Environmental variations recorded by chemical element in the sediments of Lake Yamzhog Yumco on the southern Tibetan Plateau over the past 2000 years
GUO Chao1,2, MENG Hongwei3, MA Yuzhen,1, LI Dandan1, HU Caili1, LIU Jierui1, LUO Congwen1, WANG Kai11.State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China 2.College of Resource Environment and Tourism, Hubei University of Arts and Science, Xiangyang 441053, Hubei, China 3.School of Tourism and Geographical Sciences, Yunnan Normal University, Kunming 650500, China
The National Basic Research Program of China.2013CB956001 National Natural Science Foundation of China.41571186 National Natural Science Foundation of China.41330748
作者简介 About authors 郭超(1988-),男,陕西人,博士,主要从事环境演变、孢粉学、元素地球化学等方面研究E-mail:gc@mail.bnu.edu.cn。
Abstract The Tibetan Plateau is sensitive to climate changes induced by interactions of large scale atmospheric circulations, including the East Asian monsoon, Indian monsoon and mid-latitude westerlies. In this paper, we present a high-resolution chemical element dataset covering the past 2000 years from Lake Yamzhog Yumco (28°27′N-29°12′N, 90°08′E-91°45′E, altitude in 4440 m a.s.l.), which is a representative inland lake located in the southern Tibetan Plateau. These data were acquired using an X-ray fluorescence (XRF) core scanner, which is used for in situ, high-resolution, continuous, multi-element analyses. The chronology presented herein is based on 210Pb and AMS 14C dates from the macro-remains of plants. The interpretation of elemental geochemistry, together with magnetic susceptibility and grain-size, enabled the reconstruction of the environmental changes in the southern Tibetan Plateau over the past 2000 years. Reconstructions of the temperatures, precipitation and lake levels indicated that the Medieval Warm Period (MWP) and Current Warm Period (CWP) were associated with low precipitation and high temperatures. In contrast, the Dark Cold Age Period (DCAP) and Little Ice Age (LIA) were associated with high precipitation and low temperatures. Moreover, the level of warmth during the peak of the MWP may equal or slightly exceed the 20th century warming. In addition, the prolonged LIA may have experienced a warm event on a centennial timescale, and the 17th and 18th centuries may be the coldest centuries in the last two millennia. Our reconstructions also indicated that the lake level evolution has been affected by interactions of temperature and precipitation. More specifically, during the cold periods, an increase of precipitation amplified the rise of lake levels, and vice versa. The climate records from Lake Yamzhog Yumco have confirmed a cold-moist/warm-dry climate pattern on the southern Tibetan Plateau over the past 2000 years. Additionally, the temperature variations inferred from the records were strongly correlated with the solar irradiance and northern hemispheric temperature changes, which suggests a possible link between the solar forcing and climate variability in the past 2000 years on the southern Tibetan Plateau. In addition, the enhancement and southward shift of the westerlies was determined to have significantly contributed to the high precipitation conditions during the LIA on the southern Tibetan Plateau. Keywords:elemental chemistry;southern Tibetan Plateau;the past 2000 years;Medieval Warm Period;Little Ice Age;climate change
PDF (3589KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 郭超, 蒙红卫, 马玉贞, 李丹丹, 胡彩莉, 刘杰瑞, 雒聪文, 王凯. 藏南羊卓雍错沉积物元素地球化学记录的过去2000年环境变化. 地理学报[J], 2019, 74(7): 1345-1362 doi:10.11821/dlxb201907006 GUO Chao. Environmental variations recorded by chemical element in the sediments of Lake Yamzhog Yumco on the southern Tibetan Plateau over the past 2000 years. Acta Geographica Sinice[J], 2019, 74(7): 1345-1362 doi:10.11821/dlxb201907006
Fig. 5Comparison of selected elements from Lake Yamzhog Yumco core with average annual precipitation, average annual temperature and average lake level in Baidi Hydromatric station between 1975 and 2009
Fig. 6Reconstruction of the environmental condition of Lake Yamzhog Yumco catchment during the past 2000 years. 7-10 μm%: the percentage of grain size 7-10 μm [37]; DCAP: Dark Cold Age Period; MWP: Medival Warm Period; LIA: Little Ice Age; CWP: Current Warm Period
5.3.1 温度变化的区域对比 本文试图探讨羊湖流域温度变化是否与太阳辐射强度,太阳黑子数和北半球温度存在联系。过去2000年以来太阳黑子数,太阳辐射强度以及北半球温度重建基本呈相似的变化趋势,可以识别出Late dark age、Wolf、Sp?rer、Maunder和Dalton五个太阳辐射极小期,以及中世纪和现代两个太阳辐射极大期[72]。而本文的温度重建似乎也捕捉到其中的一些气候事件,由于定年误差,地理环境以及不同代用指标的分辨率等因素,可能在时间上存在一些提前和滞后。因此,本文认为,过去2000年以来羊湖流域的温度变化可能与太阳辐射强度存在紧密的联系,例如,在百年尺度上,黑暗时代冷期和小冰期气候较为寒冷,而中世纪暖期和现代暖期气候较为温暖。同时,本文的温度重建显示,过去2000年的后一个千年整体要比前一个千年寒冷,小冰期的降温幅度要超过黑暗时代冷期,这也与北半球的温度重建基本一致(图7a),而这一结果已经得到了广泛的证实[3, 14, 77]。另外,本文的温度重建表明,羊湖流域中世纪暖期的温暖程度似乎持平甚至超过20世纪暖期,这与最近的温度重建结果也较为一致[3, 5, 14, 78]。
图7
新窗口打开|下载原图ZIP|生成PPT 图7a. 羊湖岩芯Rb/Sr值和Fe强度与太阳黑子数[72],太阳辐射强度[73]及北半球温度[4]对比; b. 羊湖岩芯Ti和K元素强度与古里雅冰芯冰川积累量[18],青海湖碳酸盐δ18O[74],GISP2冰芯重建的西风环流强度[75]及北大西洋涛动(NAO)指数[76]对比
Fig. 7a. Comparsion of the Rb/Sr, Fe sequence from Lake Yamzhog Yumco core with Sunspot numbers [72], Solar irradiance [73], and Northern Hemisphere temperature anomalies reconstruction [4]; b. Comparsion of the Ti, K sequence from Lake Yamzhog Yumco core with ice accumulation rate of Guliya ice core [18], the carbonate δ18O of Qinghai Lake [74], the intensity westerlies reconstructed from GISP2 ice core [75], and the NAO index [76]
Anderson DM, Overpeck JT, Gupta AK . Increase in the Asian Southwest Monsoon during the past four centuries , 2002,297(5581):596-599. DOI:10.1126/science.1072881URL [本文引用: 1]
Maasch KA, Mayewski PA, Rohling EJ , et al. A 2000-year context for modern climate change , 2005,87(1):1-15. [本文引用: 1]
MobergA, Sonechkin DM, HolmgrenK , et al. Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data , 2005,433(7026):613-617. DOI:10.1038/nature03265 [本文引用: 5]
Mann ME, JonesP D . Global surface temperatures over the past two millennia , 2003, 30(15):CLM 5-1. [本文引用: 9]
Mann ME, Zhang ZH, RutherfordS . Global signature and dynamical origins of the Little Ice Age and Medieval Climate Anomaly , 2009,326(5957):1256-1260. DOI:10.1126/science.1177303URL [本文引用: 4]
Zhang PZ, ChengH, Edwards RL , et al. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record , 2008,322(5903):940-942. DOI:10.1126/science.1163965URL [本文引用: 2]
MartinF, Miryam BM, KarinH , et al. Speleothem evidence for late Holocene climate variability and floods in Southern Greece , 2014,81(2):213-227. DOI:10.1016/j.yqres.2013.12.009URL [本文引用: 1]
ZhongW, Xue JB, OuyangJ , et al. Evidence of late Holocene climate variability in the western Nanling Mountains, South China , 2014,52(1/2):1-10. DOI:10.1007/s10933-014-9774-6URL [本文引用: 1]
GeQuansheng, LiuJian, FangXiuqi , et al. General characteristics of temperature change and centennial warm periods during the past 2000 years Acta Geographica Sinica, 2013,68(5):579-592. [本文引用: 1]
NybergJ, Malmgren BA, KuijpersA , et al. A centennial-scale variability of tropical North Atlantic surface hydrography during the late Holocene , 2002,183(1):25-41. DOI:10.1016/S0031-0182(01)00446-1URL [本文引用: 1]
Ljungqvist FC . A new reconstruction of temperature variability in the extra-tropical Northern Hemisphere during the last two millennia , 2010,92(3):339-351. DOI:10.1111/j.1468-0459.2010.00399.xURL [本文引用: 4]
ChristiansenB, Ljungqvist FC . The extra-tropical Northern Hemisphere temperature in the last two millennia: Reconstructions of low-frequency variability , 2012,8(2):765-786. DOI:10.5194/cp-8-765-2012URL [本文引用: 1]
Wang YB, Liu XQ, HerzschuhU . Asynchronous evolution of the Indian and East Asian Summer Monsoon indicated by Holocene moisture patterns in monsoonal central Asia , 2010,103(3):135-153. DOI:10.1016/j.earscirev.2010.09.004URL [本文引用: 1]
An ZS, Colman SM, Zhou WJ , et al. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka , 2012,2(8):1036-1036. [本文引用: 1]
Thompson LG, Mosley-ThompsonE, Davis ME , et al. A 1000 year climate ice-core record from the Guliya ice cap, China: Its relationship to global climate variability , 1995,21:175-181. DOI:10.3189/S0260305500015780URL [本文引用: 7]
Thompson LG, Yao TD, Mosley-ThompsonE , et al. A high-resolution millennial record of the south Asian Monsoon from Himalayan Ice Cores , 2000,289(5486):1916-1919. DOI:10.1126/science.289.5486.1916URL
ShaoXuemei, LiangEryuan, HuangLei , et al. A reconstructed precipitation series over the past millennium in the Northeastern Qaidam Basin Advances in Climate Change Research, 2006,2(3):122-126. DOI:10.3969/j.issn.1673-1719.2006.03.006URLMagsci 利用青海柴达木盆地东北缘山地11个地点的祁连圆柏树轮宽度序列,在早期分析祁连圆柏的生长对气候要素响应的基础上,重建了青海德令哈和乌兰地区过去1437 a的年降水量变化序列。重建方程能够解释校准期(1955-2002年)内66%的降水量变化方差,尤其是重建的降水序列的低频变化能够很好地代表器测资料的变化。从过去1437 a的时间尺度来看,近40 a来柴达木东北缘地区处于相对湿润的时期,但最显著的湿润期出现在16世纪晚期。此外,小冰期期间降水量的变幅较大,而中世纪暖期降水低频变化相对较小。另外,重建降水量体现了150~250 a尺度的低频变化特征。 [ 邵雪梅, 梁尔源, 黄磊 , 等. 柴达木盆地东北部过去1437a的降水变化重建 , 2006,2(3):122-126.] DOI:10.3969/j.issn.1673-1719.2006.03.006URLMagsci 利用青海柴达木盆地东北缘山地11个地点的祁连圆柏树轮宽度序列,在早期分析祁连圆柏的生长对气候要素响应的基础上,重建了青海德令哈和乌兰地区过去1437 a的年降水量变化序列。重建方程能够解释校准期(1955-2002年)内66%的降水量变化方差,尤其是重建的降水序列的低频变化能够很好地代表器测资料的变化。从过去1437 a的时间尺度来看,近40 a来柴达木东北缘地区处于相对湿润的时期,但最显著的湿润期出现在16世纪晚期。此外,小冰期期间降水量的变幅较大,而中世纪暖期降水低频变化相对较小。另外,重建降水量体现了150~250 a尺度的低频变化特征。
YangB, BrauningA, Johnson KR , et al. General characteristics of temperature variation in China during the last two millennia , 2002,29(9):381-384. [本文引用: 1]
Liu ZH, HendersonA C G, HuangY . Alkenone-based reconstruction of Late-Holocene surface temperature and salinity changes in Lake Qinghai, China , 2006,33(13):370-386. [本文引用: 4]
Liu XQ, Dong HL, Yang XD , et al. Late Holocene forcing of the Asian winter and summer monsoon as evidenced by proxy records from the northern Qinghai-Tibetan Plateau , 2009,280(1-4):276-284. [本文引用: 1]
Weltje GJ, TjallingiiR . Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application , 2008,274(3/4):423-438. [本文引用: 2]
FrancusP, LambH, NakagawaT , et al. The potential of high-resolution X-ray fluorescence core scanning: Applications in paleolimnology , 2009,17(3):93-95. DOI:10.22498/pages.17.3URL [本文引用: 1]
Kylander ME, AmpelL, WohlfarthB , et al. High-resolution X-ray fluorescence core scanning analysis of Les Echets (France) sedimentary sequence: new insights from chemical proxies , 2011,26(1):109-117. DOI:10.1002/jqs.1438URL [本文引用: 3]
CuvenS, FrancusP, Lamoureux SF . Estimation of grain size variability with micro X-ray fluorescence in laminated lacustrine sediments, Cape Bounty, Canadian High Arctic , 2010,44(3):803-817. DOI:10.1007/s10933-010-9453-1URL [本文引用: 3]
Loring DH, AsmundG . Geochemical factors controlling accumulation of major and trace elements in Greenland coastal and fjord sediments , 1996,28(1):2-11. DOI:10.1007/s002540050072URL [本文引用: 1]
Metcalfe SE, Jones MD, Davies SJ , et al. Climate variability over the last two millennia in the North American Monsoon region, recorded in laminated lake sediments from Laguna de Juanacatlán, Mexico , 2010,20(8):1195-1206. DOI:10.1177/0959683610371994URL [本文引用: 3]
MorellónM, Valero-GarcésB, Vegas-VilarrúbiaT , et al. Lateglacial and Holocene palaeohydrology in the western Mediterranean region: The Lake Estanya record (NE Spain) , 2009,28(25):2582-2599. DOI:10.1016/j.quascirev.2009.05.014URL [本文引用: 3]
ZieglerM, JilbertT, De LangeG J , et al. Bromine counts from XRF scanning as an estimate of the marine organic carbon content of sediment cores , 2008,9(5):303-307. [本文引用: 4]
SunRui, ZhangXueqin, ZhengDu . Spatial variation and its causes of water chemical property in Yamzhog Yumco basin, South Tibet Acta Geographica Sinica, 2013,68(1):36-44. [本文引用: 3]
WangNaiwen, LiuGuifang, ChenGuoming . Stratigraphic research of the Yamzhog Yumco region in Southern Tibet. The Qinghai- Tibet Plateau Geological Corpus, 1983,1(6):1-20. [本文引用: 1]
ChuDuo, PuQiong, WangDui , et al. Water level variations of Yamzho Yumco Lake in Tibet and the main driving forces Journal of Mountain Science, 2012,30(2):239-247. [本文引用: 3]
GuoChao, MaYuzhen, LiuJierui , et al. Climatic change recorded by grain-size in the past about 2000 years from Yamzhog Yumco Lake, Tibet Quaternary Science, 2016,36(2):405-419. DOI:10.11928/j.issn.1001-7410.2016.02.16Magsci [本文引用: 10] <p>以<sup>210</sup> Pb和AMS <sup>14</sup>C年代为框架,基于青藏高原南部羊卓雍错(简称羊湖)短钻岩芯的粒度记录,通过对沉积物粒度敏感粒级、粒度参数及频率特征曲线分析,重建了青藏高原南部过去近2000年来的有效湿度变化。结果显示:约100~820A.D.,沉积物粒度较细,湖泊水位和有效湿度较高,气候温凉偏湿,对应黑暗时代冷期;820~1200A.D.,粒度变粗,湖泊水位下降,流域气候干旱或有效湿度较低,对应中世纪暖期;1200~1910A.D.,对应小冰期,粒度变细,湖泊水位上升,有效湿度增加,气候湿润,其中在约1200~1320A.D.、1400~1550A.D.和1780~1900A.D.出现3次显著的湿润期,可能对应小冰期的3次较寒冷亚阶段;20世纪以来,湖泊急剧收缩,流域趋于干旱。与太阳活动、北半球温度和亚洲季风指标的对比分析表明:羊湖粒度反映的过去近2000年来有效湿度的变化与青藏高原及其他地区的记录有较好的一致性,但程度和起止时间有所不同;青藏高原南部地区过去2000年来的气候模式为暖干-冷湿,可能主要受太阳辐射强度所控制。该记录可补充青藏高原南部地区过去2000年来湿度变化记录的缺乏,对深入理解季风区高海拔地区过去2000年来气候变化过程及原因有重要的意义。</p> [ 郭超, 马玉贞, 刘杰瑞 , 等. 过去2000年来西藏羊卓雍错沉积物粒度记录的气候变化 , 2016,36(2):405-419.] DOI:10.11928/j.issn.1001-7410.2016.02.16Magsci [本文引用: 10] <p>以<sup>210</sup> Pb和AMS <sup>14</sup>C年代为框架,基于青藏高原南部羊卓雍错(简称羊湖)短钻岩芯的粒度记录,通过对沉积物粒度敏感粒级、粒度参数及频率特征曲线分析,重建了青藏高原南部过去近2000年来的有效湿度变化。结果显示:约100~820A.D.,沉积物粒度较细,湖泊水位和有效湿度较高,气候温凉偏湿,对应黑暗时代冷期;820~1200A.D.,粒度变粗,湖泊水位下降,流域气候干旱或有效湿度较低,对应中世纪暖期;1200~1910A.D.,对应小冰期,粒度变细,湖泊水位上升,有效湿度增加,气候湿润,其中在约1200~1320A.D.、1400~1550A.D.和1780~1900A.D.出现3次显著的湿润期,可能对应小冰期的3次较寒冷亚阶段;20世纪以来,湖泊急剧收缩,流域趋于干旱。与太阳活动、北半球温度和亚洲季风指标的对比分析表明:羊湖粒度反映的过去近2000年来有效湿度的变化与青藏高原及其他地区的记录有较好的一致性,但程度和起止时间有所不同;青藏高原南部地区过去2000年来的气候模式为暖干-冷湿,可能主要受太阳辐射强度所控制。该记录可补充青藏高原南部地区过去2000年来湿度变化记录的缺乏,对深入理解季风区高海拔地区过去2000年来气候变化过程及原因有重要的意义。</p>
Dearing JA. //Maher B A, Thompson R. Quaternary Climates, Environments and Magnetism. Cambridge: Cambridge University Press, 1999: 231-278. [本文引用: 3]
MorenoA, GiraltS, Valero-GarcésB , et al. A 14 kyr record of the tropical Andes: The Lago Chungará sequence (18°S, northern Chilean Altiplano) , 2007,161(1):4-21. DOI:10.1016/j.quaint.2006.10.020URL [本文引用: 4]
NullR C T R, TeamR, Null R CT , et al. R: A language and environment for statistical computing , 2013,1:12-21. [本文引用: 1]
RavanelliM, TubertiniO, ValcherS , et al. Heavy metal distribution in sediment cores from Western Ross Sea (Antarctica) , 1997,99(1-4):697-704. [本文引用: 1]
Reimer PJ, BardE, BaylissA , et al. Intcal13 and marine13 radiocarbon age calibration curves 0~50, 000 years cal BP , 2013,55(4):1869-1887. DOI:10.2458/azu_js_rc.55.16947URL [本文引用: 1]
Imboden DM, MarianaS . The influence of radon diffusion on the 210Pb distribution in sediments , 1982,87(C1):557-565. DOI:10.1029/JC087iC01p00557URL [本文引用: 1]
BenoitG, Rozan TF . 210Pb and 137Cs dating methods in lakes: A retrospective study , 2001,25(4):455-465. DOI:10.1023/A:1011179318352URL [本文引用: 1]
Hendy CH, Hall BL . The radiocarbon reservoir effect in proglacial lakes: examples from Antarctica , 2006,241(3/4):413-421. [本文引用: 1]
MorrillC, Overpeck JT, Cole JE , et al. Holocene variations in the Asian monsoon inferred from the geochemistry of lake sediments in central Tibet , 2006,65(2):232-243. DOI:10.1016/j.yqres.2005.02.014URL [本文引用: 2]
WatanabeT, MatsunakaT, NakamuraT , et al. Last glacial-Holocene geochronology of sediment cores from a high-altitude Tibetan lake based on AMS 14C dating of plant fossils: Implications for paleoenvironmental reconstructions , 2010,277(1/2):21-29. DOI:10.1016/j.chemgeo.2010.07.004URL [本文引用: 1]
Jin ZD, Cao JJ, Wu JL , et al. A Rb/Sr record of catchment weathering response to Holocene climate change in Inner Mongolia , 2006,31(3):285-291. [本文引用: 2]
Das BK, Haake BG . Geochemistry of Rewalsar Lake sediment, Lesser Himalaya, India: Implications for source-area weathering, provenance and tectonic setting , 2003,7(4):299-312. DOI:10.1007/BF02919560URL [本文引用: 1]
YanchevaG, Nowaczyk NR, MingramJ , et al. Influence of the intertropical convergence zone on the East Asian monsoon , 2007,445(7123):74-76. DOI:10.1038/nature05431 [本文引用: 1]
ShenJ, Wu XD, Zhang ZH , et al. Ti content in Huguangyan maar lake sediment as a proxy for monsoon-induced vegetation density in the Holocene , 2013,40(21):5757-5763. DOI:10.1002/grl.50740URL
MorellónM, Anselmetti FS, ArizteguiD , et al. Human-climate interactions in the central Mediterranean region during the last millennia: The laminated record of Lake Butrint (Albania) , 2015,136(1):547-562. [本文引用: 1]
ZhangEryong, ZhangFucun, QianYong , et al. The distribution of high iodine groundwater in typical areas of China and its inspiration Geology in China, 2010,37(3):797-802. [本文引用: 1]
LuXurong, YangLei, LuHua , et al. A tentative discussion on the control factors of Iodine content in phreatic water in Huaihe River Plains of Jiangsu Province Acta Geoscientica Sinica, 2014,35(2):211-216. [本文引用: 1]
Leonova GA, Bobrov VA, Lazareva EV , et al. Biogenic contribution of minor elements to organic matter of recent lacustrine sapropels (Lake Kirek as example) , 2011,46(2):99-114. [本文引用: 1]
KaluginI, DaryinA, SmolyaninovaL , et al. 800-yr-long records of annual air temperature and precipitation over southern Siberia inferred from Teletskoye Lake sediments , 2007,67(67):400-410. DOI:10.1016/j.yqres.2007.01.007URL [本文引用: 1]
Chu GQ, SunQ, Li SQ , et al. Minor element variations during the past 1300 years in the varved sediments of Lake Xiaolongwan, north-eastern China , 2013,135(3/4):265-272. DOI:10.1080/11035897.2013.788550URL [本文引用: 1]
SchallerT, Moor HC, WehrliB . Sedimentary profiles of Fe, Mn, V, Cr, As and Mo as indicators of benthic redox conditions in Baldeggersee , 1997,59(4):345-361. DOI:10.1007/BF02522363URL
TraceyB, LeeN, CardV . Sediment indicators of meromixis: comparison of laminations, diatoms, and sediment chemistry in Brownie Lake, Minneapolis, USA , 1996,15(2):129-132. [本文引用: 1]
Corella JP, BrauerA, MangiliC , et al. The 1.5-ka varved record of Lake Montcortès (southern Pyrenees, NE Spain) , 2012,78(2):323-332. DOI:10.1016/j.yqres.2012.06.002URL [本文引用: 1]
HuangL, Zhu LP, Wang JB , et al. Glacial activity reflected in a continuous lacustrine record since the early Holocene from the proglacial Laigu Lake on the southeastern Tibetan Plateau , 2016,456:37-45. DOI:10.1016/j.palaeo.2016.05.019URL [本文引用: 2]
SunRui, ZhangXueqin, WuYanhong . Major ion chemistry of water and its controlling factors in the Yamzhog Yumco basin, South Tibet Journal of Lake Science, 2012,24(4):600-608. [本文引用: 3]
Jin ZD, Wang SM, ShenJ , et al. Chemical weathering since the Little Ice Age recorded in lake sediments: A high-resolution proxy of past climate , 2001,26(7):775-782. [本文引用: 1]
Rothwell RG, HoogakkerB, ThomsonJ , et al. Turbidite emplacement on the southern Balearic Abyssal Plain (western Mediterranean Sea) during Marine Isotope Stages 1-3: An application of ITRAX XRF scanning of sediment cores to lithostratigraphic analysis , 2006,267(1):79-98. DOI:10.1144/GSL.SP.2006.267.01.06URL [本文引用: 1]
ChengAiying, YuJunqing, ZhangLisha , et al. XRF core scanning and applications on lake sediments Journal of Salt Lake Research, 2010,18(2):7-13. [本文引用: 1]
Burrows MA, HeijnisH, Gadd PS , et al. A new late Quaternary palaeohydrological record from the humid tropics of northeastern Australia , 2016,451:164-182. DOI:10.1016/j.palaeo.2016.03.003URL [本文引用: 1]
Vaquero JM, Gallego MC, García JA . A 250-year cycle in naked-eye observations of sunspots , 2002,29(20):1-4. [本文引用: 4]
Henderson A CG, Holmes JA, Leng MJ . Late Holocene isotope hydrology of Lake Qinghai, NE Tibetan Plateau: Effective moisture variability and atmospheric circulation changes , 2010,29(17/18):2215-2223. DOI:10.1016/j.quascirev.2010.05.019URL [本文引用: 4]
Mayewski PA, Maasch KA . Recent warming inconsistent with natural association between temperature and atmospheric circulation over the last 2000 years , 2006,2:327-355. DOI:10.5194/cpd-2-327-2006URL [本文引用: 4]
TrouetV, EsperJ, Graham NE , et al. Persistent positive North Atlantic Oscillation mode dominated the Medieval Climate Anomaly , 2009,324(5923):78-80. DOI:10.1126/science.1166349URL [本文引用: 4]
LoehleC, Mcculloch JH . Correction to: A 2000-year global temperature reconstruction based on non-tree ring proxies , 2008,18(7):1049-1058. [本文引用: 1]
Mann ME, ZhangZ, Hughes MK , et al. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia , 2008,105(36):13252-13257. DOI:10.1073/pnas.0805721105URL [本文引用: 2]
Tan LC, Cai YJ, An ZS , et al. Centennial to decadal-scale monsoon precipitation variability in the semi-humid region, northern China during the last 1860 years: Records from stalagmites in Huangye Cave , 2011,21(2):287-296. DOI:10.1177/0959683610378880URL [本文引用: 1]
TanM, Liu TS, Hou JZ , et al. Cyclic rapid warming on centennial-scale revealed by a 2650-year stalagmite record of warm season temperature , 2003,30(12):19-11. [本文引用: 1]
ZhangPeiyuan, GeQuansheng, ZhangShihuang , et al. The modes and abrupt changes of climate in China during recent 2000 years Quaternary Science, 1997(1):12-20. [本文引用: 1]
BerkelhammerM, SinhaA, MudelseeM , et al. Persistent multidecadal power of the Indian Summer Monsoon , 2010,290(1/2):166-172. [本文引用: 1]
SinhaA, StottL, BerkelhammerM , et al. A global context for mega droughts in monsoon Asia during the past millennium , 2011,30(1/2):47-62. DOI:10.1016/j.quascirev.2010.10.005URL [本文引用: 1]
Meeker LD, Mayewski PA . A 1400 year long record of atmospheric circulation over the North Atlantic and Asia , 2002,12(3):257-266. DOI:10.1191/0959683602hl542ftURL [本文引用: 1]
Campo EV, CourP, HangS . Holocene environmental changes in Bangong Co basin (Western Tibet). Part 2: The pollen record , 1996,120(1/2):49-63. DOI:10.1016/0031-0182(95)00033-XURL [本文引用: 1]
WangYongbo, LiuXingqi, YangXiangdong , et al. A 4000-year moisture evolution recorded by sediments of Lake Kusai in the Hoh Xil area, northern Tibetan Plateau Journal of Lake Science, 2008,20(5):605-612. Magsci [本文引用: 1] 通过青藏高原北部可可西里库赛湖KS-2006孔(深637cm)沉积岩芯总有机碳、总氮含量及沉积物粒度变化的研究,恢复了该地区近4000年来的干湿变化历史.结果表明,该地区近4000年来经历了显著的干湿变化,干旱时段出现在3900-3590cal aBP、3320-2630cal aBP、1720-1420cal aBP及1100-840cal aBP期间:湿润时段出现在3590-3320cal aBP、2630-1720cal aBP、1420-1100cal aBP以及840cal aBP之后小冰期有效降水升高的相对湿润时期.区域对比分析表明库赛湖地区近4000年来的干湿变化受亚洲季风影响;同时,该地区存在明显的中世纪暖期及小冰期的三次降温事件记录. [ 王永波, 刘兴起, 羊向东 , 等. 可可西里库赛湖揭示的青藏高原北部近4000年来的干湿变化 , 2008,20(5):605-612.] Magsci [本文引用: 1] 通过青藏高原北部可可西里库赛湖KS-2006孔(深637cm)沉积岩芯总有机碳、总氮含量及沉积物粒度变化的研究,恢复了该地区近4000年来的干湿变化历史.结果表明,该地区近4000年来经历了显著的干湿变化,干旱时段出现在3900-3590cal aBP、3320-2630cal aBP、1720-1420cal aBP及1100-840cal aBP期间:湿润时段出现在3590-3320cal aBP、2630-1720cal aBP、1420-1100cal aBP以及840cal aBP之后小冰期有效降水升高的相对湿润时期.区域对比分析表明库赛湖地区近4000年来的干湿变化受亚洲季风影响;同时,该地区存在明显的中世纪暖期及小冰期的三次降温事件记录.
Ma JZ, Edmunds WM . Groundwater and lake evolution in the Badain Jaran Desert ecosystem, Inner Mongolia , 2006,14(7):1231-1243. DOI:10.1007/s10040-006-0045-0URL [本文引用: 1]
YangX, ZhuZ, JaekelD , et al. Late Quaternary palaeoenvironment change and landscape evolution along the Keriya River, Xinjiang, China: The relationship between high mountain glaciation and landscape evolution in foreland desert regions , 2002,97/98(1):155-166. DOI:10.1016/S1040-6182(02)00061-7URL [本文引用: 1]
Chen FH, Chen JH, HolmesJ , et al. Moisture changes over the last millennium in arid central Asia: A review, synthesis and comparison with monsoon region , 2010,29(29):1055-1068. DOI:10.1016/j.quascirev.2010.01.005URL [本文引用: 2]
HuangX, Oberh?nsliH, Suchodoletz HV , et al. Dust deposition in the Aral Sea: Implications for changes in atmospheric circulation in central Asia during the past 2000 years , 2011,30(25):3661-3674. DOI:10.1016/j.quascirev.2011.09.011URL [本文引用: 1]
Feng ZD, Wu HN, Zhang CJ , et al. Bioclimatic change of the past 2500 years within the Balkhash Basin, eastern Kazakhstan, Central Asia , 2013,311(11):63-70. DOI:10.1016/j.quaint.2013.06.032URL
He YX, ZhaoC, WangZ , et al. Late Holocene coupled moisture and temperature changes on the northern Tibetan Plateau , 2013,80:47-57. DOI:10.1016/j.quascirev.2013.08.017URL [本文引用: 2]
Lei YB, Tian LD, Bird BW , et al. A 2540-year record of moisture variations derived from lacustrine sediment (Sasikul Lake) on the Pamir Plateau , 2014,24(7):761-770. DOI:10.1177/0959683614530443URL [本文引用: 1]
Chen JH, Chen FH, FengS , et al. Hydroclimatic changes in China and surroundings during the Medieval Climate Anomaly and Little Ice Age: Spatial patterns and possible mechanisms , 2015,107:98-111. DOI:10.1016/j.quascirev.2014.10.012URL [本文引用: 1]
Raible CC, YoshimoriM, Stocker TF , et al. Extreme midlatitude cyclones and their implications for precipitation and wind speed extremes in simulations of the Maunder Minimum versus present day conditions , 2007,28(4):409-423. DOI:10.1007/s00382-006-0188-7URL [本文引用: 1]
Aizen EM, Aizen VB, Melack JM , et al. Precipitation and atmospheric circulation patterns at mid-latitudes of Asia , 2001,21(5):535-556. DOI:10.1002/(ISSN)1097-0088URL [本文引用: 1]
SanwalJ, Kotlia BS, RajendranC , et al. Climatic variability in Central Indian Himalaya during the last ~1800 years: Evidence from a high resolution speleothem record , 2013,304(7):183-192. DOI:10.1016/j.quaint.2013.03.029URL [本文引用: 1]
Kotlia BS, Ahmad SM, Zhao JX , et al. Climatic fluctuations during the LIA and post-LIA in the Kumaun Lesser Himalaya, India: Evidence from a 400y old stalagmite record , 2012,263(12):129-138. DOI:10.1016/j.quaint.2012.01.025URL [本文引用: 1]