Holocene hydro-environmental evolution and its impacts on human activities in Jianghan-Dongting Basin, middle reaches of the Yangtze River, China
ZHAO Chengshuangping1, MO Duowen,1,21. Laboratory for Earth Surface Process, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China 2. Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052
Major Program of National Social Science Foundation of China.11&ZD183 Foundation for Distinguished Professors of Henan Province Zhengzhou Research Council for the Origins of Chinese Civilization National Key Project of Scientific and Technical Supporting Program of China.2013BAK08B02 National Natural Science Foundation of China.41701220
作者简介 About authors 赵成双苹(1991-),女,河北新乐人,博士,研究方向为环境演变与环境考古E-mail:zhaochengsp@pku.edu.cn。
Abstract Based on the comprehensive analyses of 18 core profiles' sedimentary sequences and lithological characteristics in Jianghan-Dongting Basin of the middle reaches of Yangtze River and the spatial-temporal distribution of archeological sites in this area, we reconstructed the Holocene hydro-environmental evolution of the research area, and its relationship with human activities. The comparison reveals that in 11.5-5.5 ka BP, the water level of rivers and lakes in the middle Yangtze River presented a rising trend, concurrently, under the development of Neolithic culture and rice agricultural activities, human occupation extended from piedmont plain to inner basin plain in the research area. The water level fell in 5.5-4.0 ka BP, meanwhile, the number of human settlements of Qujialing-Shijiahe culture rapidly increased, especially in the inner basin plain. The water level rose again around 4.0 ka BP, and floods spread massively in this period, which led to the decline of Shijiahe culture. The main causes of hydro-environmental evolution in the research area are the fluctuation of sea level and the aggradation of fluvio-lacustrine sediments. Keywords:Jianghan-Dongting Basin;Holocene;hydrological environmental change;human-environment interaction
PDF (6468KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 赵成双苹, 莫多闻. 长江中游江汉—洞庭盆地全新世以来水文环境演变与人类活动. 地理学报[J], 2020, 75(3): 529-543 doi:10.11821/dlxb202003007 ZHAO Chengshuangping. Holocene hydro-environmental evolution and its impacts on human activities in Jianghan-Dongting Basin, middle reaches of the Yangtze River, China. Acta Geographica Sinice[J], 2020, 75(3): 529-543 doi:10.11821/dlxb202003007
1 引言
古环境变化及其与人类活动的相互关系是环境考古学研究的核心问题。水文环境与人类活动关系密切,受到了越来越多的关注。Bubenzer等在尼罗河流域的研究发现,全新世气候湿润阶段东撒哈拉沙漠中一些具备地表水资源的地点成为良好的狩猎采集场所,形成了一些人类临时性聚落[1]。Kidder等在密西西比河流域的研究重建了区域距今14.0 ka以来Arkansas河与Mississippi河演变过程,发现地貌、水文环境改变的时期与人类文化转变时期对应,认为气候变化、河流改道、洪水等事件是导致区域人类居住间断、文化发生转变的原因[2]。Heyvaert等利用两河流域Telled-Der和Sippar古城所在区域钻孔沉积序列重建了河流演化历史,认为古人类出于灌溉目的进行的筑堤、淤堵等河流改造活动促使了河流改道[3]。Giosan等对印度河流域的研究发现,由于气候变化,河流洪泛作用减弱,为Harappan文明的发展提供了有利的环境条件,而之后洪泛作用的增强又成为导致文明衰落的重要因素[4]。中国也有****对水文环境与人类活动关系进行过研究,如夏正楷等对内蒙古西拉木伦河流域的研究认为河流下切形成的阶地和河漫滩是古人类生活的重要场所,随着河流的不断下切,区域古人类文化出现垂直向下迁移趋势[5]。Huang等在黄河中游漆水河流域的古水文演化研究认为4.3—4.0 ka BP存在古洪水事件,是区域文化衰落的原因[6]。在长江下游地区,已有研究发现海平面上升与遗址文化间断或区域文化衰落存在一定的对应关系[7,8,9,10,11]。
2.2.1 早期新石器文化 长江中游最早出现的新石器文化是以洞庭湖地区澧阳平原为核心的彭头山文化(8.5—7.8 ka BP),其生业经济类型以狩猎采集为主,并已开展少许稻作农业活动,发展环壕聚落[26]。彭头山文化之后发展出皂市下层文化(7.8—6.9 ka BP)和汤家岗文化(6.9—6.3 ka BP)两个文化阶段。在鄂西长江两岸,发育有源自彭头山文化的城背溪文化(7.8—6.3 ka BP)。相当于汤家岗文化时期,江汉平原以汉水东部为中心开始出现融合了中原文化特征的边畈文化(6.9—5.9 ka BP)
2.2.2 中期新石器文化 城背溪文化之后的大溪文化(6.3—5.5 ka BP)在江汉—洞庭盆地及三峡地区都有分布。洞庭盆地大溪文化时期形成了中国最早、以城壕环绕的古城——城头山遗址,这一时期稻作农业在生业经济活动中所占比重逐渐增加,城头山遗址外发现有大型的水稻田和灌溉系统[27]。江汉平原发展油子岭文化(5.9—5.3 ka BP)。
2.2.3 晚期新石器文化 5.3 ka BP前后发展起来的屈家岭文化(5.3—4.5 ka BP)统一了长江中游地区,新石器文化繁荣发展,众多古城在这一阶段兴起[28],发达的稻作农业已经成为生业经济的重要形式。石家河文化时期(4.5—3.9 ka BP),长江中游新石器文化发展至巅峰,聚落数量众多,等级分明,石家河古城成为长江中游地区的都邑性聚落,长江中游人类文化进入了早期文明阶段[25]。但石家河文化的繁荣仅持续到4.0 ka BP前后,大型古城废弃,聚落数量锐减,长江中游新石器时代文化就此衰落,进入了文化低潮期,至商代(3.55—3.05 ka BP)人类文化才再次兴盛。
3 长江中游全新世水文环境演化
根据区域环境(表1,图3)和文化演化历史,以5.5 ka BP和4.0 ka BP为界,将区域水文环境演化过程划分为11.5—5.5 ka BP、5.5—4.0 ka BP和4.0 ka BP之后3个阶段。
Tab. 1 表1 表1钻孔数据列表 Tab. 1The list of sediment cores inferred
洞庭湖地区,位于洞庭盆地东部、湖南省华容县注滋口镇的ZK01钻孔[39],处于东洞庭湖西岸洞庭盆地的古深槽中。晚更新世末期以来沉积物呈稳定的青灰色淤泥质粘土(图3),发育有水平层理,表明钻孔位置为一较深的稳定湖泊。约7.3 ka BP之前,剖面粒度波动不大,表明在湖泊沉积的同时,水位在不断上升,使湖泊水深达到了一种动态平衡。而到约7.3 ka BP,剖面粒度曲线出现了显著的波动,粗粉砂含量激增,而粘土和细粉砂含量减少(图4),反映湖泊水深的变浅。这种变浅是由于湖泊淤积而使湖底升高的速率大于水位上升的速率引起的,是湖泊发育的自然过程,反映了约7.0 ka BP长江水位晚更新世末期以来的快速上升速率有所减缓。在整个洞庭地区,早全新世沉积缺失,仅分布在古深槽内或少数地势低洼区域[18, 40-41],中全新世早期沉积仍只分布在洞庭湖部分低洼地区[42],而大规模的湖相沉积年代则更晚,如分布在沅江口至东洞庭湖地区的蓝绿色粘土带,其底部贝壳的14C年龄为7.5±0.15 ka BP[38],代表其成湖的年代。这些沉积分布的变化反映出晚更新世末期开始古洞庭湖自古深槽发育,主体位于洞庭湖区北部及古湘江尾段,随着水位的升高而逐渐向周围地区扩展。
综合江汉平原和洞庭盆地来看,晚更新世末期到全新世中期,长江中游河湖水位处于快速上升的过程,到约7.0 ka BP,水位上升的速率减缓。这一长时间的高水位使研究区的河网切割深槽内沉积物快速堆积,并在古槽谷和低洼处发育湖泊。这一过程应与末次冰期后的气候及海平面变化有关。末次冰期后,一方面气温迅速回升,降水增加,使水流的侵蚀、搬运作用增强,将寒冷气候条件下强烈的物理风化而形成的碎屑物质带到平原河谷洼地中沉积,从而使研究区来水来沙量增加。另一方面,这一时期中国东部海平面的迅速上升[43,44,45],使长江侵蚀基准面抬高,水位上升。在长江水位上升的顶托作用下,发生溯源堆积,江汉—洞庭盆地水系搬运的泥沙大量堆积在平原内部,使江汉—洞庭水系洪水位随之抬高。起初,长江水位还处于低于地面的较低位置[29, 46],水流携带碎屑物质最先进入河流切割的深槽以及低洼地区,使这些区域湖沼开始扩张。随着海平面的上升以及深槽和低洼地区的淤积,长江水位不断升高,大洪水偶尔可以漫过河岸,形成薄的洪泛层,如江汉平原的四湖洼地和重湖地区发育有全新世早期的洪泛沉积[47]。到7.0 ka BP前后,海平面上升减缓[48],江汉—洞庭水位上升的速率随之减缓,原有湖泊水深变浅,一些平原洼地先后积水成湖。
3.2 阶段II(5.5—4.0 ka BP)
全新世中期晚段研究区钻孔沉积特征出现明显变化,如JZ-2010剖面[15, 33],全新世中晚期之间发育深棕色夹棕色淤泥(图3),呈较深的河间洼地湖泊环境,而在这一层沉积物中部,约深437 cm处(5508 cal. yr BP),沉积物中粘土含量呈下降趋势,粉砂含量呈增加趋势(图4),指示河间洼地湖水深度减小,反映出江汉平原河湖水位的降低。江汉平原西部的松滋八宝188号孔(图3)、潜江张金海345号孔,江汉平原中部偏东的仙桃纯良岭454号孔以及江汉平原南部的石首宛子口274孔[30,31],其地貌位置均为河流附近的湖沼区域,这些钻孔显示出全新世中期晚段的两个湖相淤泥层之间,夹有薄层中细砂、亚砂层或粘土层,且松滋八宝188号孔这一层的C14测年结果为5240±125 cal. yr BP[30,31],指示出在5240 cal. yr BP时,这些钻孔位置的湖泊水位已经显著下降。还有一些钻孔在这一时期沉积相变化频繁,如江汉平原西部江陵秦市乡QS01孔、中部偏东的大同湖DTH01孔、东部武汉市蔡甸区三河连ZK76孔和江夏区门塘湾ZK84孔[32](图3),都有淤泥质粘土与粉砂质粘土、粘土互层的现象,反映出水位下降导致的湖泊不稳定。在洞庭湖地区,ZK01钻孔在约130 cm深处(约5.5 ka BP)粒度组成显著变化,砂和粗粉砂含量增多,细粉砂减少[39](图4),也指示存在一个水位下降的阶段。
中国东海海平面在约5.5 ka BP前后开始下降[43],使长江侵蚀基准面降低,在溯源侵蚀作用下,河流下切,也使得沿江湖泊水位下降,例如太湖在5.5—5.0 ka BP甚至出现了沉积间断[49],这种水位的下降也影响到了长江中游地区。加之约5.5 ka BP的突发气候干冷事件,降水减少,加剧了长江中游河湖水位下降,出现了一个低水位阶段。
3.3 阶段III(4.0 ka BP之后)
全新世晚期区域钻孔沉积特征再次发生显著变化。江汉平原沔城M1孔[37](113°13′E, 30°12′N)属于湖北省仙桃市沔城镇,位于平原中部,地质上处于沔阳凹陷,是江汉平原第四纪沉积中心之一,地貌上处于汉江与东荆河之间的排湖洼地,在约6.5 ka BP开始由河流发育为河间洼地湖。在剖面约14 m深处(约4.2 ka BP),沉积物由灰褐色粉砂质粘土与灰色粉砂互层转变为灰色—深灰色粘土(图3、图4)。颜色加深和粒度变细,指示了钻孔位置河间洼地湖水水位的上升,使其变为了较稳定的湖泊。江汉平原自西向东的多个钻孔,如公安县麻豪口MHK02钻孔[32]、江陵县ZK47孔[34]、江陵县秦市乡QS01孔[32]、监利县新沟孔[35]和周老孔[36]、监利县网市镇易家湾WS03孔[32]、武汉市蔡甸区三河连ZK76孔[32]等在这一阶段均发育淤泥质粘土沉积(图3),沉积物较上一阶段变细,反映出水域扩大,湖沼增多的环境特点。但是,JZ-2010剖面在这一阶段却出现了粘土含量剧减、粉砂含量激增,沉积物粒度显著变粗的现象[15, 33](图4),结合其地貌位置来看,可能是由于钻孔处于长江荆江段天然堤后,长江水位显著上升使洪水冲破天然堤,携大量泥沙进入JZ-2010所在位置,形成决口扇沉积,造成沉积物粒度变粗,这与前文的证据并不矛盾。
洞庭湖地区ZK01钻孔在4.0 ka BP前后发生粗粉砂含量锐减,细粉砂、粘土剧增的现象[39](图4),指示湖泊水位显著上升。由于洞庭湖与长江相连通,其水位的上升可以反映长江水位上升。这一时期在整个洞庭盆地沉积物以粘土质粉砂和粉砂质粘土为主、淤泥质粉砂和粉砂质淤泥呈斑块状星罗棋布的现象。西洞庭湖的CK37孔,淤泥质细粉砂层底部14C年代为3900±100 cal. yr BP,东洞庭湖西岸注滋口镇的CK21孔,其湖相沉积层中间位置的14C年代为3700±100 cal. yr BP[38],证实了洞庭湖地区湖泊扩大的时间在4.0 ka BP前后。
综合来看,除气候因素可能造成的影响外[49,50],这一时期海平面的再次上升[41-43, 51-53]可能对中游河湖水位起到重要作用。在晚更新世以来的长期淤积作用下,到全新世晚期4.0 ka BP前后长江中游江汉—洞庭地区中部早期高低不平的河网切割平原已逐渐演化为地势起伏和缓的冲积-湖积平原,易发生洪泛,在海水顶托作用下,河湖水位有所上升,便造成了较大范围的洪泛,低洼地区广泛积水成湖。
4 古水文环境演变与人类活动关系
如前文所述,全新世江汉—洞庭盆地河湖水位大致经历了晚更新世末期至全新世中期早中段(11.5—5.5 ka BP)快速上升、全新世中期晚段(5.5—4.0 ka BP)下降、全新世晚期(4.0 ka BP之后)再次上升的演变过程。这一水文环境演变过程影响了区域聚落分布、农业生产和文化兴衰。
4.1 全新世早期至中期早中段水位上升时期(8.5—5.5 ka BP)
全新世早中期洞庭湖地区及江汉西部地区发育了彭头山文化、皂市下层文化、城背溪文化、汤家岗文化、大溪文化,江汉平原北部发育了边畈文化、油子岭文化。彭头山文化、皂市下层/城背溪文化以及汤家岗/边畈文化时期(8.5—6.3 ka BP),聚落数量较少(图5a、图6),主要分布于山前平原地带[18-19, 55-57]。从文化脉络来看,从旧石器时代至新旧石器过渡时期,洞庭湖盆地澧阳平原的山前平原地带一直是人类聚居的重要场所[58],在此基础上发展的新石器时代文化自然最先分布在此区域。从生业经济来看,山前平原地带既便于进行狩猎采集活动,也能满足稻作农业需要[26],适合古人类生产生活。并且此时人口规模较小,山前平原已能满足古人类活动,不需要进入平原内部。到大溪/油子岭文化时期(6.3—5.3 ka BP)(图5a),聚落数量增多(图6),除分布在山前平原外,部分聚落甚至出现在平原腹地位置[18-19, 55-57]。聚落分布的这一变化可能有两方面的原因。其一是由于人口的增加,聚落数量增多,对生存空间的需要迫使古人类不得不进入到更广阔的平原地带居住。其二是稻作农业活动发展成熟[59],逐渐取代狩猎采集成为生业经济活动的主要形式,人类对稻作农业的依赖越来越强,于是有意识的选择更适合稻作农业活动的场所。这一阶段聚落的分布变化主要同人类文化发展相关。虽然河湖水位呈现逐渐上升趋势,但并没有对聚落分布变化构成影响。
Fig. 6Histogram of the number of sites in the middle reaches of Yangtze River
4.2 全新世中期晚段水位下降时期(5.5—4.0 ka BP)
全新世中期晚段对应的区域新石器文化为屈家岭文化(5.3—4.5 ka BP)、石家河文化早中期(约4.5—4.2 ka BP)。屈家岭文化时期(5.3—4.5 ka BP),聚落数量较上一阶段再次增加(图6),更多的聚落出现在冲积—湖积平原区域,并且出现了江汉平原聚落多于洞庭湖盆地的趋势(图5b)。
长江中游地区以南方系统和北方系统为主体的二元考古学文化谱系结构被打破,主要在油子岭文化基础上发展起来的屈家岭文化取代南方系统文化,实现了长江中游地区史前文化的空前繁荣和统一[60]。史前古城在这一时期兴起,出现石家河古城、陶家湖古城、阴湘城古城、鸡鸣城古城等具备城墙和环壕的古城聚落,并出现中心聚落和从属聚落的雏形[28]。石家河文化早中期(约4.5—4.2 ka BP),在屈家岭文化时期基础上,聚落数量进一步增加(图6),分布范围增大,北到伏牛山及淮河以南一带,南达洞庭湖,西入西陵峡,东至巴河附近[55],且遗址海拔跨度变大,在海拔27~200 m的不同地貌区都有分布(图5b)。社会复杂化进一步加剧,聚落等级与社会阶层明显分化,石家河城址成为长江中游地区的都邑性中心城址,统治着长江中游地区。社会分工细化,并发现有大型祭祀场所[61],长江中游地区已然进入了初期文明时代[25, 61]。
这种文化的兴盛过程与水文环境的演化背景密切相关。在约5.5 ka BP,长江中游河湖水位降低,一方面使水域面积减少,可供人类定居的陆地面积扩大,为古人类提供了更大的生存空间,有利于聚落数量的增多。另一方面,平原地区的大范围肥沃土地适宜进行稻作农业活动,稻作农业在生业经济中所占的比重越来越大,最终替代狩猎采集成为生业经济的主要形式,这种相对稳定、产量较高的生业经济形式为人口增加和文化发展提供了有力支持。长江下游地区已有研究发现海平面在5.0—4.5 ka BP较低,良渚文化(5.3—4.3 ka BP)在这一阶段兴起并迅速发展[8, 11],反映海平面下降使长江中下游流域河湖水位总体都处于较低水平,为古人类居住和稻作农业的发展提供了有利条件,促使人类文化兴盛。
4.3 全新世晚期水位再次上升(4.0 ka BP之后)
4.0 ka BP前后,即石家河文化晚期(或称后石家河文化时期),大型古城废弃,以石家河城址为中心的聚落模式瓦解,区域聚落数量锐减(图6),聚落分布零散[19, 21],在中原文化影响下发生了文化面貌的改变[62],长江中游地区繁荣的新石器文化黯然衰落,出现了持续数百年的文化低潮期。直至商代(3.55—3.05 ka BP)人类文化才再次兴盛(图6),但聚落多分布在盆地外围地势较高处,内部低平平原分布较少(图5c)。
约4.0 ka BP的水位上升事件可能是导致石家河文化衰落的原因之一。晚更新世末期以来区域深切河谷持续淤积,使江汉—洞庭盆地中部在4.0 ka BP前后成为一片地势起伏和缓、极易发生洪泛的冲积—湖积平原,而海平面的再次上升[41-43, 51-53]导致的长江中游水位上升则加剧了这一过程。持续时间长且较为频繁的洪水泛滥对文化发展产生了不利影响,成为导致石家河文化衰落的重要原因。一些位于地势低洼区域的遗址,如江陵太湖南岸蔡台遗址,洪湖乌林矶遗址等,在石家河中晚期文化层之上叠压有约1 m厚的淤泥层[21],可能是直接受到洪水泛滥影响,淹没了部分或全部居住区域而废弃的。多数遗址仍位于地势较高处或平原内部的黄土台地上,并且大多有环壕、城墙保护,遗址本身不易受洪泛影响,但其农田一般位于遗址外围的地势低洼处,频繁的洪泛淹没大片水稻田,农业活动难以维持,使以稻作农业为主要生业经济形式的石家河文化时期的人类粮食短缺,无法支撑这一时期大型城邦人口的生存需求,可能引发了一系列社会矛盾,造成人口数量锐减,古城废弃,最终导致文化的衰落。长江下游已有研究发现海平面在4.0 ka BP前后上升[51-52, 63],其引起的水文环境变化可能是导致良渚文化衰落的主要因素[8, 64-65]。
5 结论
通过长江中游江汉—洞庭盆地全新世水文环境演化及其与人类活动关系的研究,获得以下主要结论:
(1)晚更新世末期开始河湖水位快速上升,7.0 ka BP左右上升速率减缓,到全新世中期约5.5 ka BP小幅回落,至4.0 ka BP前后再次上升。
(2)全新世人类活动与水文环境演化过程有密切联系。全新世早期至中期早中段水位上升时期(8.5—5.5 ka BP),聚落数量总体较少,聚落的分布与迁徙主要受文化延续性、人口增加和稻作农业活动影响,与水位变化基本无关;全新世中期晚段(5.5—4.0 ka BP),河湖水位处于相对较低位置,聚落数量明显增加、分布范围扩大,石家河古城成为区域都邑性聚落,长江中游人类文化进入早期文明阶段;全新世晚期4.0 ka BP前后,河湖水位再次上升,聚落数量锐减,石家河文化衰落。
BubenzerO, RiemerH . Holocene climatic change and human settlement between the central Sahara and the Nile Valley: Archaeological and geomorphological results , 2007,22(6):607-620. [本文引用: 1]
Kidder TR, Adelsberger KA, Arco LJ , et al. Basin-scale reconstruction of the geological context of human settlement: An example from the lower Mississippi Valley, USA , 2008,27(11/12):1255-1270. [本文引用: 1]
Heyvaert V MA, BaetemanC . A Middle to Late Holocene avulsion history of the Euphrates River: A case study from Tell ed-Der Iraq, Lower Mesopotamia , 2008,27(25/26):2401-2410. [本文引用: 1]
GiosanL, Clift PD, Mcklin MG , et al. Fluvial landscapes of the Harappan civilization , 2012,109(26):1688-1694. [本文引用: 1]
XiaZhengkai, DengHui, WuHonglin . Geomorphologic background of the prehistoric cultural evolution in the Xar Moron River Basin, Inner Mongolia Acta Geographica Sinica, 2000,55(3):329-336. [本文引用: 1]
Huang CC, PangJ, ZhaX , et al. Extraordinary floods related to the climatic event at 4200 a BP on the Qishuihe River, middle reaches of the Yellow River, China , 2011,30(3/4):460-468. [本文引用: 1]
ZongY, Innes JB, WangZ , et al. Mid-Holocene coastal hydrology and salinity changes in the east Taihu area of the lower Yangtze wetlands, China , 2011,76(1):69-82. [本文引用: 1]
ShiChenxi, MoDuowen, LiChunhai , et al. The relationship between environmental evolution and human activities in Liangzhu Sites Group, Zhejiang Province Earth Science Frontiers, 2011,18(3):347-356. [本文引用: 3]
ChenT, Ryves DB, WangZ , et al. Mid to late Holocene geomorphological and hydrological changes in the south Taihu area of the Yangtze Delta plain, China , 2018,498:127-142. [本文引用: 1]
WuL, ZhuC, Zheng CG , et al. Holocene environmental change and its impacts on human settlement in the Shanghai Area, East China , 2014,114:78-89. [本文引用: 1]
HeK, LuH, ZhengY , et al. Middle-Holocene sea-level fluctuations interrupted the developing Hemudu culture in the lower Yangtze River, China , 2018,188:90-103. [本文引用: 2]
MengHuaping . Prehistoric Cultural Structures in the Middle Reaches of the Yangtze River Wuhan: Changjiang Literature and Art Publishing House, 1997. [本文引用: 2]
YasudaY, FujikiT, NasuH , et al. Environmental archaeology at the Chengtoushan site, Hunan Province, China, and implications for the environmental change and the rise and fall of the Yangtze River civilization , 2004,123:149-158. [本文引用: 1]
ShiChenxi, MoDuowen, LiuHui , et al. Late Neolithic cultural evolution and environmental changes in northern Jianghan plain east of Hanjiang River Quaternary Research, 2010,30(2):335-343. [本文引用: 1]
DuYun . Neolithic ashes and historical environment in the Dongting Lake area Journal of Central China Normal University (Natural Sciences), 2002,36(4):516-520. [本文引用: 1]
LiL, WuL, ZhuC , et al. Relationship between archaeological sites distribution and environment from 1.15 Ma BP to 278 BC in Hubei Province , 2011,21(5):909-925. [本文引用: 1]
LiuT, ChenZ, SunQ , et al. Migration of Neolithic settlements in the Dongting Lake area of the middle Yangtze River basin, China: Lake-level and monsoon climate responses , 2012,22(6):649-657. [本文引用: 4]
Guo YY, Mo DW, Mao LJ , et al. Settlement distribution and its relationship with environmental changes from the Paleolithic to Shang-Zhou period in Liyang Plain, China , 2014,321:29-36. [本文引用: 4]
ZhuCheng, YuShiyong, LuChuncheng . The study of Holocene environmental archaeology and extreme flood disaster in the Three Geoges of the Changjiang River and the Jianghan Plain Acta Geographica Sinica, 1997,52(3):268-278. [本文引用: 1]
WangHongxing . The distribution of Neolithic sites, the transfer of cultural centers and environmental changes in the middle reaches of the Yangtze River Jianghan Archaeology, 1998(1):53-61, 76. [本文引用: 3]
XieYuanyun, LiChangan, WangQiuliang , et al. Sedimentary records of paleoflood events during the last 3000 years in Jianghan Plain Scientia Geographica Sinica, 2007,27(1):81-84. [本文引用: 1]
WuLi, ZhuCheng, LiFeng , et al. Prehistoric flood events recorded at the Zhongqiao Neolithic Site in the Jianghan Plain, Central China Acta Geographica Sinica, 2015,70(7):1149-1164. [本文引用: 1]
WangHuiliang, WangXuelei, LiEnhua , et al. The characterisitcs of the mian climate change of Jianghan Plain World Science Technology Research and Development, 2009,31(6):1130-1133. [本文引用: 1]
WangHongxing . The origin and function of moat settlement in the middle reaches of Yangtze River from the view of moat settlement in Menbanwan Archaeology, 2003(9):61-75. [本文引用: 2]
XuRuihu, XieShuangyu . Environment evolution and the rise and fall of lakes in the Holocene in Jianghan plain Regional Research and Development, 1994(4):52-56. [本文引用: 2]
ChenSisi, WangXiongfei . Discussion on topography and environmental changes of Jianghan plain since the Holocene Geographical Science Research, 2014(3):39-45. [本文引用: 6]
LiF, ZhuC, WuL , et al. Environmental humidity changes inferred from multi-indicators in the Jianghan Plain, Central China during the last 12,700 years , 2014,349:68-78. [本文引用: 5]
ShiZhixin . Fossil diatoms in borehole No.47 of Jianghan plain and their significance in paleoenvironmental analysis Acta Botanica Sinica, 1997,39(1):68-76. [本文引用: 2]
WangQiuliang, LiChangan . Sedimentary environment evolution of the Jianghan Plain and its signficance to the formation of Three Gorges Quaternary Sciences, 2009,29(2):352-360. [本文引用: 2]
ZhangYufen, LiChangan, ChenGuojin , et al. Characteristics and paleoclimatic significance of magnetic susceptibility and stable organic carbon isotopes from a bore in Zhoulao Town, Jianghan Plain Journal of China University of Geosciences (Earth Science), 2005,30(1):114-120. [本文引用: 2]
ZhuYuxin, XueBin, YangXiangdong , et al. Characteristics features of the sedimentary samples from the borehole M1 in Jianghan Plain and reconstruction of paleoenvironment Journal of Geomechanics, 1997, 3(4):79-81, 83-86. [本文引用: 2]
LiJun . Environmental evolution and human activities during the Holocene in the middle and upper reaches of the Yangtze River: A case study of Dongting Lake plain and Chengdu plain [D]. , 2009. [本文引用: 5]
CaiShuming, GuanZihe . The ungrounded hypothesis of the presence of the ancient Yunmeng swamp traversing south and north of River Changjiang on the Jianghan-Dongting plain: Second comments on the ancient Yunmeng swamp Oceanologia et Limnologia Sinica, 1982,13(2):129-142. [本文引用: 3]
YangHuairen, XieZhiren . Climate and sea-level change along the east coast of China over the last 20,000 years Oceanologia et Limnologia Sinica, 1984,15(1):1-13. [本文引用: 4]
Horton BP, CorbettR, Culver SJ , et al. Modern saltmarsh diatom distributions of the Outer Banks, North Carolina, and the development of a transfer function for high resolution reconstructions of sea level , 2006,69(3/4):381-394. [本文引用: 1]
Bird MI, Austin WE N, Wurster CM, , et al. Punctuated eustatic sea-level rise in the early mid-Holocene , 2010,38(9):803-806. [本文引用: 1]
ZhouFengqin . Changes of Jingjiang Dykes and River-Lake System Nanjing: Hohai University Press, 1990. [本文引用: 1]
ChaiShuming, ZhaoYan, DuYu , et al. Environmental evolution and future development trend of Jianghan lake group in Holocene: Reunderstanding of ancient Yunmengze problem Journal of Wuhan University (Humanities section), 1998(6):96-100. [本文引用: 1]
ZhengHongbo, ZhouYousheng, YangQing , et al. Spatial and temporal distribution of Neolithic sites in coastal China: Sea level changes, geomorphic evolution and human adaption Science China Earth Sciences, 2018,48(2):127-137. [本文引用: 1]
YasudaY, FujikiT, NasuH , et al. Environmental archaeology at the Chengtoushan site, Hunan Province, China, and implications for environmental change and the rise and fall of the Yangtze River civilization , 2004,123:149-158. [本文引用: 2]
LiB, ZhuC, WuL , et al. Relationship between environmental change and human activities in the period of the Shijiahe culture, Tanjialing site, Jianghan Plain, China , 2013,308/309:45-52. [本文引用: 1]
WangQing . Influence of the middle and later holocene relative sea level change on the coastal geomorphic evolution along the northeastern Shandong Peninsula Geographical Research, 1999,18(2):122-129. [本文引用: 3]
WangJian, LiuJinling . The evolution of sedimentary environment in Taihu lake during the last 16000 years Acta Palaeotnologica Sinica, 1996,35(2):213-223.
ZhuCheng, ZhongYishun, ZhengChaogui , et al. Relationship of archaeological sites distribution and environment from the Paleolithic Age to the Warring States Time in Hubei Province Acta Geographica Sinica, 2007,62(3):227-242. [本文引用: 3]
DengHui, ChengYiyong, JiaJingyu , et al. Distribution patterns of the ancient cultural sites in the middle reaches of the Yangtze River since 8500 a BP Acta Geographica Sinica, 2009,64(9):1113-1125. [本文引用: 1]
DaHaobo . Relationship between Neolithic settlement distribution and environment in the middle reaches of Yangtze River (1) Huaxia Archaeology, 2013(3):36-43. [本文引用: 2]
PeiAnping . Paleolithic and Neolithic remains on the Liyang plain in northwestern Hunan and some related problems Cultural Relic, 2000(4):24-34. [本文引用: 1]
MengHuaping, LiuHui, XiangQifang , et al. Exploration and excavation of Shijiahe site in Tianmen, Hubei province from 2014 to 2016 Archaeology, 2017(7):33-47, 2. [本文引用: 2]
ZhaoXitao, GengXiushan, ZhangJingwen . Sea-level change of the eastern China during the last 20,000 years Acta Oceanologia Sinica, 1979,1(2):269-281. [本文引用: 1]
Stanley DJ, Chen ZY . Neolithic settlement distributions as a function of sea level-controlled topography in the Yangtze delta, China , 1996,24(12):1083-1086. [本文引用: 1]
ZhangQ, Liu CL, ZhuC , et al. Environmental change and its impacts on human settlement in the Changjiang River Delta in Neolithic age , 2004,14(3):239-244. [本文引用: 1]