北京大学城市与环境学院 地表过程分析与模拟教育部重点实验室,北京 100871
Based on the frontier of geography, serving the nationalstrategic needs:The 65th anniversary of Peking University's Department of Geography
HECanfei, LIUHongyan, LIShuangcheng收稿日期:2017-10-26
修回日期:2017-11-2
网络出版日期:2017-11-20
版权声明:2017《地理学报》编辑部本文是开放获取期刊文献,在以下情况下可以自由使用:学术研究、学术交流、科研教学等,但不允许用于商业目的.
作者简介:
-->
展开
摘要
关键词:
Abstract
Keywords:
-->0
PDF (431KB)元数据多维度评价相关文章收藏文章
本文引用格式导出EndNoteRisBibtex收藏本文-->
1 学科沿革
北京大学地理学科主要源自1929年成立的清华大学地理学系(后更名为地学系)。迁入北京大学65年来,众多名师如侯仁之、林超、王乃樑、王恩涌等在此执教,培养出包括王颖、陆大道、陶澍、傅伯杰和郭正堂院士等在内的一大批优秀毕业生,建成国际化程度高、培养成效显著的学科体系。作为自然地理学的一个学科分支,在学科发展和国家需求的推动下,北京大学的植物地理学也经历了长足发展,成为生态学一级学科。在当代中国地理学发展的各个关键时期,北京大学对于地理学的创新与发展都做出了重要贡献。20世纪60年代以前,在侯仁之等老一辈地理学家的带领下,北京大学建立了完整的地理学学科体系;70年代,北京大学地理学首先开拓出环境保护、城市规划和遥感等面向国家需求的专业方向,使传统地理学获得了新生;进入21世纪,在全面把握全球地理学和生态学发展前沿的基础上,北京大学地理学发挥综合性研究的优势,强化了全球和区域研究,凝聚了全球变化及区域生态环境响应、区域环境过程及其健康效应、城市与区域可持续发展三个综合性研究方向,在全球环境变化、土地科学、可持续发展等领域引领中国地理学的发展。
2 代表性贡献
北京大学地理学科建设立足于学科前沿和国家战略需求,近十年来涌现出一批有国内外重大影响的成果,在引领学科发展和服务国家决策方面发挥了不可替代的作用。(1)建立了中国陆地植被和土壤碳储量的研究方法,构建了中国第一个国家尺度的陆地碳循环模式。方精云和朴世龙研究团队在国内率先开展了陆地生态系统碳循环的研究:创建了“连续生物量转换因子法”,使复杂的区域森林生物量的估算简单易行,研究成果发表在Science[1];建立了整合草场资源清查、野外实测以及卫星遥感数据为一体的草地碳储量的估算方法,提出了基于作物产量指标与遥感信息相结合的农作物碳储量的估算方法;采用多种方法,进一步系统研究了中国陆地生态系统的碳平衡,研究成果发表于Nature[2],受到高度关注,并为中国CO2的减排政策提供依据。方精云作为主要作者之一,联合国际顶尖专家,牵头对世界森林碳收支进行了估算,结果发表在Science上[3],在世界范围内引起了热议。
(2)发现了陆地生态系统对气候变化的响应及其反馈机制。朴世龙团队针对人类共同面临的一系列全球气候、环境和可持续发展的重大问题,探讨了陆地生态系统对气候的反馈作用及其机制,取得了一系列重要科研成果,共发表4篇Nature文章,3篇Nature Climate Change文章,3篇Nature Communications文章,1篇Nature Plants和1篇PNAS文章;还参与合作发表Nature、Nature子刊和PNAS文章多篇。研究成果被列为2013年中国高校十大科技进展[4]。
(3)建立全球高分辨率排放数据库,科学评估了中国温室气体排放对全球气候变化的贡献。工业化经常被认为增加了中国对气候系统的影响,但所造成的变化程度仍然非常难以量化。陶澍团队建立了全球0.1°×0.1°的CO2、CO、PM2.5、PM10、TSP、BC、OC、SO2、NOx、NH3和PAH排放清单,形成了广泛的国际影响。李本纲等采用生物地化和大气模型,发现前工业化时期以来全球“辐射强迫”的增强仅约10%是由中国造成的。硫酸盐气溶胶会产生一个很强的对抗效应,试图减少污染的努力有可能加快中国对“辐射强迫”之贡献,除非同时采取减少排放的措施。成果于2016年3月发表在Nature[5],引起了国内外学术界广泛关注。
(4)查明了典型内分泌干扰物质的环境行为与生态毒理效应。内分泌干扰物质(EDCs)能在极低浓度下干扰内分泌系统进而危害繁殖发育,成为全球亟待进行风险控制和管理的物质。胡建英团队发现了典型EDCs环境污染的新问题,突破了典型EDCs环境行为和生物过程的固有认识,发展了EDCs生态毒理研究技术,获得了典型EDCs污染造成生态退化的直接证据,推动了环境地理学的发展[6],成果获得2015年度国家自然科学奖二等奖。
(5)编绘大型《北京历史地图集》,传承和保护历史文化。侯仁之主编的《北京历史地图集》[7],展示了北京城市及周边区域的完整的历史地理过程。《图集》的编绘工作始于1979年,由地理****、考古****、历史****、测绘****组成编委会,工作持续了37余年,参与的****前后有50多人。三卷本《北京历史地图集》代表了国内外城市历史地理研究的最高水平。
(6)综合地理学科优势,发挥高端智库作用,深度参与国家战略决策研究和支撑性技术开发。北京大学城市与环境学院教师作为核心成员参与多项国家规划和法律的制定与起草工作。周一星和林坚先后在中共中央政治局集体学习会上分别就中国特色城镇化问题和土地管理问题做专题讲解,在城镇化和土地利用政策研究方面做出了突出贡献。王学军参与起草中共中央国务院“关于加快推进生态文明建设的意见”,作为核心成员参与多项产业与环保国家规划和法律的制定与起草工作。冯长春在“十一五”、“十二五”期间连续被聘为国家村镇建设领域科技支撑技术研制项目牵头人,被科技部评为“十一五国家科技计划工作先进个人”。方精云等在气候谈判等方面以及陶澍等在农村煤与生物质使用方面向国务院提交建议,均被国家有关部门采纳。此外,学院教师在国家空间规划体系改革、自然资源管理体制改革、京津冀协同发展、土地利用规划和重点地区规划建设方面发挥了积极作用。
3 人才培养
北京大学地理学科和生态学科致力于培养具有全球视野和创新能力,掌握坚实地理学和生态学理论、技术和知识的复合型人才。作为两个学科的依托单位,北京大学城市与环境学院涵盖了自然地理与资源环境、人文地理与城乡规划、生态学、环境科学、城乡规划五个本科专业。学院坚持以“通识教育与专业教育相结合”为基本的本科教育模式,在构建学生知识体系的同时,致力于素质和能力的培养,强化实践教学和野外教学。北京大学环境与生态、地球科学两个实验教学示范中心先后被评为国家级实验教学示范中心,为地理学和生态学人才培养提供支撑平台。北京大学与国外著名教学科研机构强强联合,搭建了多个国际合作交流平台,为人才培养国际化,带动中国地理学走向世界奠定了基础。北京大学—法国气候与环境国家实验室地球系统科学联合研究中心成立四年来,已在两国举办了6次学术研讨会和3次春季学校。北京大学—林肯研究院城市发展与土地政策研究中心于2007年成立,面向中国土地与城市发展问题构建国际化学术交流和人才培养平台。
4 未来发展
随着学科发展和研究手段的进步,地理学和生态学都进入了过程探究和未来预测的时代。中国高速经济发展、快速城市化进程带来了大量的人地矛盾和生态环境问题,生态文明建设是长期和持续的国家战略,给中国的地理学和生态学发展引领国际前沿提供了机遇。北京大学城市与环境学院将抓住地理学和生态学两个学科的“双一流”建设的契机,整合各个传统专业方向的力量,提升学科整体实力,服务于中国乃至全球的可持续发展。The authors have declared that no competing interests exist.
参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
[1] | , The location and mechanisms responsible for the carbon sink in northern mid-latitude lands are uncertain. Here, we used an improved estimation method of forest biomass and a 50-year national forest resource inventory in China to estimate changes in the storage of living biomass between 1949 and 1998. Our results suggest that Chinese forests released about 0.68 petagram of carbon between 1949 and 1980, for an annual emission rate of 0.022 petagram of carbon. Carbon storage increased significantly after the late 1970s from 4.38 to 4.75 petagram of carbon by 1998, for a mean accumulation rate of 0.021 petagram of carbon per year, mainly due to forest expansion and regrowth. Since the mid-1970s, planted forests (afforestation and reforestation) have sequestered 0.45 petagram of carbon, and their average carbon density increased from 15.3 to 31.1 megagrams per hectare, while natural forests have lost an additional 0.14 petagram of carbon, suggesting that carbon sequestration through forest management practices addressed in the Kyoto Protocol could help offset industrial carbon dioxide emissions. |
[2] | , Global terrestrial ecosystems absorbed carbon at a rate of 1-4 Pg yr(-1) during the 1980s and 1990s, offsetting 10-60 per cent of the fossil-fuel emissions. The regional patterns and causes of terrestrial carbon sources and sinks, however, remain uncertain. With increasing scientific and political interest in regional aspects of the global carbon cycle, there is a strong impetus to better understand the carbon balance of China. This is not only because China is the world's most populous country and the largest emitter of fossil-fuel CO(2) into the atmosphere, but also because it has experienced regionally distinct land-use histories and climate trends, which together control the carbon budget of its ecosystems. Here we analyse the current terrestrial carbon balance of China and its driving mechanisms during the 1980s and 1990s using three different methods: biomass and soil carbon inventories extrapolated by satellite greenness measurements, ecosystem models and atmospheric inversions. The three methods produce similar estimates of a net carbon sink in the range of 0.19-0.26 Pg carbon (PgC) per year, which is smaller than that in the conterminous United States but comparable to that in geographic Europe. We find that northeast China is a net source of CO(2) to the atmosphere owing to overharvesting and degradation of forests. By contrast, southern China accounts for more than 65 per cent of the carbon sink, which can be attributed to regional climate change, large-scale plantation programmes active since the 1980s and shrub recovery. Shrub recovery is identified as the most uncertain factor contributing to the carbon sink. Our data and model results together indicate that China's terrestrial ecosystems absorbed 28-37 per cent of its cumulated fossil carbon emissions during the 1980s and 1990s. |
[3] | , |
[4] | , Temperature data over the past five decades show faster warming of the global land surface during the night than during the day(1). This asymmetric warming is expected to affect carbon assimilation and consumption in plants, because photosynthesis in most plants occurs during daytime and is more sensitive to the maximum daily temperature, T-max, whereas plant respiration occurs throughout the day(2) and is therefore influenced by both T-max and the minimum daily temperature, T-min. Most studies of the response of terrestrial ecosystems to climate warming, however, ignore this asymmetric forcing effect on vegetation growth and carbon dioxide (CO2) fluxes(3-6). Here we analyse the interannual covariations of the satellite-derived normalized difference vegetation index (NDVI, an indicator of vegetation greenness) with Tmax and Tmin over the Northern Hemisphere. After removing the correlation between Tmax and Tmin, we find that the partial correlation between Tmax and NDVI is positive in most wet and cool ecosystems over boreal regions, but negative in dry temperate regions. In contrast, the partial correlation between Tmin and NDVI is negative in boreal regions, and exhibits a more complex behaviour in dry temperate regions. We detect similar patterns in terrestrial net CO2 exchange maps obtained from a global atmospheric inversion model. Additional analysis of the long-term atmospheric CO2 concentration record of the station Point Barrow in Alaska suggests that the peak-to-peak amplitude of CO2 increased by 23 +/- 11% for a +1 degrees C anomaly in T-max from May to September over lands north of 51 degrees N, but decreased by 28 +/- 14% for a +1 degrees C anomaly in T-min. These lines of evidence suggest that asymmetric diurnal warming, a process that is currently not taken into account in many global carbon cycle models, leads to a divergent response of Northern Hemisphere vegetation growth and carbon sequestration to rising temperatures. |
[5] | , Knowledge of the contribution that individual countries have made to global radiative forcing is important to the implementation of the agreement on "common but differentiated responsibilities" reached by the United Nations Framework Convention on Climate Change. Over the past three decades, China has experienced rapid economic development(1), accompanied by increased emission of greenhouse gases, ozone precursors and aerosols(2,3), but the magnitude of the associated radiative forcing has remained unclear. Here we use a global coupled biogeochemistry-climate model(4,5) and a chemistry and transport model(6) to quantify China's present-day contribution to global radiative forcing due to well-mixed greenhouse gases, short-lived atmospheric climate forcers and land-use-induced regional surface albedo changes. We find that China contributes 10% +/- 4% of the current global radiative forcing. China's relative contribution to the positive (warming) component of global radiative forcing, mainly induced by well-mixed greenhouse gases and black carbon aerosols, is 12% +/- 2%. Its relative contribution to the negative (cooling) component is 15% +/- 6%, dominated by the effect of sulfate and nitrate aerosols. China's strongest contributions are 0.16 +/- 0.02 watts per square metre for CO2 from fossil fuel burning, 0.13 +/- 0.05 watts per square metre for CH4, -0.11 +/- 0.05 watts per square metre for sulfate aerosols, and 0.09 +/- 0.06 watts per square metre for black carbon aerosols. China's eventual goal of improving air quality will result in changes in radiative forcing in the coming years: a reduction of sulfur dioxide emissions would drive a faster future warming, unless offset by larger reductions of radiative forcing from well-mixed greenhouse gases and black carbon. |
[6] | , The anadromous Chinese sturgeon (Acipenser sinensis) is endangered and listed among the first class of protected animals in China. The possible causes for the decline of this species are the effects of synthetic chemicals, and loss of critical habitat. Chinese sturgeon in the Yangtze River have accumulated triphenyltin (TPT) to 31-128 ng/g wet weigh (ww) in liver, which is greater than the concentrations of tributyltin (<1.0 ng/g ww). Maternal transfer of TPT has resulted in concentrations of 25.5 +/- 13.0 ng/g ww in eggs of wild Chinese sturgeon, which poses a significant risk to the larvae naturally fertilized or hatched in the Yangtze River. The incidence of deformities in fry was 7.5%, with 1.2% of individuals exhibiting ocular abnormal development, and 6.3% exhibited skeletal/morphological deformations. The incidences of both ocular and skeletal/morphological deformations were directly proportional to the TPT concentration in the eggs of both the Chinese sturgeon and the Siberian sturgeon (Acipenser baerii) in controlled laboratory studies. The rates of deformities in the controlled studies were consistent with the rates caused at the similar concentrations in eggs collected from the field. Thus, TPT is the causal agent to induce the malformation of larvae of Chinese sturgeon. The incidence of deformed larvae of Chinese sturgeon is an indicator of overall population-level effects of TPT on Chinese sturgeon, because TPT at environmentally relevant concentrations can result in significantly decrease both quality and quantity of eggs and spawning frequency of fish. |
[7] |