Abstract Mitochondrion is the metabolic center and powerhouse of cells producing cellular energy which plays an important role in various physiological and pathophysiological processes. Recent research demonstrates that mitochondrial energy metabolism mediates the transmission of mitochondrial-nuclear signals through intermediate products which regulates epigenetic presentation of the chromatin and thereby affects gene expression. Epigenetic modification, a genetic regulatory model, is independent of DNA sequence and plays a major role in establishing and maintaining a specific gene’s expression profile. Disorders of mitochondrial metabolism can induce epigenetic reprogramming which in turn initiates aging phenotypes and degenerative diseases. This review introduces recent research progress on the relationship between mitochondrial metabolism and chromatin-related epigenetic modification, discusses the role of mitochondrial stress in chromatin recombination, and suggests future research directions and their application in the study of age-related diseases such as cognitive dysfunction. Keywords:mitochondrial metabolism;DNA methylation;histone modifications;aging;UPR mt
相似的转录应答在哺乳动物中也被揭示。线粒体应激时,氨基酸水平下降、ROS增加、核糖体滞留从而激活GCN2、PERK及HRI等激酶,使翻译起始因子elF2α磷酸化。磷酸化的elF2α减少蛋白质合成,但促进5°-UTR带有多个上游开放阅读框(upstream open reading frame, uORF)的mRNA序列的转录。由于编码CHOP、ATF4和ATF5的5'UTR中都存在多个uORFs,因此CHOP、ATF4及ATF5的表达量增加。Fiorese等[55,56,57]最新研究发现,线粒体压力时,哺乳动物bZIP转录因子ATF5转向定位于细胞核并上调UPRmt相关伴侣蛋白HSP60及蛋白酶LONP1,以及诸如MCL1及BCL2等抗凋亡基因表达,激活UPRmt。除了转录适应外,线粒体在发育过程中的应激还会引起长期的染色质变化,这些表观遗传修饰有助于激活线虫和哺乳动物中维持“年轻”状态的UPRmt[58]。生物体通过上调分子伴侣、蛋白酶等UPRmt基因来应对线粒体应激,这种对代谢功能障碍的早期反应将维持一生[59]。具体来说,线粒体应激导致组蛋白H3K9的二甲基化,由甲基转移酶met-2和核因子lin-65介导。这一变化导致染色质的整体沉默,但在与UPRmt激活相关的区域打开染色质,以利于DVE-1和ATFS-1结合启动子[60]。此外,需要两种组蛋白赖氨酸去甲基化酶即Jumonji家族蛋白jmjd-1.2和jmjd-3.1以激活UPRmt和线粒体应激,介导线虫的长寿。这些蛋白在哺乳动物中的同源物分别为PHF8和JMJD3,与UPRmt相关基因的甲基化状态、mRNA和蛋白表达呈正相关[61]。因此,发育期的线粒体应激通过特定的表观遗传修饰,允许基因选择性表达并延长寿命。但是,若损伤持续加重,上调的UPRmt相关基因表达不足以维持线粒体功能,持续改变的表观修饰导致细胞基因组不稳定,进而引发细胞凋亡及机体衰老[62]。
PelegS, FellerC, LadurnerAG, ImhofA . The metabolic impact on histone acetylation and transcription in ageing Trends Biochem Sci, 2016,41(8):700-711. URL [本文引用: 2]
TaylorEM, JonesAD, HenaganTM . A review of Mitochondrial-derived fatty acids in epigenetic regulation of obesity and type 2 diabetes J Nutr Health Food Sci, 2014,2(3):1-4. URL [本文引用: 2]
ZieglerDV, WileyCD, VelardeMC . Mitochondrial effectors of cellular senescence: beyond the free radical theory of aging Aging Cell, 2014,14(1):1-7. URL [本文引用: 2]
HausingerRP . FeII/alpha-ketoglutarate-dependent hydroxylases and related enzymes Crit Rev Biochem Mol, 2004,39(1):21-68. URL [本文引用: 1]
SalminenA, HaapasaloA, KauppinenA, KaarnirantaK, SoininenH, HiltunenM . Impaired mitochondrial energy metabolism in Alzheimer's disease: impact on pathogenesis via disturbed epigenetic regulation of chromatin landscape Prog Neurobiol, 2015,131:1-20. URL [本文引用: 5]
SalminenA, KaarnirantaK, HiltunenM, KauppinenA . Krebs cycle dysfunction shapes epigenetic landscape of chromatin: novel insights into mitochondrial regulation of aging process Cell Signal, 2014,26(7):1598-1603. URL [本文引用: 4]
SalminenA, KauppinenA, HiltunenM, KaarnirantaK . Krebs cycle intermediates regulate DNA and histone methylation: epigenetic impact on the aging process Ageing Res Rev, 2014,16:45-65. URL [本文引用: 2]
SunN, YouleRJ, FinkelT . The mitochondrial basis of aging Mol Cell, 2016,61(5):654-666. URL [本文引用: 1]
BreuerME, KoopmanWJ, KoeneS, NooteboomM, RodenburgRJ, WillemsPH, SmeitinkJA . The role of mitochondrial OXPHOS dysfunction in the development of neurologic diseases Neurobiol Dis, 2013,51:27-34. URL [本文引用: 1]
ChaturvediRK, Flint BealM . Mitochondrial diseases of the brain Free Radic Biol Med, 2013,63:1-29. URL [本文引用: 1]
MccauleyBS, DangW . Histone methylation and aging: lessons learned from model systems Biochim Biophys Acta-Mol Basis Dis, 2014,1839(12):1454-1462. URL [本文引用: 1]
GuanJS, XieH, DingX . The role of epigenetic regulation in learning and memory Exp Neurol, 2014,268:30-36. URL [本文引用: 1]
SenN . Epigenetic regulation of memory by acetylation and methylation of chromatin: implications in neurological disorders, aging, and addiction Neuromol Med, 2014,17(2):97-110. URL [本文引用: 1]
Gr?ffJ, TsaiLH . Histone acetylation: molecular mnemonics on the chromatin Nat Rev Neurosci, 2013,14(2):97-111. URL [本文引用: 1]
Gr?ffJ, ReiD, GuanJS, WangWY, SeoJ, HennigKM, NielandTJ, FassDM, KaoPF, KahnM, SuSC, SamieiA, JosephN, HaggartySJ, DelalleI, TsaiLH . An epigenetic blockade of cognitive functions in the neurodegenerating brain Nature, 2012,483(7388):222-226. URL [本文引用: 2]
KugelS, MostoslavskyR . Chromatin and beyond: the multitasking roles for SIRT6 Trends Biochem Sci, 2014,39(2):72-81. URL [本文引用: 1]
PouloseN, RajuR . Sirtuin regulation in aging and injury Biochim Biophys Acta-Mol Basis Dis, 2015,1852(11):2442-2455. URL [本文引用: 1]
W?trobaM, DudekI, SkodaM, StangretA, RzodkiewiczP, SzukiewiczD . Sirtuins, epigenetics and longevity Ageing Res Rev, 2017,40:11-19. [本文引用: 1]
LiW, PrazakL, ChatterjeeN, GrüningerS, KrugL, TheodorouD, DubnauJ . Activation of transposable elements during aging and neuronal decline in drosophila Nat Neurosci, 2013,16(5):529-531. URL [本文引用: 1]
O'sullivanRJ, KarlsederJ . The great unravelling: chromatin as a modulator of the aging process Trends Biochem Sci, 2012,37(11):466-476. [本文引用: 1]
FrostB, HembergM, LewisJ, FeanyMB . Tau promotes neurodegeneration through global chromatin relaxation Nat Neurosci, 2014,17(3):357-366. URL [本文引用: 1]
AggerK, CloosPA, RudkjaerL, WilliamsK, AndersenG, ChristensenJ, HelinK . The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence Genes Dev, 2009,23(10):1171-1176. URL [本文引用: 1]
HanY, HanD, YanZ, Boyd-KirkupJD, GreenCD, KhaitovichP, HanJD . Stress-associated H3K4 methylation accumulates during postnatal development and aging of rhesus macaque brain Aging Cell, 2012,11(6):1055-1064. URL [本文引用: 1]
TanL, ShiYG . Tet family proteins and 5-hydroxymethylcytosine in development and disease Development, 2012,139(11):1895-1902. URL [本文引用: 1]
WangJ, ZhangKX, LuGZ, ZhaoXH . Research progress on 5hmC and TET dioxygenases in neurodevelopment and neurological diseases Hereditas (Beijing), 2017,39(12):1138-1149. URL [本文引用: 1]
PuttipanyalearsC, SubbalekhaK, MutiranguraA, KitkumthornN . Alu hypomethylation in smoke-exposed epithelia and oral squamous carcinoma Asian Pac J Cancer P, 2013,14(9):5495-5501. URL [本文引用: 1]
De PrinsS, KoppenG, JacobsG, DonsE, Van de Mieroop E, NelenV, FierensF, IntPanis L, DeBoever P, CoxB, NawrotTS, SchoetersG. Influence of ambient air pollution on global DNA methylation in healthy adults: a seasonal follow-up Environ Int, 2013,59:418-424. URL [本文引用: 1]
WuZ, LiX, QinH, ZhuX, XuJ, ShiW . Ultraviolet B enhances DNA hypomethylation of CD4+ T cells in systemic lupus erythematosus via inhibiting DNMT1 catalytic activity J Dermatol Sci, 2013,71(3):167-173. URL [本文引用: 1]
RaddatzG, HagemannS, AranD, S?hleJ, KulkarniPP, KaderaliL, HellmanA, WinnefeldM, LykoF . Aging is associated with highly defined epigenetic changes in the human epidermis Epigenet Chromat, 2013,6(1):36. [本文引用: 1]
FernándezAF, BayonGF, UrdinguioRG, Tora?oEG, GarcíaMG, CarellaA, Petrus-ReurerS, FerreroC, Martinez-CamblorP, CubilloI, García-CastroJ, Delgado- CalleJ, Pérez-CampoFM, RianchoJA, BuenoC, MenéndezP, MentinkA, MareschiK, ClaireF, FagnaniC, MeddaE, ToccaceliV, BrescianiniS, MoranS, EstellerM, StolzingA, deBoer J, NisticòL,Stazi MA, FragaMF . H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells Genome Res, 2014,25(1):27-40. URL [本文引用: 1]
PhippsAJ, VickersJC, TaberlayPC, WoodhouseA . Neurofilament-labeled pyramidal neurons and astrocytes are deficient in DNA methylation marks in Alzheimer's disease Neurobiol Aging, 2016,45:30-42. URL [本文引用: 1]
ChoSH, ChenJA, SayedF, WardME, GaoF, NguyenTA, KrabbeG, SohnPD, LoI, MinamiS, DevidzeN, ZhouY, CoppolaG, GanL . SIRT1 deficiency in microglia contributes to cognitive decline in aging and neurodegeneration via epigenetic regulation of IL-1β J Neurosci, 2015,35(2):807-818. URL [本文引用: 1]
DengY, YuG . The effect of DNA methylation on beta- amyloid accumulation in Alzheimer's disease Hereditas (Beijing), 36(4): 2014: 295-300. [本文引用: 1]
JovaisaiteV, MouchiroudL, AuwerxJ . The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease J Exp Biol, 2014,217(Pt 1):137-143. URL [本文引用: 1]
SalminenA, KauppinenA, KaarnirantaK . 2-Oxoglutarate- dependent dioxygenases are sensors of energy metabolism, oxygen availability, and iron homeostasis: potential role in the regulation of aging process, Cell Mol Life Sci,72(20) ( 2015):3897-914. [本文引用: 1]
BaiM, YangL, LiaoH, LiangX, XieB, XiongJ, TaoX, ChenX, ChengY, ChenX, FengY, ZhangZ, ZhengW . Metformin sensitizes endometrial cancer cells to chemotherapy through IDH1-induced Nrf2 expression via an epigenetic mechanism, Oncogene, 2018,37(42):5666-5681. URL [本文引用: 1]
LetouzeE, MartinelliC, LoriotC, BurnichonN, AbermilN, OttolenghiC, JaninM, MenaraM, NguyenAT, BenitP, BuffetA, MarcaillouC, BertheratJ, AmarL, RustinP, De ReyniesA, Gimenez-RoqueploAP, FavierJ . SDH mutations establish a hypermethylator phenotype in paraganglioma, Cancer Cell, 2013,23(6):739-752. URL [本文引用: 1]
XuW, YangH, LiuY, YangY, WangP, KimSH, ItoS, YangC, WangP, XiaoMT, LiuLX, JiangWQ, LiuJ, ZhangJY, WangB, FryeS, ZhangY, XuYH, LeiQY, GuanKL, ZhaoSM, XiongY . Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases Cancer Cell, 2011,19(1):17-30. URL [本文引用: 1]
YangM, SogaT, PollardPJ . Oncometabolites: linking altered metabolism with cancer J Clin Invest, 2013,123(9):3652-3658. URL [本文引用: 1]
Londo?o GentileT, LuC, LodatoPM, TseS, OlejniczakSH, WitzeES, ThompsonCB, WellenKE . DNMT1 Is regulated by ATP-Citrate lyase and maintains methylation patterns during adipocyte differentiation Mol Cell Biol, 2013,33(19):3864-3878. URL [本文引用: 1]
Shyh-ChangN, LocasaleJW, LyssiotisCA, ZhengY, TeoRY, RatanasirintrawootS, ZhangJ, OnderT, UnternaehrerJJ, ZhuH, AsaraJM, DaleyGQ, CantleyLC . Influence of threonine metabolism on S-adenosylmethionine and histone methylation Science, 2012,339(6116):222-226. URL [本文引用: 1]
CuyàsE, Fernández-ArroyoS, VerduraS, GarcíaRá, StursaJ, WernerL, Blanco-GonzálezE, Montes-BayónM, JovenJ, ViolletB, NeuzilJ, MenendezJA . Metformin regulates global DNA methylation via mitochondrial one-carbon metabolism Oncogene, 2018,37(7):963-970. URL [本文引用: 1]
NaviauxRK . Mitochondrial control of epigenetics Cancer Biol Ther, 2008,7(8):1191-1193. [本文引用: 1]
FioreseCJ, HaynesCM . Integrating the UPR mt into the mitochondrial maintenance network Crit Rev Biochem Mol Biol, 2017,52(3):304-313. URL [本文引用: 1]
NargundAM, FioreseCJ, PellegrinoMW, DengP, HaynesCM . Mitochondrial and nuclear accumulation of the transcription factor ATFS-1 promotes OXPHOS recovery during the UPR(mt) Mol Cell, 2015,58(1):123-133. URL [本文引用: 1]
LinYF, SchulzAM, PellegrinoMW, LuY, ShahamS, HaynesCM . Maintenance and propagation of a deleterious mitochondrial genome by the mitochondrial unfolded protein response Nature, 2016,533(7603):416-419. URL [本文引用: 1]
WuY, WilliamsEG, DubuisS, MottisA, JovaisaiteV, HoutenSM, ArgmannCA, FaridiP, WolskiW, KutalikZ, ZamboniN, AuwerxJ, AebersoldR . Multilayered genetic and omics dissection of mitochondrial activity in a mouse reference population Cell, 2014,158(6):1415-1430. URL [本文引用: 1]
ArnouldT, MichelS, RenardP . Mitochondria retrograde signaling and the UPR mt: where are we in mammals? Int J Mol Sci, 2015,16(8):18224-18251. URL [本文引用: 1]
XiaoM, YangH, XuW, MaS, LinH, ZhuH, LiuL, LiuY, YangC, XuY, ZhaoS, YeD, XiongY, GuanKL . Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors Gene Dev, 2012,26(12):1326-1338. URL [本文引用: 1]
FioreseCJ, HaynesCM . Integrating the UPRmt into the mitochondrial maintenance network Crit Rev Biochem Mol, 2017,52(3):304-313. URL [本文引用: 1]
LaneN, MartinW . The energetics of genome complexity Nature, 2010,467(7318):929-934. URL [本文引用: 1]
ChestnutBA, ChangQ, PriceA, LesuisseC, WongM, MartinLJ . Epigenetic regulation of motor neuron cell death through DNA methylation J Neurosci, 2011,31(46):16619-16636. [本文引用: 1]
InfantinoV, CastegnaA, IacobazziF, SperaI, ScalaI, AndriaG, IacobazziV . Impairment of methyl cycle affects mitochondrial methyl availability and glutathione level in Down's syndrome Mol Genet Metab, 2010,102(3):378-382. URL [本文引用: 1]
ShockLS, ThakkarPV, PetersonEJ, MoranRG, TaylorSM . DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria Proc Natl Acad Sci USA, 2011,108(9):3630-3635. URL [本文引用: 1]
DzitoyevaS, ChenH, ManevH . Effect of aging on 5-hydroxymethylcytosine in brain mitochondria Neurobiol Aging, 2012,33(12):2881-2891. URL [本文引用: 1]
BellizziD, D'aquila P, ScafoneT, GiordanoM, RisoV, RiccioA, PassarinoG . The control region of mitochondrial DNA shows an unusual CpG and non-CpG methylation pattern DNA Res, 2013,20(6):537-547. URL [本文引用: 1]
ByunHM, PanniT, MottaV, HouL, NordioF, ApostoliP, BertazziPA, BaccarelliAA . Effects of airborne pollutants on mitochondrial DNA methylation Part Fibre Toxicol, 2013,10:18. URL [本文引用: 1]
PirolaCJ, GianottiTF, Burgue?oAL, Rey-FunesM, LoidlCF, MallardiP, MartinoJS, Casta?oGO, SookoianS . Epigenetic modification of liver mitochondrial DNA is associated with histological severity of nonalcoholic fatty liver disease Gut, 2012,62(9):1356-1363. URL [本文引用: 1]
FengS, XiongL, JiZ, ChengW, YangH . Correlation between increased ND2 expression and demethylated displacement loop of mtDNA in colorectal cancer Mol Med Rep, 2012,6(1):125-130. URL [本文引用: 1]
GhoshS, SenguptaS, ScariaV . Comparative analysis of human mitochondrial methylomes shows distinct patterns of epigenetic regulation in mitochondria Mitochondrion, 2014,18:58-62. URL [本文引用: 1]
BlanchM, MosqueraJL, AnsoleagaB, FerrerI, BarrachinaM . Altered mitochondrial DNA methylation pattern in alzheimer Disease-Related pathology and in Parkinson Disease Am J Pathol, 2016,186(2):385-397. URL [本文引用: 1]
D'aquilaP, BellizziD, PassarinoG . Mitochondria in health, aging and diseases: the epigenetic perspective Biogerontology, 2015,16(5):569-585. URL [本文引用: 1]
JahangirA, OzcanC, HolmuhamedovEL, TerzicA . Increased calcium vulnerability of senescent cardiac mitochondria: protective role for a mitochondrial potassium channel opener Mech Ageing Dev, 2001,122(10):1073-1086. URL [本文引用: 1]