Layout method of monitoring samples of cultivated land at the provincial level based on standard plots in Inner Mongolia
ZHANGYuzhen1,2, KONGXiangbin1,2,, LIUYan3, ZHANGBangbang1,2, ZHANGQingpu1,2, WANGFeng3, LILiqiang4, WEILili4 1.College of Resources and Environmental Sciences ,China Agricultural University,Bejing 100193,China2. Key Laboratory for Farmland Quality,Monitoring and Control,National Ministry of Land and Resources,Beijing 100193,China3. Consulting and Research Center Ministry of Land and Resources,Beijing 100035,China4. Land Consolidation and Rehabilitation Center,The Inner Mongolia Autonomous Region,Huhehaote 010020,China 通讯作者:孔祥斌,E-mail:kxb@cau.edu.cn 收稿日期:2016-06-14 修回日期:2016-09-29 网络出版日期:2016-11-16 版权声明:2016《资源科学》编辑部《资源科学》编辑部 基金资助:国土资源部公益性行业科研专项课题(201011006-3) 作者简介: -->作者简介:张玉臻,女,山东潍坊市人,硕士生,研究方向为持续土地利用与土地评价。E-mail:zhangyuzhen66@126.com
关键词:标准样地;省级尺度;耕地质量;监测样地;监测控制分区;内蒙古自治区 Abstract Food security depends on the quality and quantity of arable land. The implementation of dynamic balance of total amount of arable land has made a significant impact to the quantity of farmland,but less regarding the quality of cultivated land protection. Farmland quality monitoring includes three levels:national,provincial and county levels. At present,domestic research mostly focusses at the county scale and national level,and provincial level research for Inner Mongolia is lacking. Here we propose optimization of the quantity and quality of standard samples,and form a technical method for monitoring sample layout at the provincial level. Inner Mongolia setting 144 provincial standard samples,we verify standard sample number and spatial distribution using the nearest neighbor index and area representative index. The results show that the spatial distribution of the original standard samples is uniform,but the distribution of number does not meet monitoring requirements. The theoretical numbers of monitoring samples are 194 using the geo-statistical method. Based on ‘secondary zones-soil types-landscapes-land use status’ combined with the distribution of land resource potential,we analyze limiting factors of land use and divide the area into 14 monitoring zones. According to the principles of one monitoring sample in different monitoring partitions in one farmland gradation at least and area index,the number of monitoring samples is revised to 219,made up of 124 original standard samples and 95 new samples. Layout of provincial monitoring samples based on our method minimizes the cost to meet the requirements of provincial arable land quality monitoring and can build arable land quality monitoring systems at the provincial scale in line with spatial variability of farmland quality. This approach provides a scientific basis for the national implementation of cultivated land quality monitoring.
Keywords:standard farmland;provincial scale;cultivated land quality;monitoring sample;monitoring partion;Inner Mongolia -->0 PDF (2927KB)元数据多维度评价相关文章收藏文章 本文引用格式导出EndNoteRisBibtex收藏本文--> 张玉臻, 孔祥斌, 刘炎, 张蚌蚌, 张青璞, 王峰, 李立强, 魏利利. 基于标准样地的省级耕地质量监测样地布设方法——以内蒙古自治区为例[J]. , 2016, 38(11): 2037-2048 https://doi.org/10.18402/resci.2016.11.03 ZHANGYuzhen, KONGXiangbin, LIUYan, ZHANGBangbang, ZHANGQingpu, WANGFeng, LILiqiang, WEILili. Layout method of monitoring samples of cultivated land at the provincial level based on standard plots in Inner Mongolia[J]. 资源科学, 2016, 38(11): 2037-2048 https://doi.org/10.18402/resci.2016.11.03
本文以内蒙古自治区省级标准样地布设情况为出发点,分析省级标准样地直接作为省级监测样地的合理性;采用地统计学方法确定合理的监测样地数量,按照“等别-监测分区”以及优先选择标准样地原则,在省域内布设监测样地,并对其空间和数量上的代表性进行验证分析(图1)。 显示原图|下载原图ZIP|生成PPT 图1基于标准样地的监测样地布设方法 -->Figure 1Monitoring samples layout method based on standard sample -->
耕地质量监测分区是全省范围监测样点布设的基础。本文根据气候条件、地形地貌条件、土地利用主要限制因素等指标对内蒙古自治区全域耕地进行宏观上的分区;首先选择耕作制度二级区作为区域气候条件以及地形地貌条件的差异分区,然后结合《中国土地资源图集》中的中国土地潜力分区图,综合考虑土地利用限制因素:土壤类型、海拔高度及土地利用现状等因素,运用ArcGIS空间叠加分析工具划分耕地质量监测分区。 (1)耕作制度二级区。依据农用地分等规程,耕作制度一级区主要反映水热条件与大的地形地貌差异;二级区是在一级区基础上的进一步细分。经过对自治区耕作制度二级区的地形地貌和气候的代表性分析后,本文选择耕作制度二级区作为内蒙古自治区的气候、地形地貌分区。内蒙古自治区包括大小兴安岭山地区、松嫩平原区、辽吉西蒙东南冀北山地区、后山坝上高原区、河套银川平原区、内蒙古草原区、阿拉善高原区7个二级区(图2)。 显示原图|下载原图ZIP|生成PPT 图2标准样地在耕作制度二级区的分布 -->Figure 2Spatial distribution in secondary zone of national standard sample plot -->
4.1.1 内蒙古自治区标准样地空间代表性分析 本文假设内蒙古自治区省级标准样地为点状要素,在省内7个标准耕作制度二级区内均有分布(图2)。内蒙古自治区共有144个省级标准样地,主要分布在辽吉西蒙东南冀北山地区、后山坝上高原区以及河套银川平原区,在松嫩平原区的分布较少,只有1个标准样地。 按照最邻近点指数计算原理和标准样地分布类型标准,得出各二级区内最邻近点指数及空间结构类型(表1)。由表1可知,内蒙古自治区的最邻近点指数D为3.56,大于1,表明省级标准样地在内蒙古自治区内呈均匀分布;除松嫩平原区外,其他标准耕作制度二级区的最邻近点指数D也均大于1,说明标准样地在相应的二级区亦呈均匀分布;其中阿拉善高原区的最邻近点指数相对较高,主要是由于区域内耕地分布相对零散导致的;松嫩平原区因只有一个标准样地,无法计算最邻近点指数。 通过对标准样地的空间分布分析,得到内蒙古自治区省级标准样地在空间上呈均匀性分布,表明在省级标准样地的基础上进一步优化后再布设的省级监测样地,可以反映全省耕地质量水平,同时也表明基于省级标准样地布设省级监测样地这一方法的可行性。 Table 1 表1 表1二级区最邻近点指数及空间结构类型 Table 1Nearest point index spatial structure types in secondary zone
二级区名称
二级区代称
最邻近点指数D
空间结构类型
面积/万hm2
标准样地数量/个
阿拉善高原区
ALS
6.21
均匀型
2.73
4
大小兴安岭山地区
DXXAL
4.64
均匀型
110.59
14
河套银川平原区
HTYC
2.38
均匀型
90.53
23
后山坝上高原区
HSBS
4.76
均匀型
144.93
40
辽吉西蒙东南冀北山地区
LJXM
2.99
均匀型
257.91
45
内蒙古草原区
NMG
4.70
均匀型
109.74
17
松嫩平原区
SN
-
-
23.74
1
全省
-
3.56
均匀型
740.37
144
注:为了图表标注简单明了,本文采用以各二级区名称的首字母组成的代称来命名二级区名称的方式,表2、图3和图6雷同。 新窗口打开 4.1.2 内蒙古自治区标准样地数量代表性分析 按照面积代表性指数,对二级区内各耕地质量等别内标准样地的代表性情况进行分析(图3,表2)。 由表2可得,内蒙古耕地总面积为740.17万hm2,主要分布在7~15等别,其中12~15等地占了94.57%,7~11等地占了5.43%;相应省级标准样地在各质量等别内均有分布,其中80.56%的省级标准样地分布在12~15等地,19.44%分布在7~11等地。 显示原图|下载原图ZIP|生成PPT 图3标准样地数量与耕地面积匹配程度 -->Figure 3Matching degree of number of standard sample and cultivated land area 注:二级区名称见表1。 -->
Table 2 Table 2Distribution of provincial standard sample in Inner Mongolia (万hm2,个)
4.3.1 耕地质量监测分区的划分 在耕作制度二级区基础上综合内蒙古自治区土壤分布图、DEM数据、土地利用现状数据,同时借鉴1 100万土地资源图中土地利用限制主导因素诊断成果,对内蒙古自治区土地利用限制主导因素进行识别,最终划分为14个监测控制分区(见图4)。对于监测分区的命名,本文采用“标准耕作制度分区和土地利用限制因素”相结合的方式,依次为: I 阿拉善高原-多限制因素区 II 东北及松嫩平原-较少限制区 III 东北-坡度限制区 IV 河套银川平原-坡度与侵蚀限制区 V 河套银川平原-盐碱限制区 VI 后山坝上高原-坡度侵蚀限制区 VII 后山坝上高原-水分限制区 VIII 后山坝上高原-土质限制区 IX 辽吉西蒙东南冀北山地-坡度与土质限制区 X 辽吉西蒙东南冀北山地-轻微土质限制区 XI 内蒙古草原-多种限制因素区 XII 内蒙古草原-水分土质限制区 XIII 内蒙古草原-水分限制区 XIV 内蒙古草原-土质限制区 显示原图|下载原图ZIP|生成PPT 图4内蒙古自治区监测分区分布 -->Figure 4Distribution of monitoring zone in Inner Mongolia -->
4.3.2 省级监测样地布控 根据面积比例分配法,计算得到各质量等别上的理论监测样地数量,综合考虑等别内各监测分区上均有监测样地分布的原则(参见公式(7)、公式(8)),继续修正各质量等别内的监测样地数量。由表4可以得到,修正后的监测样地数量主要分布在7-11等别内,这与4.1.2中标准样地数量代表性分析结果相对应;修正后得到7-15等别上的监测样地数量分别为2、5、6、11、11、14、20、35、115,共计219个(见表4)。 Table 4 表4 表4监测样地数量修正 Table 4Adjusted number of monitoring samples
耕地等别
监测分区数量 /个
耕地面积 /万hm2
面积比例 /%
合理数量 /个
修正数量 /个
7
2
0.15
0.02
0
2
8
5
0.56
0.08
0
5
9
6
2.76
0.37
1
6
10
11
11.50
1.55
3
11
11
11
25.20
3.40
7
11
12
14
49.70
6.71
13
14
13
14
77.30
10.44
20
20
14
14
136.00
18.37
35
35
15
14
437.00
59.04
115
115
总计
14
740.17
100.00
194
219
新窗口打开 接下来是对监测样地空间位置的确定,在“耕地等别-监测分区”的基础上,以各耕地质量等别上修正后的监测样地数量为总量控制,根据监测样地“优先选择省级标准样地”以及“各监测分区至少有一个监测样地”的原则,将各监测分区内空间位置合理的标准样地优先确定为监测样地,然后将剩余的分等图斑依据“异质性”原则转换为点,并作为监测样地,直到满足等别内的监测样地数量为止,最终确定内蒙古自治区省级监测样地中保留标准样地124个,剔除因土地利用方式发生改变以及空间位置重复性的标准样地20个,新增监测样地95个,合计监测样地219个(见表5、图5)。 显示原图|下载原图ZIP|生成PPT 图5监测样地空间分布 -->Figure 5Spatial distribution of monitoring sample -->
Table 5 表5 表5监测分区内监测样地分布 Table 5Distribution of monitoring sample in monitoring zone
(1)目前国内研究多集中在县级、国家级监测样地布设方法上,较少在省级层面探讨监测样地布设;本文通过对省级标准样地在数量和代表性上的分析,提出了省级耕地质量监测样地的布设方法。一方面可以避免县域监测样地数量冗余的问题,有效提高耕地质量监测效率;另一方面,可以加强国家对省级耕地质量监测工作的宏观把控。 (2)从2015年起,国土资源部全面开展全国耕地质量等别年度更新评价与年度监测工作,但是,当前侧重点是对土地整治和灾毁等突变因素引起的耕地质量变化进行更新评价,以及对有机质含量和盐渍化程度等渐变因素的监测,尚未建立起一套 “由固定监测样地和随机监测样地”组成的监测网络体系,本研究可以为下一步构建一套完整的耕地质量监测网络提供方法参考。 (3)本文的研究不足是所采用的最邻近点指数在确定标准样地的空间分布的均匀性时,无法对样地数量以及样地之间的距离作出判断;面积代表性指数在确定样地数量时,无法判断样地空间分布是否合理,因此两种方法必须结合应用,才能弥补相互的不足。在确定了监测样地的数量后,对监测样地布设的过程中,要充分考虑图斑的“异质性”原则,这一步在实际的操作过程中缺乏相应的技术规范,存在一定的主观倾向,这是今后在研究中需要探讨的问题。 The authors have declared that no competing interests exist.
[Chen YF,Li XD.Spatial-temporal characteristics and influencing factors of grain yield change in China [J]. Transactions of the Chinese Society of Agricultural Engineering,2013,29(20):1-10.]
[Liu HY,Lin ZS,Zhang MY.Analysis on the fluctuation of grain output in China and its causes at multi-time scale based on empirical mode decomposition method [J]. Journal of Natural Resources,2005,20(5):745-751.] [本文引用: 1]
[National Bureau of Statistics of the People’s Republic of China. The National Grain Production Was a Very Good Again in2012[N]. China Infor-mation News, 2012-12-03(001).] [本文引用: 1]
[6]
Kong XB,LalR,Li BG,et al. Fertilizer intensification and its impacts in China’s HHH plains [J]. Advances in Agronomy,2014,125:135-169. [本文引用: 1]
[Lei XP,WuY,YeS,et al. Regional grain security pre-warning based on entropy weight extension decision model [J]. Transactions of the Chinese Society of Agricultural Engineering,2012,28(6):233-239.] [本文引用: 1]
[Wang HB,Yun WJ,Wu CF,et al. Farmland productivity monitoring system based on farmland gradation [J]. Transactions of the Chinese Society of Agricultural Engineering,2008,24(4):122-126.] [本文引用: 1]
[Zhu JX,Xu BG,Zhang LY.Optimization layout method of monitoring sample points of cultivated land quality based on semi-variance analysis and grade combination [J]. Transactions of the Chinese Society of Agricultural Engineering,2015,31(19):254-261.] [本文引用: 1]
[15]
Nusser SM,Breidt EJ,Fuller WA.Design and estimation for investigating the dynamics of natural resources [J]. Ecological Applications,1998,8(2):234-245. [本文引用: 1]
[16]
Nusser SM,Goebel JJ.The national resources inventory:A long-term multi-resource monitoring programme [J]. Journal of Agricul-tural Biological and Environmental Statistics,1997,4(3):181-204. [本文引用: 1]
[17]
MolG,Vriend SP,Gaans P F M V. Future trends,detectable by soil monitoring networks? [J]. Journal of Geochemical Exploration,1998,62(1-3):61-66. [本文引用: 1]
[18]
MaitiT,Miller CP,Mukhopadhyay PK.Neural network imputation:An experience with the national resources inventory survey [J]. Journal of Agricultural Biological and Environmental Statistics,2008,13(3):255-269. [本文引用: 1]
[Zhang BB,Kong XB,XiangH,et al. Distribution characteristics and representative test of national standard farmland in Western China [J]. Transactions of the Chinese Society of Agricultural Engi-neering,2014,30(7):227-235.] [本文引用: 2]
[He JH,Zhou MZ.Research on monitoring of cultivated land quality based on standard plot [J]. Journal of Hebei Agricultural Sciences,2010,14(9):125-127.] [本文引用: 1]
[Wu YP,Yun WJ,Li WY.Research on standard-plot based monitoring and early-warning of arable land quality [J]. Resources Science,2006,20(4):40-45.] [本文引用: 1]
[Guo LN,Zhang FR,Ma RH,et al. Methods for setting up farmland grade monitoring points from standard plots in Hebei,Henan and Hubei Provinces [J]. Resources Science,2009,31(11):1957-1966.] [本文引用: 1]
[Wu KN,Jiao XJ,Liang SY,et al. Framework of the arable-land quality dynamic monitoring sites through national gathering of standard farmland [J]. Transactions of the Chinese Society of Agricultural Engineering,2008,24(10):74-79.]
[Yu SQ,Zhang B B Xiang H,et al. Layout method for monitoring sample point of arable land quality level based on combination of factors [J]. Transactions of the Chinese Society of Agricultural Engineering,2014,30(24):288-297.] [本文引用: 2]
[Wang JN,Kong XB,Zhang QP,et al. Factors selection method for monitoring the cultivated land level based on farmland grading:In Dalate County [J]. Journal of China Agricultural University,2015,20(3):175-187.] [本文引用: 1]
[Sun YB,Wu KN,Hu XT,et al. Layout method for monitoring quality level of arable land based on combination of potential index [J]. Transactions of the Chinese Society of Agricultural Engi-neering,2013,29(4):245-254.]
[XiangH,Kong XB,Chen PX,et al. Establishing monitoring samples of arable land at the county level:A case study of Dalate District in Inner Mongolia [J]. Resources Science,2014,36(6):1203-1210.] [本文引用: 1]
[Liu PJ,Wu KN,Zhao HF.Cultivated land quality monitoring types base on agricultural land classification and land quality geochemical assessment [J]. Resources Science,2015,37(1):37-44.] [本文引用: 1]
[ Ministry ofLandandResources of the People 's Republic of China. Regulation for Gradation on Agricultural Land Quality(TD/T 1004-2003)[S].Beijing:China Standard Press,2003.] [本文引用: 2]
[Wei XF,Wu JP.The development and application of spatial auto-correlation based on ArcGIS [J]. Geomatics & Spatial Information Technology,2005,28(6):77-80.] [本文引用: 1]