域侵蚀产沙特征及变异机制、河道水沙过程与模拟、河道演变规律及其机理、三角洲地貌演化、水土保持与河道整治、风沙地貌与干旱区环境演变和海陆交互作用;揭示流水作用下的地貌与地表物质迁移过程及其对资源、环境可持续性的影响,不同时间尺度下区域地貌过程、格局、演化及其对环境变化的响应,以及自然与人为因素影响下流域系统的耦合、响应、演化与功能调控等科学问题。为新时期国家流域管理、资源开发利用、水土流失、土地退化、洪水泥沙灾害防治,促进人与自然和谐相处等方面提供科学理论、方法和支撑作用。

2.4 生物地理学

生物地理学是研究生物圈中各种生物的地理分布规律、生物圈各结构单元(各地区)的生物种类组成、特征及其与自然环境之间相互关系的学科,包括植物地理和动物地理两个研究领域。1958年建立的自然地理生物地理研究组以研究动植物的类型结构、功能、生态地理分布规律,发展演化与人类活动的相互关系为方向,为生物资源的合理开发利用及地理环境的保护提供科学依据。学科组主要在西北、华北和青藏高原地区开展研究工作。1978年改革开放以来,主要侧重于“中国植物区系地理研究(1989—1998年)”“中国动物地理学研究(1994—1996年)”“青藏高原生态系统对气候变化的响应与适应”等基础研究,以及“京津地区植物资源的评价及合理利用改造的对策(1983—1985年)”“油气资源遥感勘探技术研究——油气资源的指示植物群落与烃类生物地球化学异常研究”“青藏高原生态安全屏障建设的环境效应评价与优化建议”“青藏高原生态现状及生态建设效应评估”“全球生态环境遥感监测2018年度报告——‘一带一路’交错带生态环境状况专题报告”等应用基础研究。充分利用多学科理论、方法和技术成果,生物地理学研究一直在机理探讨和实践应用两大方向发展。现阶段关注的重点主要是国家生态文明建设对生物地理学的刚性需求,着力指导自然保育和生物多样性保护实践和高效利用,明确与生态环境保护有关的生物地理学基本问题。

2.5 土地变化科学

土地变化科学以陆地景观格局与表生过程研究为主线,在遥感和地理信息系统技术的支持下,结合野外调查和实地观测以及模型模拟,分析土地资源状况、土地利用和土地覆被变化(LUCC)的时空过程、驱动因素与变化趋势,研究LUCC对全球变化的响应与适应,评估LUCC对区域土地系统服务功能(包括粮食安全)和生态环境的影响,揭示LUCC的动力机制以及LUCC与陆地生态系统界面过程之间的相互作用机制;在土地资源评价研究的基础上,分析土地变化过程中区域土地资源供需关系及用地冲突,探讨土地资源优化配置和高效利用模式,阐明土地资源可持续利用的战略途径,为国家协调用地冲突、维护国家粮食安全和区域生态安全提供咨询建议。LUCC及其生态效应的研究,曾为中国自然地理学和土地变化科学的发展做出了开拓性的贡献,取得了许多重大科研成果,如《中国1∶100万土地资源图》和中国土地资源承载力等。该领域在土地类型研究、土地适宜性与土地可持续利用评价、土地生产潜力评价、LUCC驱动机制、土地资源优化配置、土地变化的生态影响等方面具有深厚的研究积累。LUCC是自然—社会—经济系统相互作用的结果,是陆地表层过程的综合反应。LUCC研究有助于对全球变化过程与机理的理解,也有助于经济与环境协调发展,日益成为全球变化科学与可持续科学关注的一个重要研究领域。

(1)土地变化科学和农业发展。1949年以来,老一辈科学家从多个方面对土地变化科学进行了开拓性研究,黄秉维倡导的土地生产潜力研究、赵松乔开展的土地类型研究、吴传钧的土地利用研究以及石玉林的土地资源科学研究,都为中国土地科学研究奠定了基础。在此阶段,为农业服务成为土地科学研究的一个主攻方向[21],自然资源区划、农业地理、耕地资源利用、干旱区耕地资源开发成为地理学研究的热点问题[22,23]。在此理念指导下,赵松乔20世纪60年代开展中国土地类型研究,70年代编制了三江平原和呼伦贝尔盟1∶50万土地类型图;80年代编制了1∶100万土地类型图,重视土地结构和土地功能研究,使土地类型研究成为体系完整、较为成熟的学科。石玉林编制的《中国1∶100万土地资源图》被列为国家1978—1985年科学技术发展规划重点项目第一项中的重要内容。该图包含土地资源质量与潜力、土地资源基本类型与土地特征、土地资源利用的基本状况等三大基本内容[24];在制图的过程中,建立了一套具有中国特色的土地资源分类系统、评价原则、指标和方法。这些专题图的编制为国家大农业的发展和土地的合理利用提供了重要支撑[25]

(2)土地利用与土地覆被变化研究。进入20世纪90年代,全球环境变化研究领域逐渐加强了对LUCC的研究[26],建成了中国80年代以来时间序列最长、质量可靠的空间分辨率为30 m土地利用/土地覆被数据库,从近30年和未来50年以及全球和中国等不同时空尺度刻画人类活动对LUCC影响的时空特征[27,28,29]。中国有限的土地资源在满足粮食安全、城镇化发展、生态保护三者需求之间存在冲突,土地政策存在“三元悖论”[30]。研究团队以城镇用地、农地、生态用地之间的用地冲突为主线,构建了“三生用地”分类体系[31],系统研究了城市扩张及其对耕地的占用、农地撂荒和集约化[32,33,34]、生态脆弱区土地利用变化等。在此过程中,形成了较为完善的土地变化研究方法体系,包括遥感调查、农户调查、指数构建、变化归因、系统模拟、效应评价等[35,36]

驱动机制研究是LUCC研究的焦点、难点问题,研究团队综合分析了自然因子、经济因子、社会因子、国家政策等,建立较为完整的LUCC解释框架,率先对LUCC及其驱动机制开展了研究。2000年以来,在导致中国LUCC的因素中,劳动力机会成本上升、大规模的城乡人口迁移、人口增长、农业结构调整等推动了中国土地覆被的变化,在定量表达这些人类活动因素及自然因子对LUCC的影响和贡献程度等方面取得重要进展;如在耕地撂荒方面,从宏观上分析了中国山区耕地边际化问题,以劳动力机会成本上升为切入点,研究了中国山区农地撂荒的发展机制。

(3)青藏高原土地利用与土地覆被变化及其效应与适应。围绕青藏高原土地变化与区域发展的基础科学问题,开展了长期持续的野外调查与系统的科学试验,在高原LUCC格局、过程、效应与适应策略等研究方面取得了重要进展[37]。阐明了青藏高原LUCC特征、过程与趋势[37,38];揭示了高原土地覆被的垂直分异特征[39]与水平分布区域差异及其成因[37],以及青藏高原土地覆被变化与气候变化的互动关系,模拟了高原局地LUCC对区域气候的影响[37, 40];评估了高原自然保护区成效,提出协调发展途径;提出了高原农牧民生计调整与气候变化应对策略,系统总结了高原生态文明建设状况。

2.6 水文地理

在自然与人类社会的发展过程中,水循环起着重要的调控作用。水循环是联系地球系统“地圈—生物圈—大气圈”的纽带,是国际前沿全球变化三大主题(碳循环、水资源和食物纤维)中的核心问题之一。水文地理学是研究地球表面各类水体性质、形态特征、变化和时程分配与地域分异规律的学科。地理资源所水文地理研究方向以陆地水循环及其相关的地理过程为核心,依托四大基础科研平台(大型数据库平台、野外试验基地平台、室内实验及分析系统平台、数值模拟平台)开展基础理论与方法以及应用基础研究,致力于解决“水短缺、水污染、水生态、水灾害、水管理”五大水问题的关键科学问题及国家需求,揭示水循环及其为纽带的地表过程相关规律,发展陆地水文学及其水文地理学理论与方法。研究内容主要包括:① 不同时空尺度水循环物理过程的演变规律和机理,重点研究降雨径流关系、产汇流机制和水热过程及其演变机理;② 研究和开发实验观测的新方法和手段,揭示“大气降水、地表水、土壤水、地下水、生物水”转换过程及其机理;③ 研究区域和流域水文格局、变化与成因,流域水循环对环境变化的响应机制,为区域水循环的多尺度、多方法模拟提供理论基础和重要参数,为不同区域的水循环调控提供科学理论支撑;④ 研究区域水资源格局、变化与成因,流域水量、水热、水盐、水沙的平衡调控机制与方法;⑤ SPAC系统土壤、大气、植物各个界面的水分、能量及物质迁移转化过程及其调控机理,揭示SPAC系统界面过程对气候变化和人类活动的响应机制,提出适应变化环境的SPAC系统水循环过程新的实验观测方法,并分析主要生态系统需水规律与提出需水量估算方法,阐明主要生态系统水、热、化学物质迁移转化规律,以及生态系统与社会经济需水规律;⑥ 研究高效用水机理与技术、现代节水灌溉(喷微灌)理论与技术、微咸水/咸水安全高效利用方法、盐碱地农业与植被建设理论与技术、农业面源污染控制理论与技术;⑦ 变化环境下的水资源承载力与水资源适应性对策;⑧ 研究非常规水利用的理论、方法、模式和实际应用;以良性水循环为目标,研究工程、经济、社会发展对水系统的作用与反馈,探讨人类活动、水资源管理制度和政策的影响,揭示人文过程对流域水循环和水资源的影响机理与效应,为水系统的科学调控提供依据;⑨ 针对水循环联系的物理过程、生物及生物地球化学过程与人文过程相互作用的复杂反馈机制,创建针对多要素、多尺度、多过程特点的多元水循环与水系统模拟模型,发展区域、流域水系统不同组分的耦合—分离核心模拟技术,识别影响水系统变化的关键驱动因子和控制变量集,研究变化环境下水系统演变的资源—环境—生态效益,发展针对国家需求目标的流域水系统综合调控理论与技术,为变化环境下的水资源安全保障、农业节水、面源污染控制、盐碱地治理开发等国家战略需求提供科学依据和方法措施。

2.7 化学地理

早在20世纪60年代,黄秉维明确提出把发展化学地理学作为自然地理学综合研究的三个新方向之一。地理资源所作为化学地理学的首倡单位之一,在化学地理基本理论和研究方法的形成与发展,以及化学地理的应用领域和学科建设等方面发挥了重要作用[41,42]。在化学地理理论方面,明确其基本任务是阐明地理环境的化学特性及其与人类的相互关系;在化学地理应用领域,始终把化学地理的发展与中国卫生保健、环境保护和农业生产等领域的重大任务相结合,形成了污染化学地理和医学化学地理等研究体系,并在地理学综合观和整体观思想的指引下,强调发展生态化学地理和区域化学地理[43,44,45]。应国家需求,研究团队分别开始了地方病防治和环境保护工作方面的研究。一方面,通过长期进行克山病、大骨节病等地方病的调查及其环境病因与防治的研究,不仅为上述疾病的控制做出了重大贡献,而且创立和发展了中国的医学地理学研究体系。另一方面,地理资源所作为中国最早从事环境科学研究的单位之一,推动了环境质量调查、环境质量评价、环境背景、环境容量和环境治理等理论和技术的建立和发展,发展了环境地学和环境地理学的研究体系。2000年以后,在持续开展化学地理及其应用研究的同时,研究所强化了环境污染治理和健康保护的技术研究,实现了从化学地理到环境地理、从医学地理到健康地理的转变。未来的环境地理与人类健康研究将以地理环境的化学属性为重点,以人口健康保护为核心,探讨环境保护、社会经济发展和人类健康安全在整体上协调的机制与途径,发展健康地理和环境修复技术研究。

3 重要成果与影响

3.1 系统刻画自然地理特征,引领中国综合自然区划

在地域分异规律理论指导下,中国综合自然区划基础研究发展迅速,全国区划方案制定广泛开展。20世纪50年代,国家需要因地制宜部署农林牧生产,在全国各地自然条件和自然资源的综合科学考察的基础上,综合自然区划研究广泛展开。随后产出了包括中国自然区划大纲[46]等一系列研究成果。特别是和黄秉维等领导的研究团队,在地貌、气候、水文、土壤、植被等8个部门自然区划的基础上,开展的全国综合自然区划,目的是以持久地维护、提高、最大限度地发挥自然生产潜力,服务于全国农业生产布局为目标,最终完成了《中国综合自然区划(初稿)》[4]。该研究的方法论为之后研究所遵循,成果一直为农业、林业和交通等有关部门的重要依据,在全国影响巨大,以此为主体的研究成果获得1987年国家自然科学二等奖。

随着研究深入、技术发展和国家需求扩大,郑度等[5]创新性的在综合自然区的研究引入宏观生态学理论和方法,完成了中国生态地理区域系统重大成果。这一陆地表层格局研究的新突破,促进了气候变化的区域影响与风险评估和适应对策、重大自然灾害综合风险评估等自然地理综合性研究,为探讨全球变化对中国陆地表层和社会经济发展的可能影响提供科学的区域框架,拓展了地域系统学科理论与方法的进展。以生态地理格局为框架,针对联合国气候变化框架公约(UNFCCC)关注三个重点领域的自然生态系统,对中国21世纪自然生态系统在气候变化背景下的生态系统脆弱性进行了评价[47]。进一步揭示格局对气候变化的响应,发现中国生态地理温度带的范围和界线将有较大范围的变动,未来高纬地区较高的增温将带来温度带的北移程度高于低纬度地区[12],随着未来升温加剧,干湿格局对气候变化响应的敏感性将可能增强[13, 16]。研究成果在国内外的知名出版社和学术期刊上出版和发表,并被广泛引用,部分内容已体现在IPCC第五次气候变化评估报告中。

3.2 建立综合自然灾害风险定量评估体系,揭示综合气候变化风险格局

随着科学技术进步和社会经济发展,为满足国家对重大灾害防控的新要求,自然灾害风险的定量评估成为国家灾害风险防范的重大需求。21世纪初建立了综合自然灾害风险定量评估体系,利用过去灾情数据,拟合出致灾因子强度与承灾体受损程度的关系,建立起不同灾种的脆弱性曲线,使重大自然灾害承灾体社会经济的可能损失得到定量评估。进一步利用灾损空间栅格量值的标准差为基础,构建风险等级划分方法,综合表征灾害风险强度[46]。这一评估体系,既可定量表达不同致灾因子强度下的定量灾损大小,还可综合集成表达风险等级,为灾害风险防治提供科学依据。相关成果获得2018年度国家科技进步二等奖。

在国家“十二五”科技支撑计划项目“重点领域气候变化影响与风险评估技术研发与应用”的资助下,创新性地将区划等级和风险模拟方法体系相结合,自上而下和自下而上方法相结合,建立了中国气候变化风险评估技术体系,形成了21世纪中国综合气候变化风险区划方案[49]。中国综合气候变化风险区划通过建立三级气候变化风险区划理论和方法体系,有效地解决了气候变化风险的多尺度问题,体现了气候变化发生—敏感区域,极端事件严重程度—危险区域,承险体脆弱性—风险区域;表征了气候变化将致使极端事件增加,对社会经济产生更多的灾害,中国东部发达地区将承受更高的风险。并将研究方法论在“一带一路”陆域自然地域系统开展应用[50]。该成果拓展了陆地表层系统格局变化的内涵和应用范畴,为国家应对气候变化提供区域框架。

3.3 创新历史气候变化研究方法体系,揭示过去2000年中国气候变化及影响的基本特征

研究过去2000年气候变化不仅可为诊断20世纪气候增暖的历史地位和评估全球环境变化的影响提供自然背景,而且也是区分当前全球增暖的自然和人为驱动贡献、预估未来气候变化的重要科学基础,是国际全球变化研究一直关注的核心问题之一。为此,地理资源所历史气候研究团队在自然地理学综合研究的思想指导下,创新了历史气候变化研究方法体系,揭示了过去2000年中国气候时空变化与影响的基本特征,辨识20世纪气候增暖的历史地位。研究成果主要包括:

(1)整编了中国气候变化的史料记录4000余万字,建立中国历史时期气候变化史料数据库[51,52],点校出版了《清代奏折汇编》[53]《清实录气候影响资料摘编》[54]等历史气候资料集。创建了史载气候信息最佳时空分辨率及可靠性评估与多源史料信息同化校准方法,重建了过去2000年中国东中部分辨率为10~30年的温度变化序列[55]。创建了时空记载不均匀的史载气候信息同化校准方法和高分辨降水重建方法,重建了中国东中部及华北、江淮和江南地区的过去1500年干湿变化序列[56]。创建了利用雨雪分寸重建降水变化的方法体系[57],重建过去300年多个站点的逐季降水[58]和梅雨[59]及华北地区季风雨季[60]变化序列。建立了覆盖中国高纬度与高海拔地区的树轮样本库及其相应的响应函数模型库,发展了中国干旱与半干旱地区的树轮交叉定年方法体系[61],建立了百余个地点的树轮年表,其中最长者超过3500年[62];重建了青藏高原东北部多个地区长逾千年的温度[63,64,65]与降水[66,67]及干湿[68]序列。

(2)创建了融合历史文献、树轮等代用证据的高分辨率气候变化信息提取、定量校准和集成方法体系,以及融合多种代用指标与多尺度信号重建高分辨率气候变化序列的集合校准新方法,揭示了过去2000年中国气候变化的基本特征[69],包括:温度变化幅度、速率、周期、区域差异[70],20世纪气候增暖的历史地位及历史相似型[71,72],不同地区降水变化周期、突变特征[73],百年冷暖阶段的旱涝格局[74]等。以断代史方式系统阐述了中国历朝气候变化及其影响,揭示了气候变化与农业、经济、人口、疆域、战争等的可能联系[75]。开展了气候系统内、外驱动异常驱动的中国气候变化的敏感性模拟试验[76],诊断了自然外强迫异常导致中国气候变化的区域差异[77]

上述成果得到国内外同行的高度关注与广泛引用,其中主要成果“过去2000年中国气候变化研究”获国家自然科学二等奖(2012年);《清实录气候影响资料摘编》获中国出版政府图书奖提名奖(2018年);《中国历朝气候变化》获全国优秀地理图书奖学术著作奖(2017年),并入选“新中国70年百种译介图书推荐目录”(2019年)。这些成果在国内外产生了重要学术影响,显著促进了中国历史气候与国际全球变化前沿研究的接轨。

3.4 发展物候观测体系,深入揭示全球增暖背景下中国植被物候变化的时空特征

物候是中国的“乡土学科”[78],是全球变化的“指示器”,揭示物候对气候变化的响应机理是评估气候变化影响与利用史料重建过去气候变化的关键。物候团队在“中国物候观测网”(简称“物候网”)的能力建设和物候时空变化规律研究上均取得重要进展。

(1)在竺可桢倡导和领导下,于1962年成立了“物候研究组”,组建了“中国物候观测网”,目前已发展成具有近50个观测站点、人工观测和全自动仪器观测并重的现代化物候观测系统,已累计获取人工及近地面传感器观测的600余种木本、草本、动物等多类物候记录近150万条。上述资料在国家地球系统科学数据中心与公众共享,极大支撑了近年国内外的物候学研究。

(2)积极开展全球变化背景下物候学学科发展的理论探讨,深入研究了全球增暖背景下中国植被物候变化的时空特征。提出了全球变化科学兴起是带动新时期物候学发展契机的观点,明确指出作为一个基础数据平台,“物候网”应钻研观测技术,建立先进观测体系[79,80]。采用中国历史文献资料重建了过去物候和气候变化,形成中国物候研究的一个特色领域[53, 81-83]。积极开展气候变化对中国植被物候变化影响研究。系统报道了1852—2007年间中国区域春季物候提前和秋季物候推后的变化规律[84,85,86]。论述了中国植被春季物候对温度敏感性随地理要素的变化规律及其机理[87,88]、并提出秋季物候对昼夜增暖响应的反相响应特征[89];研究了物候变化对生态系统过程和人类旅游活动的影响[90]。根据春季物候对气温变化的响应机理,预测了未来100年中国木本植物春季物候继续提前、植被格局将发生较大变化的情景[91]。最近利用室内控制试验方法研究物候变化的驱动因素[92],揭示了植物激素对秋季物候变化的影响[93],为进一步更深入揭示植物物候变化的生理生态和分子生物学机理打下坚实基础。上述研究在国内外学术界产生重要影响,历史物候重建结果被认为是全球变化影响领域的独特成果,对从长时间尺度评估气候变化影响提供了重要素材。IPCC AR5引用了物候团队8篇论文,阐述中国区域物候变化时空特征以及全球变化对生态系统的影响。先后出版了《物候学》《中国动植物物候观测年报》和《中国农业物候图集》等专著、图集18册,并参加了国家重大项目《中国国家农业地图集》的编制工作。参与的研究项目获得了中国国家科技进步二等奖和中国科学院科技进步一等奖等奖励。

3.5 生物地理研究夯实生态文明建设的基础研究

按照黄秉维的学术思想,1958年地理所自然地理室组建生物地理组,包括植物地理组和动物地理组。生物地理研究组的研究方向是研究动植物的类型结构、功能、生态地理分布规律,发展演化与人类活动的相互关系,为生物资源的合理开发利用及地理环境的保护提供科学依据。学科组建立后主要在西北、华北和青藏地区开展研究工作。

地理资源所的植物地理学研究从植物地理调查开始,历经60余载,先后承担和参加新疆综合科学考察、青藏高原综合科学考察等科研任务50余项。在植物地理学领域,首次系统阐述植物区系地理的研究历史、方法、理论、趋势和新方向[94];阐明了中国植物区系的性质和各成分间的关系[95,96,97];揭示了中国植物特有科属区系地理特征[98,99,100]及特有属生物多样性特点[101];阐明了青藏高原特有种子植物区系地理特征及生物多样性格局[102];全面、系统、深入地研究并论述了华北植物区系地理的各方面,特别是对植物种水平的区系、植物区系分区、植物区系起源以及对主要植被类型的区系分析等方面,在理论和方法上都有所创新,提出了新见解和结论[103,104,105,106];运用谱系地理学理论,结合基因和气候数据采用模型进行的再分析,发现晚第四纪以来青藏高原植物物种分布呈现出“相对稳定”“先收缩后扩张”“先扩张后收缩”3种分布模式[108],论证了青藏高原地区植物的历史迁移至少存在3条迁移路线[109],这些迁移路线也得到了孢粉化石数据的支持,为青藏高原植物演化与环境变化关系研究奠定了基础。上述研究发表论著、报告和编辑地图等约200余篇(部),在中国植物地理学领域取得了的原创性成果,获得植物地理、植物生态学等方面****及林业、农业等工作者的广泛引用和高度评价,《中国自然地理:植物地理》等14项成果获得国家级和部级科技奖。

地理资源所的动物地理学研究也从动物地理调查开始。以张荣祖为主的****,历经60余载,先后承担“热带动物地理学考察(1956—1957年)”“青海甘肃动物地理考察(1958—1960年)”“贵州动物地理考察(1963年)”“中国科学院云南西双版纳大勐龙生物地理群落站开展土壤动物调查(1964年)”等野外考察,开展“中国科学院长白山森林生态系统定位工作站土壤动物研究(1979—1996年)”,3次获得美国国家地理学会基金资助,开展“中国灵长类生物地理和自然保护研究(1986—2001年)”。在动物地理学领域的开创性和系统性工作,主要体现在《中国自然地理:动物地理》的编写(1975—1976年)。此著作阐明了中国动物分布型、特化及分化中心,研究了哺乳动物现生种(类)地史分布及其变迁、分析了自然条件与动物分布的关系[110],完成动物地理区划,该工作获1980年中国科学院科技进步二等奖,填补了中国在此领域的空白,对中国动物地理学的发展有重要的作用,此专著被日本同行译为日文出版。1994—1996年张荣祖作为国家自然科学基金委员会支持国家“八五计划”重点项目“中国动物地理学的研究”核心专家之一,承担鼠兔亚属地理分布、《中国动物地理区划》的再修订等专题研究和《中国动物地理》专著的写作。1998年《中国动物地理区划》选入了《中国动物地理学研究》专辑;1999年《中国动物地理》专题单独出版,2004年选入了《现代生命科学丛书》再版。1997年出版了《中国哺乳动物分布(中英对照)》专著,获全国科技出版物三等奖。

3.6 在土地类型和土地资源等方面的开拓性研究,奠定土地科学的研究基础

土地类型研究是自然地理研究的重要研究方向,赵松乔主持出版了中国第一部《1∶100万的土地类型图分类系统和制图规范》,倡导和开展了土地系统研究和土地结构研究,建立了中国土地类型研究的完整科学体系。石玉林主持编著了《中华人民共和国1∶100万土地资源图》研究,系统阐明了土地资源学许多科学概念,建立了完整的土地资源分类体系和相应的土地资源统计体系,并建立了中国土地资源数据库,为全面推动开展中国土地承载力研究做出建设性贡献,为中国土地资源学科形成与发展奠基了基础,研究成果于1992年获国家科技进步奖二等奖。

3.7 率先开展LUCC研究,推动LUCC研究不断深入

随着中国经济的快速发展和大规模的城乡人口迁移,中国土地利用发生了诸多新变化,土地利用研究团队从土地利用集约利用、农地流转、农田规模经营、农业专业化、农田开垦、农田撂荒和退耕、森林转型、生态建设和建设用地增长等对中国土地利用进行了研究和刻画,从自然、社会、经济和政策方面等综合解释了LUCC[111,112],发展和提出了一些刻画土地利用的概念、指数和模型,众多研究成果在国内外产生重大影响并起到引领作用。目前在知网平台上,以“土地利用”为关键词检索文章,引用次数最多的20篇文章中,有13篇和本研究团队有关。以山区坡耕地利用为例,研究团队在老一辈科学家相关研究的基础上[113],开展了全国层面和重庆、太行山、江西等耕地撂荒典型区研究,以劳动力析出和劳动力机会成本上升为切入点,构建了系列农户模型,对耕地撂荒、土地集约度、土地流转、薪柴砍伐、牲畜养殖、生计策略等内容进行了深入研究,并综合评估劳动力析出对生态压力的影响。

团队成果在国内外产生了显著的影响,部分成果被中央领导批示、被省部级规划采用,研究成果广泛应用于国家发展改革委员会、农业农村部、自然资源部等行业部门。LUCC研究成果受到国内外****的广泛关注,出现了数量众多的高被引论文,三位****被爱思唯尔列为“中国高被引****”榜单。

3.8 阐释青藏高原土地变化区域分异规律,推动高原土地科学发展

从地形、地貌及高原形成的角度,科学界定了青藏高原范围[115],为高原生态与环境及地学相关研究提供了参考基准。在分析气候条件和人类活动强度的基础上,首次阐释了藏北无人区的范围,并在大量实地调研的基础上,借助遥感影像,生成了羌塘无人区、当曲资料匮乏区、珠穆朗玛峰地区[116]、科西河跨境流域[37, 117]、拉萨河流域[118]、黄河源区[119]和大渡河上游[120]等区域的第一手土地覆被数据,出版了拉萨河流域湿地等专题图件[121],为青藏高原相关研究提供了科学借鉴。

突出自然地理的尺度效应和区域分异规律,在青藏高原整体、典型区、样带、样点等不同尺度上,着重构建高原土地变化格局、过程、机制、效应与应对的科学链条[122,123]。发现高原土地利用与土地覆被结构整体稳定,区域差异明显[38, 124]。较早采用NDVI等遥感手段反映高原土地覆被状况,发现高寒区NDVI在一定范围内波动不能反映植被变化,构建了高原人类活动空间化技术体系,并发现高原人类活动强度上升明显[125,126]。在此基础上,阐释了高原土地变化与气候变化的关联,发现高原西南部草地植被对气温变化响应敏感,东北部对降水响应敏感,中部地区气温和太阳辐射的耦合作用对草地植被影响明显[127]。同时,土地利用与覆被类型对地表气温变化具有稳定的、系统性的影响,未利用地升温幅度最大,林地升温趋势最弱[40]

注重科学研究与国家需求紧密结合。针对生态建设与区域发展中存在的问题,提出了加强生态监测[128]、防控灾害风险、高海拔生态搬迁、边疆民族协同发展等方面的策略建设,得到国家的采纳和应用,对稳定和提升高原生态安全屏障功能、促进区域可持续发展发挥了积极的作用。基于长期的青藏高原研究积累,全面评估了青藏高原生态文明建设状况,主要成果纳入《青藏高原生态文明建设状况》白皮书(2018年)。这是对中国青藏高原生态文明建设的一次系统总结与评估,以充分事实和大量数据向全世界介绍了中国青藏高原生态文明建设的状况和成就。部分成果荣获环保部科技进步二等奖(青藏高原生态评估和环境保护综合规划,2012年)、西藏自治区科技进步二等奖(2010年)、中国出版政府图书奖提名奖(《青藏高原铁路沿线生态与环境》(2010年)、青海省人民政府优秀论文一等奖(2010年)、中国科协首届优秀期刊论文奖(2016年)等。

3.9 开拓水文区划,引领中国水循环观测与实验技术创新

在黄秉维的“热水平衡”学术思想指引下,罗开富、郭敬辉、刘昌明等引领水文地理研究,开启水文实验,开展区域水文、水量平衡、水分循环实验和水环境研究。1955年发表了中国第一幅年径流模数图,1956年开展“中国水文区划”,1957年发表了第一个中国河川径流量的估算结果,与1987年水利电力部发布的“中国水资源评价”数字仅相差2.6%。1959年公布了全国流域面积大于100 km2的河流条数为50000多条,发表了《中国地表径流形成的自然地理因素》等经典水文地理著作;首次估算了新疆、甘肃地表水资源,其数值仅与1987年国家公布值分别相差3.6%、2.0%,为新疆及河西走廊农田布局提供了依据。这些早期成果对全面认识中国水文地理特征、流域整治以及国民经济发展起到了重要作用。

从20世纪50年代末开始,研究所发展水文实验,建设了中国地理界首个大型室内降雨径流实验室,筹建了陕北黄龙小流域试验站,开展了黄土高原水土流失与水土保持的研究工作,阐明了随着森林覆盖率的增加,年均地表径流减少与地下径流增加的“X”水文效应,是国内首个森林变化的水文效应成果。针对缺乏或无实测水文资料的中、小河流桥涵孔径设计,提出了暴雨洪峰流量的计算方法,解决了无资料地区小流域暴雨洪水的计算难题,方法被编入国内10余种高校教材与工程设计手册,成果被广泛应用于陕、甘、宁、青、藏等地铁路建设中,获1978年全国科学大会重大成果奖。研发了国际领先的水循环过程观测与实验装置,包括新一代水循环室内实验系统、降水—地表水—土壤水—地下水的自动化监测设备、水体同位素快速采样测定装置,率先实现土壤—植被—大气连续体全变量全过程精细观测;设计并推广了水分运移观测与调控技术,包括盐碱地水盐调控方法及配套技术、农田灌溉施肥优化方法及配套技术,显著提升农业水肥利用效率;创新了流域水体污染物来源识别与控制技术,包括土壤地下水污染监测与修复成套技术与装置、地表水体水质演变及特征污染物来源解析方法及配套技术、基于同位素示踪的中国北方滨海地区海水入侵过程模拟方法与技术,为河流、土壤、地下水污染溯源、过程模拟及修复工艺设计提供了重要实验方法和技术支撑。发表一批国内外有影响的科学论著,研发一批发明专利,获多项省部科技成果奖励。

3.10 推动流域水文学的学科发展,革新水文地理学研究方法

20世纪80年代开始,中国水资源短缺问题凸显,黄河频繁断流,北方水资源短缺问题成为水文地理研究的重点。主持了南水北调专家调研,对南水北调东线一期工程可行性与中线引汉可调水量进行评估。开展了“四水”转化的理论研究,提出了界面水文过程概念,倡导雨水资源化,发明了农业节水灌溉技术,开发了水资源统一调配管理系统,出版了中国第一本干旱区水文水资源专著。关注生态需水问题,首次提出生态环境用水的概念及其估算方法,引领了国内生态需水量评估方法的研究。20世纪90年代,在“四水转化”研究的基础上,开展典型农田SPAC系统水分运行转化规律及调控实验,从“四水”转化深入到“五水”转化研究,提出了界面调控理论,开展了以农业节水为中心的水分运移研究,获得1992年中国科学院自然科学二等奖。主持“黄淮海平原旱涝碱综合治理”“黄淮海平原农业综合开发”,获第三世界科学组织网络(TWNSO)1993年度农业奖。

2000年后,气候变化和人类活动对水文过程的影响受到关注,水文地理学开展了环境变化下流域水循环的演变规律研究。针对华北水资源安全问题,主持了全国第一个涉水的“973”项目“黄河流域水资源演化与可再生性维持机理”,揭示了黄河流域水循环演化机理,提出了黄河流域水资源可再生性维持方案。建设了华北地区水循环实验流域研究平台,揭示了水保工程等对产汇流的影响机理,阐明了山区与平原地表水—地下水转化关系,提出了水文非线性系统理论与方法,开发了流域分布式时变增益水文模型(DTVGM),综合集成水循环多尺度、多要素和多过程的数值模拟能力,构建了陆地水循环综合模拟系统(HIMS)。

2010年后,全球变化与水安全受到国际社会的关注,水文地理学聚焦全球变化对区域水循环的影响研究,系统揭示了流域径流形成与转化的非线性机理,阐明了干旱区包气带水汽传输机制,探明了工程调控对水量水质影响的动力学机制,量化了闸坝群调控对径流过程和水污染的累积影响及其区域差异,成果获得2017年度国家自然科学二等奖。面向国家“智库”建设的需求,水文地理学开展了水安全的战略咨询研究工作,预估了全球变化下水循环过程的演变趋势,评估了中国不同流域的水资源安全态势,提出应对气候变化和人类活动影响的水资源管理对策,提交的多份咨询报告被国家采纳。同时,分总论和流域分论系统总结了中国水文地理学研究的发展历程,在国家重点图书出版规划项目资助下,出版了《中国自然地理系列专著》之《中国水文地理》。

21世纪以来,研究加快推动了水文地理学由统计分析向过程解析与模拟转变,革新了水文地理学理论框架与技术方法体系。阐明了蒸发过程控制因素的区域规律,揭示了“蒸发悖论”现象的时空演变机制,改进了互补蒸发模型,促进了水文地理学的新发展。面向经济社会建设、水安全管理等国家重大需求,发展了HIMS水循环综合模拟技术体系。面向青藏高原稀缺资料地区,构建了西藏74县山洪水情预报预警系统,并在生产管理中得到了应用与推广,覆盖了西藏山洪灾害频发区、易发区、多发区,直接受益人口达300多万人,开展了上百次培训,促进西藏水利现代化建设,支持中小河流山洪灾害防治。

3.11 开拓全球变化水文学前沿交叉领域

在陆面水文模型中耦合人类用水过程参数化方案,发展了大尺度分布式生物圈水文模型,使模型能同时评估气候变化和人类用水活动的影响;采用多气候模式和多影响评估模式集合预估的方法,预估了中国及全球陆地水循环系统演变及风险变化趋势,模拟结果通过地球系统网格联盟(ESGF)数据库全球共享;揭示了流域径流对气候变化的响应机理,以及陆地水循环变化反馈气候的多个机制。培育了水文学与全球变化研究融合的学科发展新方向,拓展了水文学与水资源研究的尺度和维度。一系列咨询报告被中办或国办采用,为国家水安全保障和生态文明建设提供科学支持,支撑了中国水安全保障和水生态文明建设的高水平科技智库建设。

3.12 地貌学迈入新的发展时期

伴随着科技进步和学科融合,地貌学研究实现了由单一营力向风水两相营力作用下地表过程研究的发展,实现了由定性描述为主向定量研究的发展,推动了地貌多源信息融合技术,包括地表过程野外原位观测、室内实验、和数学模型的互补创新[129]。充分利用探地雷达、三维激光扫描、遥感影像分析和核素示踪等技术,将室内外实验和模型技术充分结合起来,阐明了坡面结皮和细沟发育在坡面侵蚀临界发育中的决定性作用,深化了对侵蚀产沙尺度效应的认识,推动了土壤侵蚀学科的发展;提出了主流梯度和次生流影响弯道演变的机理,明晰了河流中沙洲发育机理及影响因素,开创了动力学模型模拟长时间河流地貌演化的时间步长解耦技术,发展了河流平衡理论,促进了河流地貌的学科发展;在风水两相侵蚀区,揭示了风水营力对地貌发育的耦合影响,阐明了风沙活动的环境效应,推动了地表过程研究的创新发展。

2010年之后,地貌学研究围绕风水营力作用下的地表过程及其环境效应,开展了坡面侵蚀、流域/区域侵蚀产沙、河流地貌演化和风沙过程等研究。主要进展包括:研究近5 Ma构造运动对黄河上游十大对孔兑地貌发育和产输沙的影响,揭示出孔兑进入河套盆地堆积的冲积扇以垂向加积为主,且在早中全新世存在一个以侵蚀为主的时期[130];利用洞穴石笋记录等手段重构了黄河流域千年尺度的气候、植被和水沙系列,并探讨了它们对黄河决堤的影响[131];分析了黄河中游流域不同地貌单元的径流—产沙长期规律,揭示了气候、人类活动等因素对流域产沙的影响机制[132],发现黄土高原部分地区产沙存在空间均质性[133];通过室内外实验、调查取样、核素示踪、径流产沙观测及淤积泥沙信息挖掘、侵蚀模型等多源手段,揭示了坡面—流域—区域系统侵蚀产沙时空变异特征及对人类活动和气候变化的响应机制[134],揭示了南方红壤丘陵区土壤养分随侵蚀迁移流失的机制[135];进一步发展了冲积河流河道形态自动调整变分分析方法,检验了冲积河流平衡理论在全球典型河道中的实际应用性,阐明了水动力、植被发育、沟谷坡度等因素对分汊型河流的地貌特征和发育过程的影响机理[136],证实了滨河植被根系在干旱区沙质河岸稳定和弯道发育上发挥关键作用[137],揭示了黄河第一湾河段河间带植被和河岸细颗粒含量是其砾质网状河型高稳定性的主控因子[138];提出了主流纵向梯度假说,揭示了近岸主流梯度和次生流影响弯道形成与演变的内在机理,构建了河岸蚀退模型BERM并多次实践应用[139];分析了全球不同气候地貌区典型蜿蜒河流,揭示了大、小曲率弯道分别倾向于出现偏向上游和下游的扭曲的内在机制[140];明晰了风尘物源的组成,揭示了典型风尘源区农田开垦和放牧等人类活动对产沙的影响机制,揭示了中亚干旱半干旱区风沙侵蚀过程及沙漠化机制,阐明了沙漠化对气候变化响应的空间差异[141];明晰黑河流域植被耗水规律,提出了农田优化灌溉方案[142];揭示中国中纬度旱区地下水的起源,提出中纬度旱区水资源的“地质循环”假说[143]。发现三峡下游荆江河段悬移质泥沙含沙量垂线分布在近底区域内出现异常偏高的拖尾新现象,并揭示其原因在于粗细悬浮颗粒恢复程度的不同[144];利用遥感等手段,阐明了水沙新情势下黄河口演变规律[145];继2010年中国丹霞申报世界自然遗产成功,地貌室率先完成了中国丹霞地貌空间格局及时段划分,精确测算出了中国典型丹霞地貌面积[146]

地貌室主持和参与200多项科研项目,研究成果获得国家以及省部级科技奖几十项,如“黄淮海农业地貌条件评价和地貌区划”和“黄河流域环境演变与水沙运行规律”成果分别于1987年和1995年分别获得中国科学院科技进步特等奖和自然科学一等奖;“黄河水沙过程变异及河道的负责响应”于2006年获水利部“大禹”科技一等奖等。研究成果发表在地学高水平期刊上,BERM模型被成功应用于多条弯曲型河道的整治工程。

3.13 实现化学地理向环境地理、医学地理向健康地理转型,服务美丽中国和健康中国建设

环境地理方向始于黄秉维倡导的化学地理研究,自20世纪60年代,面向国家地方病防治和环境保护的战略需求,开展了长达40年的地方病病因与防治及环境保护的开创性工作。面对国家在环境保护、人口健康保障和可持续发展等领域面临的一系列问题,拓展了环境健康风险评价、环境污染治理和健康保护技术等多个领域。2000年以后取得主要进展和成果如下:

以环境健康风险控制为需求,在人类活动对环境和健康影响、风险评价和风险的消减技术等领域取得了明显成绩。据不完全统计2001—2010年,地理资源所环境地理与人类健康领域研究人员共承担各类课题100多项,撰写和参与撰写专著10多部,发表论文近300篇,获得发明专利20余项。主要成果有:① 探明中国西部地方病持续活跃的地理生态系统机理及其控制机制。针对中国主要地方病的危害在西部地区依然严重的问题,对青藏高原大骨节病、内蒙古饮水型砷中毒、陕南和贵州燃煤型砷中毒和氟中毒、西部少数民族地区饮茶型氟中毒等开展了系列研究,同时拓展了全球变化背景下地方病和自然疫源性疾病风险研究;为中国地方病的稳定控制奠定了基础;② 揭示人类活动影响下典型区域重金属/稀土元素污染的健康风险及其消减规律。针对中国铅、汞、镉、砷等重金属和稀土元素污染严重、事件频发等问题,选择典型区域和典型行业,重点开展了重金属在农业生态系统的迁移循环、健康风险评价和控制措施,为中国重金属污染防治规划的制订和防治示范奠定了基础;③ 推动中国陆地生态系统碳氮生物地球化学循环研究。一是开展了农田、草地、森林等陆地生态系统碳、氮元素生物地球化学循环过程的长周期的野外连续定位实验研究和区域分异研究,二是针对人类活动日益加剧所导致的区域营养盐生物地球化学循环严重失衡及一系列相应的生态环境问题,从流域、区域和农田等多个尺度定量开展营养盐和污染物的生物地球化学循环模拟。④ 开创中国环境修复技术消化吸收和再创新。环境污染风险评价、治理技术及环境健康保障技术研究针对环境健康已经呈现的问题,在科技部、科学院和北京等地方政府支持下开展了工业场地污染风险评价和治理技术研发,并建立了示范工程;开发了多项人体健康防护技术。

面向国家生态文明建设、美丽中国和健康中国的需求,健康地理研究跨入了崭新的发展时期。代表性成果包括:① 地方性中毒流行规律及其影响机制。自中国发现地方性砷中毒以来,对饮水和燃煤型砷中毒进行了长达30年的跟踪研究。评估了饮水型和燃煤型砷暴露人群对环境砷的暴露量,识别主要暴露途径;发现饮水砷皮肤损伤的流行规律表现为皮肤角化的患病率最高,皮肤着色的患病率最低;揭示了砷暴露皮肤损伤的患病率与饮水砷含量、砷暴露持续时间和年龄关系。发表了一系列高水平论文、出版了相关研究专著,课题组构建了环境砷暴露健康效应与防治的一整套理论和应用体系,为中国地方性砷中毒的消除与控制提供了重要的科学支撑和科学途径。② 城市工业有机污染场地修复关键技术与应用。针对中国面临城市污染场地治理的急迫需求,通过“应用基础研究→共性技术研发→工艺组装集成→案例应用验证”等科学严谨的研发流程,在探明中国工业场地基本污染特征和代表性有机污染物降解规律基础上,形成了适合中国国情的物理和化学高效修复技术路线,实现更精准、能耗小、风险低的修复目标,建立污染场地全过程环境管理和技术集成的综合解决模式,为工程应用提供专业全面的技术指导。

4 人才培养与平台建设

地理资源所自然地理学的学科建设始终重视科技人才的培养,坚持项目、人才、基地一体化建设,以科技项目引人才、以人才促学科发展,不断增强自主创新能力,承担了中国科学院大学(简称“国科大”)资源与环境学院“科教融合卓越中心”依托地理资源所建设的自然地理学教研室的建设工作,协助国科大资环学院管理和协调教研室的各项管理和教学工作,有多位导师受聘为国科大岗位教授,对国科大的“科教融合”工作,做出了重要的贡献。经过多年的发展,自然地理学科已经形成了具有创新能力、知识结构、年龄层次和专业技术职务配置合理,学风端正、创新务实、团结协作,以高水平学术带头人为核心、以青年科学家为骨干、在国内外有重要影响的学术团队。截至2020年底,自然地理学科培养点共有研究生导师98人,其中博士生导师53人(包括院士5人,国家****科学基金获得者6人,优秀青年科学基金获得者3人,国家青年****入选者2人,“****”入选者3人),硕士生导师28人。

经过长期的努力,自然地理学科建立了良好的科研平台:2个中国科学院重点实验室,1个与北京市共建的省部级重点实验室。在凝聚、吸引、培养国内外优秀中青年人才方面采取多项措施:加大年轻科技人员涉足学科的前沿领域支持力度;对承担重大科研任务的研究组加强人力资源配置;鼓励和推荐有水平、有能力的青年人参与和主导重大项目申请;加大国内外优秀人才的引进力度;有计划地选派青年****出国培训和参加合作研究、邀请外国同行专家来实验室讲学和工作等。

5 发展展望

在科学技术快速发展和社会经济复兴的背景下,地理资源所的自然地理学目标是:发展自然地理学综合研究,重点是自然与人类共同影响下,特别是快速变化因素驱动下,陆地表层系统演变的规律和机制;突破传统技术方法,建立陆地表层系统演变综合模型,构建综合模拟与情景预估平台,遥感、信息、大数据、数理模拟、情景分析等现代技术集成到自然地理学研究;支撑生态文明建设,针对陆地表层时空特征与演变规律,提出因地制宜适应调控方案,为国家生态文明建设提供科学基础。针对自然地理学重点研究的要素—过程—格局内容,并在自然与人文综合研究以及创新技术方法,努力在以下4个方面取得突破性进展。

(1)陆地表层要素—过程交互作用机制。研究陆地表层要素(水、土、气、生等)的时空演变特征和互馈关系,以及多要素变化影响下气候、地貌、水文、覆被、污染物迁移等关键过程的内在机理与驱动机制;分析不同时空尺度下多种自然过程间的耦合作用,以及自然过程和人文过程的协同与拮抗;定量描述变化环境对陆表要素和关键过程的影响及反馈,预测全球变化背景下陆表系统关键要素/过程的变化态势。

(2)陆地表层格局动态研究。在厘清驱动陆地表层整体格局形成与变化的自然及人文因素,辨识陆地表层系统各组成部分(地貌、气候、土壤、水文、生物群落等)多要素、多过程、多尺度耦合机理基础上;遵照系统分析思想,集成多维、海量观(监)测数据,综合利用多种研究手段,分尺度、分层次逐级揭示陆地表层系统各组分的地带性与非地带性规律及其水平分异、立体交叉和多级嵌套结构;采用自上而下与自下而上相结合方式,发展刻画陆地表层格局动态规律的方法体系,揭示陆地表层格局的年际波动特征、年代至多年代际的演变规律及各组成部分的相互反馈与适应机制。

(3)陆地表层系统过程的综合集成与模拟。探索田间、流域或区域多种尺度陆地表层系统水、土、气、生等各要素循环过程的数学描述;重点开展全球变化(气候变化、人类活动等)影响下各要素交互作用机制的耦合模拟和系统集成;研发多要素过程交互作用影响下系统模型的均衡率定和验证途径。

(4)陆地表层系统有序人类活动的可持续范式和调控机制。从全球、国家和区域尺度识别人类活动和环境变化对陆地表层系统影响的弹性阈值和响应程度,辨识其高强度人类活动对陆地表层系统胁迫的超越警戒线区域和警示性等级,揭示环境变化和人类活动对陆地表层系统交互作用的适应性策略和调控机制,探究有序人类活动的生态生产范式和可持续发展模式以及环境变化应对策略。

致谢:参与撰稿人员还有中国科学院地理科学与资源研究所的陈东、戴君虎、刘小莽、谈明洪、王中根、杨丽虎、尹云鹤、于静洁、张镱锂、郑景云等研究员,在此一并致谢。


参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

Fu Bojie, Liu Guohua, Chen Liding, et al. Scheme of ecological regionalization in China
Acta Ecologica Sinica, 2001,21(1):1-6.

[本文引用: 1]

[ 傅伯杰, 刘国华, 陈利顶, . 中国生态区划方案
生态学报, 2001,21(1):1-6.]

[本文引用: 1]

Huang Bingwei. Outline of the Comprehensive physical geographical regionalization of China
Collected Works of Geography, 1989,21:10-20.

[本文引用: 1]

[ 黄秉维. 中国综合自然区划纲要
地理集刊, 1989,21:10-20.]

[本文引用: 1]

Zheng Du, Fu Xiaofeng. A preliminary study on issues of integrated geographical regionalization
Scientia Geographica Sinica, 1999,19(3):193-197.

[本文引用: 2]

[ 郑度, 傅小锋. 关于综合地理区划若干问题的探讨
地理科学, 1999,19(3):193-197.]

[本文引用: 2]

Huang Bingwei. Draft of the integrated physical geographical regionalization of China
Chinese Science Bulletin, 1959,10(18):594-602.

[本文引用: 2]

[ 黄秉维. 中国综合自然区划草案
科学通报, 1959,10(18):594-602.]

[本文引用: 2]

Zheng Du, Yang Qinye, Wu Shaohong, et al. China's Ecogeographical Regionalization Research. Beijing: The Commercial Press, 2008.
[本文引用: 2]

[ 郑度, 杨勤业, 吴绍洪, . 中国生态地理区域系统研究. 北京: 商务印书馆, 2008.]
[本文引用: 2]

Liu Yanhua, Zheng Du, Ge Quansheng, et al. Problems on the research of comprehensive regionalization in China
Geographical Research, 2005,24(3):321-329.

[本文引用: 1]

[ 刘燕华, 郑度, 葛全胜, . 关于开展中国综合区划研究若干问题的认识
地理研究, 2005,24(3):321-329.]

[本文引用: 1]

Wu Shaohong, Liu Weidong. An integrated approach to classification of territorial systems: A case study of Tibetan Plateau
Geographical Research, 2005,24(2):169-177.

[本文引用: 1]

[ 吴绍洪, 刘卫东. 陆地表层综合地域系统划分的探讨: 以青藏高原为例
地理研究, 2005,24(2):169-177.]

[本文引用: 1]

Fan Jie. Draft of major function oriented zoning of China
Acta Geographica Sinica, 2015,70(2):186-201.

[本文引用: 1]

[ 樊杰. 中国主体功能区划方案
地理学报, 2015,70(2):186-201.]

[本文引用: 1]

Ge Quansheng, Zhao Mingcha, Zheng Jingyun, et al. Division of the terrestrial system in China: A case study from Huang's theory on terrestrial system science
Scientia Geographica Sinica, 2003,23(1):1-6.

[本文引用: 1]

[ 葛全胜, 赵名茶, 郑景云, . 中国陆地表层系统分区: 对黄秉维先生陆地表层系统理论的学习与实践
地理科学, 2003,23(1):1-6.]

[本文引用: 1]

Huang Bingwei. Problems on regionalization in the new period//Editorial Committee of Huang Bingwei Collection
Collections of Huang Bingwei's Integrated Research in Physical Geography. Beijing: The Commercial Press, 2003.

[本文引用: 1]

[ 黄秉维. 新时期区划工作应当注意的几个问题//《黄秉维文集》编辑组
地理学综合研究. 北京: 商务印书馆, 2003.]

[本文引用: 1]

Wu Shaohong, Zhao Yan, Tang Qiuhong, et al. Land surface pattern study under the framework of Future Earth
Progress in Geography, 2015,34(1):10-17.

[本文引用: 1]

[ 吴绍洪, 赵艳, 汤秋鸿, . 面向“未来地球”计划的陆地表层格局研究
地理科学进展, 2015,34(1):10-17.]

[本文引用: 1]

Wu S H, Zheng D, Yin Y H, et al. Northward-shift of temperature zones in China's eco-geographical study under future climate scenario
Journal of Geographical Sciences, 2010,20(5):643-651.

[本文引用: 3]

Yin Y H, Ma D Y, Wu S H. Enlargement of the semi-arid region in China from 1961 to 2010
Climate Dynamics, 2019,52(1-2):509-521.

[本文引用: 2]

Wu Shaohong, Liu Wenzheng, Pan Tao, et al. Amplitude and velocity of the shifts in the Chinese terrestrial surface regions from 1960 to 2011
Chinese Science Bulletin, 2016,61(19):2187-2197.

[本文引用: 1]

[ 吴绍洪, 刘文政, 潘韬, . 1960—2011年中国陆地表层区域变动幅度与速率
科学通报, 2016,61(19):2187-2197.]

[本文引用: 1]

Sha Wanying, Shao Xuemei, Huang Mei. Climate warming and its impact on natural regional boundaries in China in the 1980s
Science in China (Series D), 2002,32(4):317-326.

[本文引用: 1]

[ 沙万英, 邵雪梅, 黄玫. 20世纪80年代以来中国的气候变暖及其对自然区域界线的影响
中国科学(D辑), 2002,32(4):317-326.]

[本文引用: 1]

Ma D Y, Deng H Y, Yin Y H, et al. Sensitivity of arid/humid patterns in China to future climate change under a high-emissions scenario
Journal of Geographical Sciences, 2019,29(1):29-48.

DOI:10.1007/s11442-019-1582-5URL [本文引用: 2]
Changes in regional moisture patterns under the impact of climate change are an important focus for science. Based on the five global climate models (GCMs) participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5), this paper projects trends in the area of arid/humid climate regions of China over the next 100 years. It also identifies the regions of arid/humid patterns change and analyzes their temperature sensitivity of responses. Results show that future change will be characterized by a significant contraction in the humid region and an expansion of arid/humid transition zones. In particular, the sub-humid region will expand by 28.69% in the long term (2070-2099) relative to the baseline period (1981-2010). Under 2°C and 4°C warming, the area of the arid/humid transition zones is projected to increase from 10.17% to 13.72% of the total of China. The humid region south of the Huaihe River Basin, which is affected mainly by a future increase in evapotranspiration, will retreat southward and change to a sub-humid region. In general, the sensitivity of responses of arid/humid patterns to climate change in China will intensify with accelerating global warming.

Yin Y H, Deng H Y, Wu S H. Spatial-temporal variations in the thermal growing degree-days and season under climate warming in China during 1960-2011
International Journal of Biometeorology, 2019,63(5):649-658.

DOI:10.1007/s00484-017-1417-yURLPMID:28971276 [本文引用: 1]

Deng H Y, Yin Y H, Wu S H, et al. Contrasting drought impacts on the start of phenological growing season in Northern China during 1982-2015
International Journal of Climatology, 2020,40(7):3330-3347.

DOI:10.1002/joc.v40.7URL [本文引用: 1]

Yin Y H, Ma D Y, Wu S H, et al. Nonlinear variations of forest leaf area index over China during 1982-2010 based on EEMD method
International Journal of Biometeorology, 2017,61(6):977-988.

DOI:10.1007/s00484-016-1277-xURLPMID:27888339 [本文引用: 1]
Variations in leaf area index (LAI) are critical to research on forest ecosystem structure and function, especially carbon and water cycle, and their responses to climate change. Using the ensemble empirical mode decomposition (EEMD) method and global inventory modeling and mapping studies (GIMMS) LAI3g dataset from 1982 to 2010, we analyzed the nonlinear feature and spatial difference of forest LAI variability over China for the past 29 years in this paper. Results indicated that the national-averaged forest LAI was characterized by quasi-3- and quasi-7-year oscillations, which generally exhibited a rising trend with an increasing rate. When compared with 1982, forest LAI change by 2010 was more evident than that by 1990 and 2000. The largest increment of forest LAI occurred in Central and South China, while along the southeastern coastal areas LAI increased at the fastest pace. During the study period, forest LAI experienced from decrease to increase or vice versa across much of China and varied monotonically for only a few areas. Focusing on regional-averaged trend processes, almost all eco-geographical regions showed continuously increasing trends in forest LAI with different magnitudes and speeds, other than tropical humid region and temperate humid/subhumid region, where LAI decreased initially and increased afterwards.

Zhao Dongsheng, Wu Shaohong, Yin Yunhe. Variation trends of natural vegetation net primary productivity in China under climate change scenario
Chinese Journal of Applied Ecology, 2011,22(4):897-904.

URLPMID:21774310 [本文引用: 1]
Based on the widely used Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ) for climate change study, and according to the features of natural environment in China, the operation mechanism of the model was adjusted, and the parameters were modified. With the modified LPJ model and taking 1961-1990 as baseline period, the responses of natural vegetation net primary productivity (NPP) in China to climate change in 1991-2080 were simulated under the Special Report on Emissions Scenarios (SRES) B2 scenario. In 1961-1990, the total NPP of natural vegetation in China was about 3.06 Pg C a(-1); in 1961-2080, the total NPP showed a fluctuant decreasing trend, with an accelerated decreasing rate. Under the condition of slight precipitation change, the increase of mean air temperature would have definite adverse impact on the NPP. Spatially, the NPP decreased from southeast coast to northwest inland, and this pattern would have less variation under climate change. In eastern China with higher NPP, especially in Northeast China, east of North China, and Loess Plateau, the NPP would mainly have a decreasing trend; while in western China with lower NPP, especially in the Tibetan Plateau and Tarim Basin, the NPP would be increased. With the intensive climate change, such a variation trend of NPP would be more obvious.
[ 赵东升, 吴绍洪, 尹云鹤. 气候变化情景下中国自然植被净初级生产力分布
应用生态学报, 2011,22(4):897-904.]

PMID:21774310 [本文引用: 1]

Zhao Songqiao, Chen Chuankang, Niu Wenyuan. Thirty years in integrated physical geography in People's Republic of China
Acta Geographica Sinica, 1979,34(3):187-199.

[本文引用: 1]

[ 赵松乔, 陈传康, 牛文元. 近三十年来我国综合自然地理学的进展
地理学报, 1976,34(3):187-199.]

[本文引用: 1]

Huang Bingwei. Ecological balance and geographic research of agriculture
Geographical Research, 1982,1(1):3-8.

[本文引用: 1]

[ 黄秉维. 生态平衡与农业地理研究: 生态平衡概念
地理研究, 1982,1(1):3-8.]

[本文引用: 1]

Zhao Songqiao. The geographical distribution and rational exploitation and utilization of cultivated land resources in China
Natural Resources, 1984,6(1):13-20.

[本文引用: 1]

[ 赵松乔. 我国耕地资源的地理分布和合理开发利用
自然资源, 1984,6(1):13-20.]

[本文引用: 1]

Shi Yulin. On the main characteristics and rational utilization of land resources in China
Natural Resources, 1980,2(4):1-10.

[本文引用: 1]

[ 石玉林. 关于我国土地资源主要特点及其合理利用问题
自然资源, 1980,2(4):1-10.]

[本文引用: 1]

Shen Yuancun, Guo Huancheng. A national conference on 1:1 million land type maps and land use maps held in Chengdu
Acta Geographica Sinica, 1981,36(2):225-227.

[本文引用: 1]

[ 申元村, 郭焕成. 全国1:100万土地类型图和土地利用图工作会议在成都召开
地理学报, 1981,36(2):225-227.]

[本文引用: 1]

Li Xiubin. A review of the international resources on land use/land cover change
Acta Geographica Sinica, 1996,51(6):553-558.

[本文引用: 1]

[ 李秀彬. 全球环境变化研究的核心领域: 土地利用/土地覆被变化的国际研究动向
地理学报, 1996,51(6):553-558.]

[本文引用: 1]

Liu Jiyuan, Liu Mingliang, Zhuang Dafang, et al. Study on spatial pattern of recent land-use change in China
Science in China (Series D), 2002,32(12):1031-1040.

[本文引用: 1]

[ 刘纪远, 刘明亮, 庄大方, . 中国近期土地利用变化的空间格局分析
中国科学(D辑), 2002,32(12):1031-1040.]

[本文引用: 1]

He F N, Li S C, Zhang X Z. A spatially explicit reconstruction of forest cover in China over 1700-2000
Global and Planetary Change, 2015,131:73-81.

[本文引用: 1]

Liu Jiyuan, Ning Jia, Kuang Wenhui, et al. Spatio-temporal patterns and characteristics of land-use change in China during 2010-2015
Acta Geographica Sinica, 2018,73(5):789-802.

[本文引用: 1]

[ 刘纪远, 宁佳, 匡文慧, . 2010—2015年中国土地利用变化的时空格局与新特征
地理学报, 2018,73(5):789-802.]

[本文引用: 1]

Li Xiubin. Research priorities for land use change in the accelerated phase of urbanization
China Population, Resources and Environment, 2009,19(5):1-5.

[本文引用: 1]

[ 李秀彬. 对加速城镇化时期土地利用变化核心学术问题的认识
中国人口·资源与环境, 2009,19(5):1-5.]

[本文引用: 1]

Zhang H Q, Xu E Q, Zhu H Y. Ecological-living-productive land classification system in China
Journal of Resources and Ecology, 2017,8(2):121-128.

[本文引用: 1]

Li Xiubin, Zhu Huiyi, Tan Minghong, et al. Measurement of land use intensity
Progress in Geography, 2008,27(6):12-17.

[本文引用: 1]

[ 李秀彬, 朱会义, 谈明洪, . 土地利用集约度的测度方法
地理科学进展, 2008,27(6):12-17.]

[本文引用: 1]

Tan M H, Robinson G M, Li X B, et al. Spatial and temporal variability of farm size in China in context of rapid urbanization
Chinese Geographical Science, 2013,23(5):607-619.

[本文引用: 1]

Zhu Huiyi, Sun Minghui. Main progress in the research on land use intensification
Acta Geographica Sinica, 2014,69(9):1346-1357.

[本文引用: 1]

[ 朱会义, 孙明慧. 土地利用集约化研究的回顾与未来工作重点
地理学报, 2014,69(9):1346-1357.]

[本文引用: 1]

Bai Wanqi, Zhao Shidong. An analysis on driving force system of land use changes
Resources Science, 1997,23(3):39-41.

[本文引用: 1]

[ 摆万奇, 赵士洞. 土地利用变化驱动力系统分析
资源科学, 2001,23(3):39-41.]

[本文引用: 1]

Deng Xiangzheng, Lin Yingzhi, Huang Heqing. Simulation of land system dynamics: A review
Chinese Journal of Ecology, 2009,28(10):2123-2129.

[本文引用: 1]

[ 邓祥征, 林英志, 黄河清. 土地系统动态模拟方法研究进展
生态学杂志, 2009,28(10):2123-2129.]

[本文引用: 1]

Zhang Yili. Land Use and Land Cover Change and the Climate Change Adaptation in Tibetan Plateau. Beijing: China Meteorological Press, 2012.
[本文引用: 5]

[ 张镱锂. 青藏高原土地利用与土地覆被变化及其区域适应研究. 北京: 气象出版社, 2012.]
[本文引用: 5]

Zhang Yili, Liu Linshan, Wang Zhaofeng, et al. Spatial and temporal characteristics of land use and cover changes in the Tibetan Plateau
Chinese Science Bulletin, 2019,64(27):113-123.

[本文引用: 2]

[ 张镱锂, 刘林山, 王兆锋, . 青藏高原土地利用与覆被变化的时空特征
科学通报, 2019,64(27):113-123.]

[本文引用: 2]

Zhang Y L, Wu X, Zheng D. Vertical differentiation of land cover in the central Himalayas
Journal of Geographical Sciences, 2020,30(6):969-987.

[本文引用: 1]

Yang X C, Zhang Y L, Liu L S, et al. Sensitivity of surface air temperature change to land use/cover types in China
Science in China (Series D), 2009,52(8):1207-1215.

[本文引用: 2]

Zhang Shen. Retrospect, current development, and prospect of chemical geography research
Acta Geographica Sinica. 1994,49(Suppl.1):577-588.

[本文引用: 1]

[ 章申. 化学地理研究的回顾, 近期进展和瞻望
地理学报, 1994,49(Suppl.1):577-588.]

[本文引用: 1]

Tan Jian'an. Health, environment and development: The theme of contemporary medical geography
Acta Geographica Sinica, 1994,49(Suppl.1):710-718.

[本文引用: 1]

[ 谭见安. 健康, 环境, 发展: 当代医学地理的主题
地理学报, 1994,49(Suppl.1):710-718.]

[本文引用: 1]

Yang Linsheng, Li Hairong, Li Yonghua, et al. Progress of medical geography and environmental health studies
Progress in Geography, 2010,29(1):31-44.

[本文引用: 1]

[ 杨林生, 李海蓉, 李永华, . 医学地理和环境健康研究的主要领域与进展
地理科学进展, 2010,29(1):31-44.]

[本文引用: 1]

Yang Linsheng, Wang Wuyi, Tan Jian'an, et al. Overview on the research works in the field of environmental geography and human health
Geographical Research, 2010,29(9):1571-1583.

[本文引用: 1]

[ 杨林生, 王五一, 谭见安, . 环境地理与人类健康研究成果与展望
地理研究, 2010,29(9):1571-1583.]

[本文引用: 1]

Wang Wuyi, Li Ribang, Tan Jian'an. The main fields of study on environment-health and development in 21th century in China
Progress in Geography, 1997,16(1):11-14.

[本文引用: 1]

[ 王五一, 李日邦, 谭见安. 我国21世纪环境、健康与发展研究的重点领域和主要方向
地理科学进展, 1997,16(1):11-14.]

[本文引用: 1]

Lin Chao. Outline of the physical geographical regionalization
Acta Geographica Sinica, 1954,20(4):395-418.

[本文引用: 2]

[ 林超. 中国自然区划大纲(摘要)
地理学报, 1954,20(4):395-418.]

[本文引用: 2]

Wu S H, Yin Y H, Zhao D S, et al. Impact of future climate change on terrestrial ecosystems in China
International Journal of Climatology, 2010,30(6):866-873.

[本文引用: 1]

Wu S H, Jin J, Pan T. Empirical seismic vulnerability curve for mortality: Case study of China
Natural Hazards, 2015,77:645-662.



Wu Shaohong, Pan Tao, Liu Yanhua, et al. Comprehensive climate change risk regionalization of China
Acta Geographica Sinica, 2017,72(1):3-17.

[本文引用: 1]

[ 吴绍洪, 潘韬, 刘燕华, . 中国综合气候变化风险区划
地理学报, 2017,72(1):3-17.]

[本文引用: 1]

Wu S H, Liu L L, Liu Y H, et al. The Belt and Road: Geographical pattern and regional risks
Journal of Geographical Sciences, 2019,29(4):483-495.

[本文引用: 1]

Zhang Piyuan. Historical Climate Change in China. Jinan: Shandong Science and Technology Press, 1996.
[本文引用: 1]

[ 张丕远. 中国历史气候变化. 济南: 山东科学技术出版社, 1996.]
[本文引用: 1]

Zheng Jingyun, Hao Zhixin, Di Xiaochun. A study on the establishment and application of environmental change database during historical times
Geographical Research, 2002,21(2):146-154.

[本文引用: 1]

[ 郑景云, 郝志新, 狄小春. 历史环境变化数据库的建设与应用
地理研究, 2002,21(2):146-154.]

[本文引用: 1]

Ge Quansheng. Collection of Memorial to the Throne in Qing Dynasty: Agriculture and Environment. Beijing: Commerical Press, 2007.
[本文引用: 2]

[ 葛全胜. 清代奏折汇编: 农业·环境. 北京: 商务印书馆, 2007.]
[本文引用: 2]

The Editorial Committee on Historical Meteorological Records from the Institute of Geographic Sciences and Natural Resources Research, CAS. The Collections of Memorials to Emperors in the Qing Dynasty: Agriculture, Environment. Beijing: China Meteorological Press, 2016.
[本文引用: 1]

[ 中国科学院地理学与资源研究所历史气候资料整编委员会“清实录”编选组. 清实录气候影响资料摘编. 北京: 气象出版社, 2016.]
[本文引用: 1]

Ge Q S, Zheng J Y, Fang X Q, et al. Winter half-year temperature reconstruction for the middle and lower reaches of the Yellow River and Yangtze River, China, during the past 2000 years
The Holocene, 2003,13(6):933-940.

[本文引用: 1]

Zheng J Y, Wang W C, Ge Q S, et al. Precipitation variability and extreme events in eastern China during the past 1500 years
Terrestrial Atmospheric and Oceanic Sciences, 2006,17:579-592.

[本文引用: 1]

Ge Q S, Zheng J Y, Hao Z X, et al. Reconstruction of historical climate in China: High-resolution precipitation data from Qing Dynasty archives
Bulletin of the American Meteorological Society, 2005,86(5):671-679.

DOI:10.1175/BAMS-86-5-671URL [本文引用: 1]

Zheng J Y, Hao Z X, Ge Q S. Variation of precipitation for the last 300 years over the middle and lower reaches of the Yellow River
Science in China, Series D-Earth Sciences, 2005,48(12):2182-2193.

[本文引用: 1]

Ge Q S, Guo X F, Zheng J Y, et al. Meiyu in the middle and lower reaches of the Yangtze River since 1736
Chinese Science Bulletin, 2008,53(1):107-114

[本文引用: 1]

Wang W C, Ge Q S, Hao Z X, et al. Rainy Season at Beijing and Shanghai since 1736
Journal of the Meteorological Society of Japan, 2008,86(5):827-834.

[本文引用: 1]

Shao Xuemei, Fang Xiuqi, Liu Hongbin, et al. Dating the 1000-year-old Qilian Juniper in Mountains along the Eastern Margin of the Qaidam Basin
Acta Geographica Sinica, 2003,58(1):90-100.

[本文引用: 1]

[ 邵雪梅, 方修琦, 刘洪滨, . 柴达木东缘山地千年祁连圆柏年轮定年分析
地理学报, 2003,58(1):90-100.]

[本文引用: 1]

Shao X M, Wang S Z, Zhu H F, et al. A 3585-year ring-width dating chronology of Qilian juniper from the northeastern Qinghai Tibetan Plateau
IAWA Journal, 2009,30(4):379-394.

[本文引用: 1]

Liu X H, Qin D H, Shao X M, et al. Temperature variations recovered from tree-rings in the middle Qilian Mountain over the last Millennium
Science in China, Series D-Earth Sciences, 2005,48:521-529.

[本文引用: 1]

Zhang Y, Shao X M, Yin Z Y, et al. Millennial minimum temperature variations in the Qilian Mountains, China: Evidence from tree rings
Climate of the Past, 2014,10(5):1763-1778.

[本文引用: 1]

Chen F, Zhang Y, Shao X M, et al. A 2000-year temperature reconstruction in the animaqin mountains of the Tibet plateau, China
The Holocene, 2016,26(12):1904-1913.

[本文引用: 1]

Shao X M, Huang L, Liu H B, et al. Reconstruction of precipitation variation from tree rings in recent 1000 years in Delingha, Qinghai
Science in China. Series D-Earth Sciences, 2005,48(7):939-949.

[本文引用: 1]

Wang H L, Shao X M, Li M. A 2917-year tree-ring-based reconstruction of precipitation for the Buerhanbuda Mts., Southeastern Qaidam Basin, China
Dendrochronologia, 2019,55:80-92.

DOI:10.1016/j.dendro.2019.04.002URL [本文引用: 1]

Yin Z, Zhu H, Huang L, et al. Reconstruction of biological drought conditions during the past 2847 years in an alpine environment of the northeastern Tibetan Plateau, China, and possible linkages to solar forcing
Global and Planetary Change, 2016,143:214-227.

[本文引用: 1]

Ge Q S, Hao Z X, Zheng J Y, et al. Temperature changes over the past 2000 yr in China and comparison with the Northern Hemisphere
Climate of the Past, 2013,9(3):1153-1160.

[本文引用: 1]

Ge Q S, Liu H L, Ma X, et al. Characteristics of temperature change in China over the last 2000 years and spatial patterns of dryness/wetness during cold and warm periods
Advances in Atmospheric Sciences, 2017,34(8):941-951.

DOI:10.1007/s00376-017-6238-8URL [本文引用: 1]

Ge Q S, Zheng J Y, Hao Z X, et al. Temperature variation through 2000 years in China: An uncertainty analysis of reconstruction and regional difference
Geophysical Research Letters, 2010,37:L03703. Doi: http://www.geog.com.cn/article/2020/0375-5444/10.1029/2009GL041281.

[本文引用: 1]

Ge Q S, Fang X Q, Zheng J Y. Quasi-periodicity of temperature changes on the millennial scale
Progress in Natural Science, 2003,13(8):601-606

[本文引用: 1]

Zheng J Y, Wu M W, Ge Q S, et al. Observed, reconstructed, and simulated decadal variability of summer precipitation over eastern China
Journal of Meteorological Research, 2017,31(1):49-60.

DOI:10.1007/s13351-017-6115-5URL [本文引用: 1]

Hao Z X, Zheng J Y, Zhang X Z, et al. Spatial patterns of precipitation anomalies in eastern China during centennial cold and warm periods of the past 2000 years
International Journal of Climatology, 2015,36(1):467-475.

DOI:10.1002/joc.4367URL [本文引用: 1]

Ge Quansheng. Climate Change in Chinese Dynasties. Beijing: Science Press, 2011.
[本文引用: 1]

[ 葛全胜. 中国历朝气候变化. 北京: 科学出版社, 2011.]
[本文引用: 1]

Zhang X Z, Wu M W, Liu Y, et al. The relationship between the East Asian Summer Monsoon and El Ni?o-Southern Oscillation revealed by reconstructions and a control simulation for millennium
Quaternary International, 2018,493:106-113.

[本文引用: 1]

Sun D, Zheng J Y, Hao Z X, et al. The relationship between large volcanic eruptions in different latitudinal zones and spatial patterns of winter temperature anomalies over China
Climate Dynamics, 2019,53(9-10):6437-6452.

DOI:10.1007/s00382-019-04937-4URL [本文引用: 1]

Zhu Kezhen, Wan Minwei. Phenology. Beijing: Science Press, 1973.
[本文引用: 1]

[ 竺可桢, 宛敏渭. 物候学. 北京: 科学出版社, 1973.]
[本文引用: 1]

Ge Quansheng, Dai Junhu, Zheng Jingyun. Chu Ko-Chen and the Development of Modern Phenology in China//Qin Dahe
Festschrift for the 120th Anniversary of Zhu Kezhen's Birth. Beijing: China Meteorological Press, 2010: 32-39.

[本文引用: 1]

[ 葛全胜, 戴君虎, 郑景云. 竺可桢与中国现代物候学发展//秦大河
纪念竺可桢先生诞辰120周年文集. 北京: 气象出版社, 2010: 32-39.]

[本文引用: 1]

Ge Quansheng, Dai Junhu, Zheng Jingyun. The progress of phenology studies and challenges to modern phenology research in China
Bulletin of Chinese Academy of Science, 2010,25(3):310-316.

[本文引用: 1]

[ 葛全胜, 戴君虎, 郑景云. 物候学研究进展及中国现代物候学面临的挑战
中国科学院院刊, 2010,25(3):310-316.]

[本文引用: 1]

Zhu Kezhen. A preliminary study on the climatic fluctuations during the last 5000 years in China
Scientia Sinica, 1973,3(2):226-256.

[本文引用: 1]

[ 竺可桢. 中国近五千年来气候变迁的初步研究
中国科学, 1973,3(2):226-256.]

[本文引用: 1]

Ge Q S, Wang H J, Zheng J Y, et al. A 170 year spring phenology index of plants in eastern China
Journal of Geophysical Research: Biogeosciences, 2014,119(3):301-311.



Liu Yachen, Wang Huanjiong, Dai Junhu, et al. The application of phenological methods for reconstructing past climate change
Geographical Research, 2014,33(4):603-613.

[本文引用: 1]

[ 刘亚辰, 王焕炯, 戴君虎, . 物候学方法在历史气候变化重建中的应用
地理研究, 2014,33(4):603-613.]

[本文引用: 1]

Ge Q S, Wang H J, Rutishauser T, et al. Phenological response to climate change in China: A meta-analysis
Global Change Biology, 2015,21(1):265-274.

DOI:10.1111/gcb.12648URLPMID:24895088 [本文引用: 1]

Dai J H, Wang H J, Ge Q S. The decreasing spring frost risks during the flowering period for woody plants in temperate area of eastern China over past 50 years
Journal of Geographical Sciences, 2013,23(4):641-652.

[本文引用: 1]

Wang H J, Dai J H, Ge Q S. The spatiotemporal characteristics of spring phenophase changes of Fraxinus chinensis in China from 1952 to 2007
Science China Earth Sciences, 2012,55(6):991-1000.

[本文引用: 1]

Dai J H, Wang H J, Ge Q S. The spatial pattern of leaf phenology and its response to climate change in China
International Journal of Biometeorology, 2014,58(4):521-528.

DOI:10.1007/s00484-013-0679-2URLPMID:23732443 [本文引用: 1]
Leaf phenology has been shown to be one of the most important indicators of the effects of climate change on biological systems. Few such studies have, however, been published detailing the relationship between phenology and climate change in Asian contexts. With the aim of quantifying species' phenological responsiveness to temperature and deepening understandings of spatial patterns of phenological and climate change in China, this study analyzes the first leaf date (FLD) and the leaf coloring date (LCD) from datasets of four woody plant species, Robinia pseudoacacia, Ulmus pumila, Salix babylonica, and Melia azedarach, collected from 1963 to 2009 at 47 Chinese Phenological Observation Network (CPON) stations spread across China (from 21 degrees to 50 degrees N). The results of this study show that changes in temperatures in the range of 39-43 days preceding the date of FLD of these plants affected annual variations in FLD, while annual variations in temperature in the range of 71-85 days preceding LCD of these plants affected the date of LCD. Average temperature sensitivity of FLD and LCD for these plants was -3.93 to 3.30 days degrees C(-1) and 2.11 to 4.43 days degrees C(-)(1), respectively. Temperature sensitivity of FLD was found to be stronger at lower latitudes or altitude as well as in more continental climates, while the response of LCD showed no consistent pattern. Within the context of significant warming across China during the study period, FLD was found to have advanced by 5.44 days from 1960 to 2009; over the same period, LCD was found to have been delayed by 4.56 days. These findings indicate that the length of the growing season of the four plant species studied was extended by a total of 10.00 days from 1960 to 2009. They also indicate that phenological response to climate is highly heterogeneous spatially.

Dai J H, Wang H J, Ge Q S. Multiple phenological responses to climate change among 42 plant species in Xi'an, China
International Journal of Biometeorology, 2013,57(5):749-758.

DOI:10.1007/s00484-012-0602-2URLPMID:23114575 [本文引用: 1]
Phenological data of 42 woody plants in a temperate deciduous forest from the Chinese Phenological Observation Network (CPON) and the corresponding meteorological data from 1963 to 2011 in Xi'an, Shaanxi Province, China were collected and analyzed. The first leaf date (FLD), leaf coloring date (LCD) and first flower date (FFD) are revealed as strong biological signals of climatic change. The FLD, LCD and FFD of most species are sensitive to average temperature during a certain period before phenophase onset. Regional precipitation also has a significant impact on phenophases of about half of the species investigated. Affected by climate change, the FLD and FFD of these species have advanced by 5.54 days and 10.20 days on average during 2003-2011 compared with the period 1963-1996, respectively. Meanwhile, the LCD has delayed by 10.59 days, and growing season length has extended 16.13 days. Diverse responses of phenology commonly exist among different species and functional groups during the study period. Especially for FFD, the deviations between the above two periods ranged from -20.68 to -2.79 days; biotic pollination species showed a significantly greater advance than abiotic pollination species. These results were conducive to the understanding of possible changes in both the structure of plant communities and interspecific relationships in the context of climate change.

Wu C, Wang X, Wang H, et al. Contrasting responses of autumn-leaf senescence to daytime and night-time warming
Nature Climate Change, 2018,8(12):1092-1096.

DOI:10.1038/s41558-018-0346-zURL [本文引用: 1]

Ge Q S, Wang H, Dai J. Shifts in spring phenophases, frost events and frost risk for woody plants in temperate China
Climate Research, 2013,57(3):249-258.

DOI:10.3354/cr01182URL [本文引用: 1]

Ge Q S, Wang H J, Dai J H. Simulating changes in the leaf unfolding time of 20 plant species in China over the 21st century
International Journal of Biometeorology, 2014,58(4):473-484.

DOI:10.1007/s00484-013-0671-xURLPMID:23689929 [本文引用: 1]
Recent shifts in phenology reflect the biological response to current climate change. Aiming to enhance our understanding of phenological responses to climate change, we developed, calibrated and validated spatio-temporal models of first leaf date (FLD) for 20 broadleaved deciduous plants in China. Using daily meteorological data from the Chinese Meteorological Administration and the Community Climate System Model, version 3 (CCSM3) created using three IPCC scenarios (A2, A1B and B1), we described the FLD time series of each species over the past 50 years, extrapolating from these results to simulate estimated FLD changes for each species during the twenty-first century. Model validation suggests that our spatio-temporal models can simulate FLD accurately with R (2) (explained variance) > 0.60. Model simulations show that, from 1952 to 2007, the FLD in China advanced at a rate of -1.14 days decade(-1) on average. Furthermore, changes in FLD showed noticeable variation between regions, with clearer advances observed in the north than in the south of the country. The model indicates that the advances in FLD observed from 1952-2007 in China will continue over the twenty-first century, although significant differences among species and different climate scenarios are expected. The average trend of FLD advance in China during the twenty-first century is modeled as being -1.92 days decade(-1) under the A2 scenario, -1.10 days decade(-1) under the A1B scenario and -0.74 days decade(-1) under the B2 scenario. The spatial pattern of FLD change for the period 2011-2099 is modeled as being similar but showing some difference from patterns in the 1952-2007 period. At the interspecific level, early-leafing species were found to show a greater advance in FLD, while species with larger distributions tended to show a weaker advance in FLD. These simulated changes in phenology may have significant implications for plant distribution as well as ecosystem structure and function.

Wang H J, Wang H, Ge Q S, et al. The interactive effects of chilling, photoperiod, and forcing temperature on flowering phenology of temperate woody plants
Frontiers in Plant Science, 2020,11(443). Doi: http://www.geog.com.cn/article/2020/0375-5444/10.3389/fpls.2020.00443.

[本文引用: 1]

Zhang S, Dai J H, Ge Q S. Responses of autumn phenology to climate change and the correlations of plant hormone regulation
Scientific Reports, 2020,10(1):9039. Doi: http://www.geog.com.cn/article/2020/0375-5444/10.1038/s41598-020-65704-8.

URLPMID:32494031 [本文引用: 1]
Current understanding of autumn phenological responses to climate change in deciduous tree species remains limited, mainly due to the difficulties in defining autumn events and the lack of knowledge about its mechanism. Here we applied a method based on measuring chlorophyll A (Chla) content in leaf tissue during the entire autumn senescence processes to appropriately quantify autumn phenological processes. Beginning of leaf coloring could be defined as when about 50% of the Chl was lost. End of leaf coloring could be defined as when about 95% of the Chl was lost. Then the mechanism behind the timing of autumn senescence responses to climate change through hormone regulation was studied for the first time. Four dominate deciduous tree species with representative senescence type (Salix babylonica, Ginkgo biloba, Acer mono, Cotinus coggygria) were chosen as the subject of study. Variations in climate factors (temperature, day length, precipitation, humidity) were recorded and nine major endogenous hormones (IAA, IPA, ZR, DHZR, GA3, GA4, ABA, MeJA, BR) in leaf tissues were monitored during the entire autumn senescence processes. The experimental results verified temperature and day length are the major climate factors affecting autumn phenology. Low temperature and short day length could result in the decrease of ZR level and the increase of ABA level in leaf tissue, which directly trigger/promote senescence. Meanwhile, low temperature and short day length could cause the decrease of MeJA level and the increase of GA3 and GA4 level, which regulate the timing of autumn senescence indirectly through ZR, ABA, and IAA. Our study improves the understanding of autumn phenological response to climate change in deciduous trees.

Wang Hesheng. Floristic Geography Beijing, Science Press, 1992.
[本文引用: 1]

[ 王荷生. 植物区系地理. 北京: 科学出版社, 1992.]
[本文引用: 1]

Wang Hesheng. The basic features of Chinese flora
Acta Geographica Sinica, 1979,34(3):224-237.

[本文引用: 1]

[ 王荷生. 中国植物区系的基本特征
地理学报, 1979,34(3):224-237.]

[本文引用: 1]

Wang Hesheng. Characteristics of spermatophyte forest floras in China
Journal of Tropical and Subtropical Botany, 1998,6(2):87-96.

[本文引用: 1]

[ 王荷生. 中国森林种子植物区系的特征
热带亚热带植物学报, 1998,6(2):87-96.]

[本文引用: 1]

Wang Hesheng. The Nature of China spermatophyte forest floras in China
Journal of Tropical and Subtropianica Yunnanica, 2000,22(2):119-126.

[本文引用: 1]

[ 王荷生. 中国植物区系的性质和各成分间的关系
云南植物研究, 2000,22(2):119-126.]

[本文引用: 1]

Wang Hesheng. Quantitative analysis of genera endemic to China
Acta Pytotaxonomica Sinica, 1985,23(4):241-258.

[本文引用: 1]

[ 王荷生. 中国种子植物特有属的数量分析
植物分类学报, 1985,23(4):241-258.]

[本文引用: 1]

Wang Hesheng. A study on the origin of spermatophytic genera endemic to China
Acta Botanica Yunnanica, 1989,11(1):1-16.

[本文引用: 1]

[ 王荷生. 中国种子植物特有属起源的探讨
云南植物研究, 1989,11(1):1-16.]

[本文引用: 1]

Wang Hesheng, Zhang Yili. The distribution patterns of spermatophytic families and genera endemic to China
Acta Geographica Sinica, 1994,49(5):403-417.

[本文引用: 1]

[ 王荷生, 张镱锂. 中国种子植物特有科属的分布型
地理学报, 1994,49(5):403-417.]

[本文引用: 1]

Wang Hesheng, Zhang Yili. The bio-diversity and characters of sperma-tophytic genera endemic to China
Acta Botanica Yunnanica, 1994,16(3):209-220.

[本文引用: 1]

[ 王荷生, 张镱锂. 中国种子植物特有属的多样性和特征
云南植物研究, 1994,16(3):209-220.]

[本文引用: 1]

Yu Haibin, Zhang Yili, Liu Linshan, et al. Floristic characteristics and diversity patterns of seed plants endemic to the Tibetan Plateau
Biodiversity Science, 2018,26(2):130-137.

DOI:10.17520/biods.2017078URL [本文引用: 1]
Pedicularis, Rhododendron, Corydalis) contain over 100 endemic species. Floristic composition analysis indicates that 67.5% of these endemic plants are temperate species. Species diversity declined gradually from the southeast to the northwest with hotspots located within the East Himalaya-Hengduan Mountains. Vertically, most species occurred at intermediate elevations. Understanding floristic characteristics and diversity patterns of Tibetan endemic flora shed light on future studies on the evolutional history and conservation practices in this area.]]>
[ 于海彬, 张镱锂, 刘林山, . 青藏高原特有种子植物区系特征及多样性分布格局
生物多样性, 2018,26(2):130-137.]

[本文引用: 1]

Zhang Yili, Huang Jinsong, Wang Hesheng, et al. Study on the floristic geography in south Taihang-Zhongtiao mountain
Geographical Research, 1993,12(4):1-9.

[本文引用: 1]

[ 张镱锂, 黄劲松, 王荷生, . 南太行—中条山植物区系
地理研究, 1993,12(4):1-9.]

[本文引用: 1]

Wang Hesheng, Xu Langran. The north boundary of north China flora region and explanation of the principle and method of regionalization
Acta Bot Boreal Occident Sin, 1993,13(3):232-237.

[本文引用: 1]

[ 王荷生, 徐朗然. 华北植物地区的北界: 兼述区系分区的原则和方法
西北植物学报, 1993,13(3):232-237.]

[本文引用: 1]

Wu Zhengyi. Proface//Wang Hesheng, et al. Floristic Geography of North China. Beijing: Science Press, 1997.
[本文引用: 1]

[ 吴征镒. 序//王荷生, 等. 华北植物区系地理. 北京: 科学出版社, 1997.]
[本文引用: 1]

Wang Hesheng, Wu Zhifen, Zhang Yili. Floristic Geography of North China. Beijing: Science Press, 1997.
[本文引用: 1]

[ 王荷生, 吴志芬, 张镱锂. 华北植物区系地理. 北京: 科学出版社, 1997.]
[本文引用: 1]

Wang Hesheng. The evolution and sources of North China's flora
Acta Geographica Sinica, 1999,54(3):3-5.



[ 王荷生. 华北植物区系的演变和来源
地理学报, 1999,54(3):3-5.]



Yu H B, Zhang Y L, Liu L S, et al. Combining the least cost path method with population genetic data and species distribution models to identify landscape connectivity during the late Quaternary in Himalayan hemlock
Ecology and Evolution, 2015,5(24):5781-5791.

DOI:10.1002/ece3.1840URLPMID:26811753 [本文引用: 1]
Himalayan hemlock (Tsuga dumosa) experienced a recolonization event during the Quaternary period; however, the specific dispersal routes are remain unknown. Recently, the least cost path (LCP) calculation coupled with population genetic data and species distribution models has been applied to reveal the landscape connectivity. In this study, we utilized the categorical LCP method, combining species distribution of three periods (the last interglacial, the last glacial maximum, and the current period) and locality with shared chloroplast, mitochondrial, and nuclear haplotypes, to identify the possible dispersal routes of T. dumosa in the late Quaternary. Then, both a coalescent estimate of migration rates among regional groups and establishment of genetic divergence pattern were conducted. After those analyses, we found that the species generally migrated along the southern slope of Himalaya across time periods and genomic makers, and higher degree of dispersal was in the present and mtDNA haplotype. Furthermore, the direction of range shifts and strong level of gene flow also imply the existence of Himalayan dispersal path, and low area of genetic divergence pattern suggests that there are not any obvious barriers against the dispersal pathway. Above all, we inferred that a dispersal route along the Himalaya Mountains could exist, which is an important supplement for the evolutionary history of T. dumosa. Finally, we believed that this integrative genetic and geospatial method would bring new implications for the evolutionary process and conservation priority of species in the Tibetan Plateau.

Yu H B, Zhang Y L, Wang Z F, et al. Diverse range dynamics and dispersal routes of plants on the Tibetan Plateau during the late Quaternary
PLOS One, 2017,12(5):e0177101. Doi: http://www.geog.com.cn/article/2020/0375-5444/10.1371/journal.pone.0177101.

URLPMID:28475607 [本文引用: 1]
Phylogeographical studies have suggested that several plant species on the Tibetan Plateau (TP) underwent recolonization during the Quaternary and may have had distinct range dynamics in response to the last glacial. To further test this hypothesis and locate the possible historical dispersal routes, we selected 20 plant species from different parts of the TP and modeled their geographical distributions over four time periods using species distribution models (SDMs). Furthermore, we applied the least-cost path method together with SDMs and shared haplotypes to estimate their historical dispersal corridors. We identified three general scenarios of species distribution change during the late Quaternary: the 'contraction-expansion' scenario for species in the northeastern TP, the 'expansion-contraction' scenario for species in the southeast and the 'stable' scenario for widespread species. During the Quaternary, we identified that these species were likely to recolonize along the low-elevation valleys, huge mountain ranges and flat plateau platform (e.g. the Yarlung Zangbo Valley and the Himalaya). We inferred that Quaternary cyclic glaciations along with the various topographic and climatic conditions of the TP could have resulted in the diverse patterns of range shift and dispersal of Tibetan plant species. Finally, we believe that this study would provide valuable insights for the conservation of alpine species under future climate change.

Zhang Rongzhu. Zoogeography of China. Beijing: Science Press, 1999.
[本文引用: 1]

[ 张荣祖. 中国自然地理系列专著: 中国动物地理. 北京: 科学出版社. 1999.]
[本文引用: 1]

Lu C H, Fan L. Winter wheat yield potentials and yield gaps in the
North China Plain. Field Crops Research. 2013,143:98-105.

[本文引用: 1]

Wang X H, Lu C H, Fang J F, et al. Implications for development of Grain-for-Green policy based on cropland suitability evaluation in desertification-affected North China
Land Use Policy, 2007,24(2):417-424.

DOI:10.1016/j.landusepol.2006.05.005URL [本文引用: 1]
AbstractChina's grain-for-green policy of returning steep cropland into forests is one of the most important large-scale initiatives to combat land degradation in its ecologically vulnerable regions. Although many papers have emphasized the importance of the policy by regarding land slope gradient as the most important limiting factor affecting cropland suitability, relatively less attention has been paid to improving the policy by examining other limiting factors in different land use regions. Taking the desertification-affected north China as a study area, this paper divides the study area into 12 different land use regions based on the systematic data on land use at county level gathered in the 1996 land survey and referring to the updated comprehensive physical regionalization of China. The paper also focuses on zonal cropland suitability evaluation with more detailed criteria. It is found that highly and moderately suitable croplands are mainly distributed in the southeastern part of the study area with better moisture conditions, while marginally suitable cropland is mainly distributed in the northwestern part of the Loess Plateau and around the central part of the Inner Mongolia Plateau. To facilitate the grain-for-green project, we suggest that more attention should be paid to gradual conversion of cropland for food security and ecological purposes, improvement of compensatory regulation for cropland loss and regional integrated development for poverty alleviation.]]>

Huang Bingwei. Further observation on south China slope utilization and amelioration
Geographical Research, 1989,8(4):1-8.

[本文引用: 1]

[ 黄秉维. 再论华南坡地利用与改良
地理研究, 1989,8(4):1-8.]

[本文引用: 1]

Zhang Yili, Li Bingyuan, Zheng Du. A discussion on the boundary and area of the Tibetan Plateau in China
Geographical Research, 2002,21(1):1-8.



[ 张镱锂, 李炳元, 郑度. 论青藏高原范围与面积
地理研究, 2002,21(1):1-8.]



Nie Y, Zhang Y L, Liu L S, et al. Glacial change in the vicinity of Mt. Qomolangma (Everest), central high Himalayas since 1976
Journal of Geographical Sciences, 2010,20(5):667-686.

[本文引用: 1]

Wu X, Gao J G, Zhang Y L, et al. Land cover status in Koshi River Basin, Central Himalayas
Journal of Resources and Ecology, 2017,8(1):10-19.

[本文引用: 1]

Chu D, Zhang Y L, Bianba C R, et al. Land use dynamics in Lhasa area, Tibetan Plateau
Journal of Geographical Sciences, 2010,20(6):899-912.

DOI:10.1007/s11442-010-0819-0URL [本文引用: 1]

Liu L S, Zhang Y L, Bai W Q, et al. Characteristics of grassland degradation and driving forces in the source region of the Yellow River from 1985 to 2000
Journal of Geographical Sciences, 2006,16(2):131-142.

DOI:10.1007/s11442-006-0201-4URL [本文引用: 1]
The source region of the Yellow River is located in the middle east of the Tibetan Plateau in northwest China. The total area is about 51,700 km2, mainly covered by grassland (79%), unused land (16%) and water (4%). The increasing land utilization in this area has increased the risk of environmental degradation. The land use/cover data (1985 and 2000) provided by the Data Center of Resources and Environment in the Chinese Academy of Sciences were used to analyze the land cover change in the source region of the Yellow River. DEM (1:250,000) data, roads and settlement data were used to analyze the spatial characteristics of grasslands degradation. The ArcGIS 9 software was used to convert data types and do the overlay, reclassification and zonal statistic analysis. Results show that grassland degradation is the most important land cover change in the study area, which occupied 8.24% of the region’s total area. Human activities are the main causes of the grassland degradation in the source region of the Yellow River: 1) the degradation rate is higher on the sunny slope than on the shady slope; 2) the grassland degradation rate decreases with an increase in the elevation, and it has a correlation coefficient of −0.93; 3) the nearer to the settlements the grassland is, the higher the degradation rate. Especially within a distance range of 12 km to the settlements, the grassland degradation rate is highly related with the distance, with a coefficient of −0.99; and 4) in the range of 4 km, the degradation rate decreases with the increase of distance to the roads, with a correlation coefficient of −0.98. Besides some physical factors, human activities have been the most important driving forces of the grassland degradation in the source region of the Yellow River since 1985. To resolve the degradation problems, population control is essential, and therefore, it can reduce the social demand of livestock products from the grassland. To achieve sustainable development, it needs to improve the management of grassland ecosystem.]]>

Yan J Z, Zhang Y L, Bai W Q, et al. Land cover changes based on plant successions: Deforestation, rehabilitation and degeneration of forest in the upper Dadu River Watershed
Science in China (Series D: Earth Sciences), 2005,48(12):2214-2230.

DOI:10.1360/04yd0128URL [本文引用: 1]

Zhang Yili, Wang Zhaofeng, Wang Chunlian, et al. Wetland Distribution in Lhasa Area and Lhasa River Basin, Tibet Autonomous Region. Beijing: China Meteorological Press, 2015.
[本文引用: 1]

[ 张镱锂, 王兆锋, 王春连, . 西藏自治区拉萨市与拉萨河流域湿地分布图. 北京: 气象出版社, 2015.]
[本文引用: 1]

Zhang Y L, Gao J G, Liu L S, et al. NDVI-based vegetation changes and their responses to climate change from 1982 to 2011: A case study in the Koshi River Basin in the middle Himalayas
Global and Planetary Change, 2013,108:139-148.

DOI:10.1016/j.gloplacha.2013.06.012URL [本文引用: 1]

Gao J G, Zhang Y L, Liu L S, et al. Climate change as the major driver of alpine grasslands expansion and contraction: A case study in the Mt. Qomolangma (Everest) National Nature Preserve, the Southern Tibetan Plateau
Quaternary International, 2014,336:108-116.

DOI:10.1016/j.quaint.2013.09.035URL [本文引用: 1]
To assess the spatial patterns of alpine grassland changes (expansion and contraction) and their responses to climate changes in the context of global change in recent years on the southern Tibetan Plateau, the Mt. Qomomagma National Nature Preserve (QNNP), covering an area of 36 594 km(2) and located on the southern Tibetan Plateau was selected as the study area. Alpine grassland cover was obtained by image reclassification of more than five pairs of remote sensing images taken in 1976-2006. Expansion and contraction were determined by cover changes in alpine grassland and expressed as binary variables. Logistic regression was then used to analyze the impacts of climatic-, neighborhood-, and topographic-related variables on alpine grassland changes. In the study period, the area of alpine grassland increased by 84.3 km(2). The expansion rate is significantly higher on the gentle slopes with higher mean annual temperature (MAT), interannual variability trend of temperature (IVT), and inter-annual variability trend of precipitation (IVP), and also in areas close to lakes and distant from roads. While most contraction is found on the gentle slopes and in areas close to streams, lakes, and roads; the MAT is also a significant driven impact factor. Alpine grassland expansion and contraction in the QNNP were significantly affected by MAT but not by mean annual precipitation (MAP). The IVT and IVP had significant effects on alpine grassland expansion but not on contraction. The results contradict the prevailing view that climate changes, such as increased temperature with decreased precipitation, would exacerbate grassland degradation on the Tibetan Plateau. This study indicated that climate changes have different effects on alpine grassland changes in different areas of the Tibetan Plateau. (C) 2013 Elsevier Ltd and INQUA.

Zhang Y L, Qi W, Zhou C P, et al. Spatial and temporal variability in net primary production of alpine grassland on Tibetan Plateau since 1982
Journal of Geographical Sciences, 2014,24(2):269-287.

DOI:10.1007/s11442-014-1087-1URL [本文引用: 1]
12 gC yr-1(yr represents year),while the average annual NPP was 120.8 gC m-2 yr-1. (2) The annual NPP in alpine grassland on the TP fluctuates from year to year but shows an overall positive trend ranging from 114.7 gC m-2 yr-1 in 1982 to 129.9 gC m-2 yr-1 in 2009,with an overall increase of 13.3%;32.56% of the total alpine grassland on the TP showed a significant increase in NPP,while only 5.55% showed a significant decrease over this 28-year period. (3) Spatio-temporal characteristics are an important control on annual NPP in alpine grassland:a) NPP increased in most of the natural zones on the TP,only showing a slight decrease in the Ngari montane desert-steppe and desert zone. The positive trend in NPP in the high-cold shrub-meadow zone,high-cold meadow steppe zone and high-cold steppe zone is more significant than that of the high-cold desert zone;b) with increasing altitude,the percentage area with a positive trend in annual NPP follows a trend of "increasing-stable-decreasing",while the percentage area with a negative trend in annual NPP follows a trend of "decreasing-stable-increasing",with increasing altitude;c) the variation in annual NPP with latitude and longitude co-varies with the vegetation distribution;d) the variation in annual NPP within the major river basins has a generally positive trend,of which the growth in NPP in the Yellow River Basin is most significant. Results show that,based on changes in NPP trends,vegetation coverage and phonological phenomenon with time,NPP has been declining in certain places successively,while the overall health of the alpine grassland on the TP is improving.]]>

Li L H, Zhang Y L, Liu L S, et al. Spatiotemporal patterns of vegetation greenness change and associated climatic and anthropogenic drivers on the Tibetan Plateau during 2000-2015
Remote Sensing, 2018,10:1525. Doi: http://www.geog.com.cn/article/2020/0375-5444/10.3390/rs10101525.

URL [本文引用: 1]

Li L H, Zhang Y L, Liu L S, et al. Current challenges in distinguishing climatic and anthropogenic contributions to alpine grassland variation on the Tibetan Plateau
Ecology and Evolution, 2018,8(11):5949-5963.

DOI:10.1002/ece3.4099URLPMID:29938105 [本文引用: 1]
Quantifying the impact of climate change and human activities on grassland dynamics is an essential step for developing sustainable grassland ecosystem management strategies. However, the direction and magnitude of climate change and human activities in driving alpine grassland dynamic over the Tibetan Plateau remain under debates. Here, we systematically reviewed the relevant studies on the methods, main conclusions, and causes for the inconsistency in distinguishing the respective contribution of climatic and anthropogenic forces to alpine grassland dynamic. Both manipulative experiments and traditional statistical analysis show that climate warming increase biomass in alpine meadows and decrease in alpine steppes, while both alpine steppes and meadows benefit from an increase in precipitation or soil moisture. Overgrazing is a major factor for the degradation of alpine grassland in local areas with high level of human activity intensity. However, across the entire Tibetan Plateau and its subregions, four views characterize the remaining controversies: alpine grassland changes are primarily due to (1) climatic force, (2) nonclimatic force, (3) combination of anthropogenic and climatic force, or (4) alternation of anthropogenic and climatic force. Furthermore, these views also show spatial inconsistencies. Differences on the source and quality of remote sensing products, the structure and parameter of models, and overlooking the spatiotemporal heterogeneity of human activity intensity contribute to current disagreements. In this review, we highlight the necessity for taking the spatiotemporal heterogeneity of human activity intensity into account in the models of attribution assessment, and the importance for accurate validation of climatic and anthropogenic contribution to alpine grassland variation at multiple scales for future studies.

Li S C, Zhang Y L, Wang Z F, et al. Mapping human influence intensity in the Tibetan Plateau for conservation of ecological service functions
Ecosystem Services, 2018,30:276-286.

DOI:10.1016/j.ecoser.2017.10.003URL [本文引用: 1]

Ding M J, Zhang Y L, Liu L S, et al. The relationship between NDVI and precipitation on the Tibetan Plateau
Journal of Geographical Sciences, 2007,17:259-268.

DOI:10.1007/s11442-007-0259-7URL [本文引用: 1]
The temporal and spatial changes of NDVI on the Tibetan Plateau, as well as the relationship between NDVI and precipitation, were discussed in this paper, by using 8-km resolution multi-temporal NOAA AVHRR-NDVI data from 1982 to 1999. Monthly maximum NDVI and monthly rainfall were used to analyze the seasonal changes, and annual maximum NDVI, annual effective precipitation and growing season precipitation (from April to August) were used to discuss the interannual changes. The dynamic change of NDVI and the correlation coefficients between NDVI and rainfall were computed for each pixel. The results are as follows: (1) The NDVI reached the peak in growing season (from July to September) on the Tibetan Plateau. In the northern and western parts of the plateau, the growing season was very short (about two or three months); but in the southern, vegetation grew almost all the year round. The correlation of monthly maximum NDVI and monthly rainfall varied in different areas. It was weak in the western, northern and southern parts, but strong in the central and eastern parts. (2) The spatial distribution of NDVI interannual dynamic change was different too. The increase areas were mainly distributed in southern Tibet montane shrub-steppe zone, western part of western Sichuan-eastern Tibet montane coniferous forest zone, western part of northern slopes of Kunlun montane desert zone and southeastern part of southern slopes of Himalaya montane evergreen broad-leaved forest zone; the decrease areas were mainly distributed in the Qaidam montane desert zone, the western and northern parts of eastern Qinghai-Qilian montane steppe zone, southern Qinghai high cold meadow steppe zone and Ngari montane desert-steppe and desert zone. The spatial distribution of correlation coefficient between annual effective rainfall and annual maximum NDVI was similar to the growing season rainfall and annual maximum NDVI, and there was good relationship between NDVI and rainfall in the meadow and grassland with medium vegetation cover, and the effect of rainfall on vegetation was small in the forest and desert area.]]>

Sun Honglie, Zheng Du, Yao Tandong, et al. Protection and construction of the national ecological security shelter zone on Tibetan Plateau
Acta Geographica Sinica, 2012,67(1):3-12.

DOI:10.11821/xb201201001URL [本文引用: 1]
The shelter function of Tibetan Plateau has an important effect on the ecological security in China, even in Asia. Under the joint influence of global change and human activities, ecosystem destabilizing and resources and environment pressure increasing emerge on the Tibetan Plateau, which have caused some problems, including significant glacier retreat, serious land degradation, aggravated soil erosion and water loss, increased threats to biodiversity along with decreased rare and specious biological resources, and natural disasters increasing. These problems have a great influence on regional ecological security shelter function on the plateau. Based on the relevant research and practical experience in ecological construction, some suggestions are proposed to strengthen ecological protection and construction of the national ecological security shelter zone on the Tibetan Plateau at present, namely, strengthening basic research on the Tibetan Plateau ecological shelter impacts and regional ecological security enhancement and climate change mitigation; developing the key technology of protection and construction of the national ecological security shelter zone on the plateau and demonstration; striving to set up a monitoring system of ecological shelter function, intensifying evaluation of protection and construction efficiency of ecological security shelter zone, perfecting evaluation systems and standards, and summarizing experience, so as to enhance the overall function of national ecological security shelter and to further take the initiative in dealing with global change.
[ 孙鸿烈, 郑度, 姚檀栋, . 青藏高原国家生态安全屏障保护与建设
地理学报, 2012,67(1):3-12.]

[本文引用: 1]

Shi Changxing, Xu Jiongxin, Cai Qiangguo, et al. Retrospect and prospect of geomorphology in IGSNRR, CAS
Geographical Research, 2010,29(9):1546-1560.

[本文引用: 1]

[ 师长兴, 许炯心, 蔡强国, . 地貌过程研究回顾与展望
地理研究, 2010,29(9):1546-1560.]

[本文引用: 1]

Shi C X. Ages and magnitudes of base level fall and valley downcutting in ten tributaries (the Ten Kongduis) of the upper Yellow River, China
Geomorphology, 2019,325:29-39.

DOI:10.1016/j.geomorph.2018.10.005URL [本文引用: 1]

Xu J X. The 1800-year variation of the lower Yellow River bank breachings in relation to the drainage basin vegetation reconstructed using cave stalagmite records
Earth Surface Processes and Landforms, 2019,44(5):1050-1063.

DOI:10.1002/esp.v44.5URL [本文引用: 1]

Zhang S Y, Chen D, Li F X, et al. Evaluating spatial variation of suspended sediment rating curves in the middle Yellow River basin, China
Hydrological Processes, 2018,32(11):1616-1624.

DOI:10.1002/hyp.v32.11URL [本文引用: 1]

Zheng M G. A Spatially invariant sediment rating curve and its temporal change following watershed management in the Chinese Loess Plateau
Science of the Total Environment, 2018,630(15):1453-1463.

DOI:10.1016/j.scitotenv.2018.02.323URL [本文引用: 1]

Fang H Y, Sun L Y. Modelling soil erosion and its response to the soil conservation measures in the black soil catchment, Northeastern China
Soil and Tillage Research, 2017,165:23-33.

DOI:10.1016/j.still.2016.07.015URL [本文引用: 1]

Sun L Y, Yang F T, Wang J Y, et al. Impacts of forest types on soil C, N and DOC loss in runoff in the laterite hilly region of southern China
Environmental Earth Sciences, 2015,74(2):1391-1402.

[本文引用: 1]

Huang H Q, Deng C Y, Nanson G C, et al. A test of equilibrium theory and a demonstration of its practical application for predicting the morphodynamics of the Yangtze River
Earth Surface Processes and Landforms, 2014,39(5):669-675.

DOI:10.1002/esp.v39.5URL [本文引用: 1]

Yu G A, Li Z W, Yang H Y, et al. Effects of riparian plant roots on the unconsolidated bank stability of meandering channels in the Tarim River, China
Geomorphology, 2020,351:1-12.

[本文引用: 1]

Gao C, Wang S J. Evolution of the gravel-bedded anastomosing river within the Qihama reach of the First Great Bend of the Yellow River
Journal of Geographical Sciences, 2019,29(2):306-320.

DOI:10.1007/s11442-019-1598-xURL [本文引用: 1]
The anastomosing river that is present within the First Great Bend of the Yellow River is different from other sand-bedded rivers of this type because it contains gravel-bedded materials. It is therefore important to determine whether, or not, the specific characteristics of this anastomosing river are similar to those seen in sand-bedded forms, including the characteristics of erosion and deposition, and the stability of channel and interchannel wetlands. Four Landsat images from 1990, 2001, 2013, and 2016 alongside two Google Earth (GE) images from 2011 and 2013 were utilized in this study in tandem with field sampling and observations to select a 12 km main channel length section of the Qihama reach anastomosing river. This section was then used to determine variations in channel planform and sedimentary characteristics over a 26 year period. The results of this study show that this gravel-bedded anastomosing river has exhibited a high degree of stability overall, and that there has been no obvious channel and wetland bank erosion and deposition. Data also show that over the 26 years of this study, anastomosing belt area increased by 2.43%, while the ratio of land to water area remained almost equal. The number of wetlands has also increased along this river section at a rate as high as 62.16% because of the fragmentation of some small interchannel examples, while the talweg has alternately migrated to either the left or right over long periods of time at a relatively stable rate. Indeed, as a result of the migration of this line, there has been significant turnover in the number of islands within the main channel while bank shift has occurred at a rate of about 5 m/yr. The numerous anastomosing channels within this river section remained very stable over the course of this study, characterized by a mean annual migration rate of just 1 m/yr, while the sediments in bank columnar sections are mainly composed of fine sands or silts with a relatively high clay content. The sediment grain-size distribution curve for this river section contains multiple peaks, distinct from the muddy sediments within bank columnar sections from sand-bedded anastomosing rivers. The dense vegetation within riparian and interchannel wetlands alongside this river reach has also protected anastomosing channels from erosion and maintained their stability, a key feature of this gravel-bedded system.

Chen D, Tang C L. Evaluating secondary flows in the evolution of sine-generated meanders
Geomorphology, 2012,163(Suppl.1):37-44.

[本文引用: 1]

Guo X Y, Chen D, Parker G. Flow directionality of pristine meandering rivers is embedded in the skewing of high-amplitude bends and neck cutoffs
PNAS, 2019,116(47):23448-23454.

DOI:10.1073/pnas.1910874116URLPMID:31685630 [本文引用: 1]
Information concerning the dynamics of river meandering is embedded in their planforms. Here, we focus on how bend skewing varies with increasing sinuosity, and how flow direction is embedded in bend skewing. It has often been thought that upstream-skewed bends are dominant within a sufficiently long reach. These bends may allow a reasonable inference as to the direction of flow. Here we consider this issue using 20 reaches of freely meandering alluvial rivers that are in remote locations, generally far from human influence. We find that low-amplitude bends tend to be downstream-, rather than upstream-skewed. Bends with sinuosity greater than 2.6, however, are predominantly upstream-skewed. Of particular interest are the neck cutoffs, all chosen to be relatively recent according to their position related to the main channel: 84% of these are upstream-skewed. Neck cutoffs, which have likely evolved directly from bends of the highest sinuosity, represent the planform feature most likely to have flow direction embedded in them. The field data suggest that meander bends without external forcing such as engineering works tend to evolve from downstream-skewed low-sinuosity bends to upstream-skewed high-sinuosity bends before cutoff. This process can be reproduced, to some extent, using models coupling sedimentary dynamics with flow dynamics.

Wang X M, Cheng H, Li H, et al. Key driving forces of desertification in the Mu Us Desert, China
Scientific Reports, 2017,7:3933. Doi: http://www.geog.com.cn/article/2020/0375-5444/10.1038/s41598-017-04363-8.

URLPMID:28638114 [本文引用: 1]
The temporal trends and key driving forces of desertification in the Mu Us Desert are representatives of most arid regions of Asia with a high risk of desertification. We analyzed the significance of Aeolian transport on desertification in the Mu Us Desert by field investigations, sampling, wind tunnel experiments, particle size and nutrient measurements, and statistics on aeolian transport potentials. The results showed that high intensities of aeolian processes may result in low differences in aeolian transport despite differences in the underlying sediments. When high desertification occurred in the 1970s, the annual losses of the ammonium N, nitrate N, available K, and available P were approximately 116, 312, 46,436, and 1,251 kg km(-2), respectively. After 2010, the losses were only 8, 20, 3,208, and 84 kg km(-2), which were generally only 6.7% of those in the 1970s. The results showed that although human activity may trigger desertification, the dramatic decline of aeolian transport and low nutrient loss may be the key driving forces for the occurrence of rehabilitation in this region.

Li D F. Quantifying water use and groundwater recharge under flood irrigation in an arid oasis of northwestern China
Agricultural Water Management, 2020,240:1-13.

[本文引用: 1]

Zhu B Q, Ren X Z, Rioual P. Geological control on the origin of fresh groundwater in the Otindag Desert, China
Applied Geochemistry, 2019,103:131-142.

DOI:10.1016/j.apgeochem.2019.03.006URL [本文引用: 1]

He L, Chen D, Zhang S Y, et al. Evaluating regime change of sediment transport in the Jingjiang River reach, Yangtze River, China
Water, 2018,10(3):1-21.

DOI:10.3390/w10020001URL [本文引用: 1]

Zhou Y Y, Huang H Q, Nanson G C, et al. Progradation of the Yellow (Huanghe) River delta in response to the implementation of a basin-scale water regulation program
Geomorphology, 2015,243:65-74.

DOI:10.1016/j.geomorph.2015.04.023URL [本文引用: 1]

Qi Deli, Yan Ming, Yan Dan, et al. Estimate area of Danxia Landform in China: An empirical research on Pingshi red -beds Basin in northern Guangdong
Journal of Mountain Science, 2016,34(2):134-141.

[本文引用: 1]

[ 齐德利, 颜明, 闫丹, . 中国丹霞地貌的面积概算: 粤北坪石红层盆地的实证研究
山地学报, 2016,34(2):134-141.]

[本文引用: 1]

相关话题/地理 系统 综合 过程 土地