Supported by the National Natural Science Foundation of China Nos.(31660639) Supported by the National Natural Science Foundation of China Nos.(31860637) Supported by the National Natural Science Foundation of China Nos.(31860628) China Agriculture Research System No. (CARS-39-06) Inner Mongolia Natural Science Foundation No. (2017MS0304) Cultivation of Talents for "Double- first-class" Discipline Innovation Team Construction in Inner Mongolia Agricultural University No. (NDSC2018-01)
作者简介 About authors 王凤红,博士研究生,研究方向:绒山羊分子遗传育种E-mail:nmgcfwfh@163.com。
Abstract The goat genome is the research basis for the protection and utilization of goat resources, which is important for breeding and improving goat breeds. At present, with the continuous improvement of goat reference genome, various important research progress in goat origin, evolution and adaptability has been achieved. In this review, we summarize the research progress in the goat genome in detail, encompassing goat genome structure, genome map (genetic, physical and comparative maps), goat high throughput sequencing and SNP chip development. We aim to provide a theoretical foundation for the development of goat genome selection. Keywords:goat;genome structure;genome map;chip;genome selection
LockhartDJ, WinzelerEA . Genomics, gene expression and DNA arrays , 2000,405(6788):827-836. [本文引用: 1]
ReillyMC, KimJ, LynnJ, SimmonsBA, GladdenJM, MagnusonJK, BakerSE . Forward genetics screen coupled with whole-genome resequencing identifies novel gene targets for improving heterologous enzyme production in Aspergillus niger , 2018,102(4):1797-1807. [本文引用: 1]
GroenenMA . A decade of pig genome sequencing: a window on pig domestication and evolution , 2016,48(1):1-9. [本文引用: 1]
DürigN, JudeR, HollH, BrooksSA, LafayetteC, JagannathanV, LeebT . Whole genome sequencing reveals a novel deletion variant in the KIT gene in horses with white spotted coat colour phenotypes , 2017,48(4):483-485. [本文引用: 1]
MielczarekM, Fr?szczakM, GiannicoR, MinozziG, WilliamsJL, Wojdak-maksymiecK, SzydaJ . Analysis of copy number variations in Holstein-Friesian cow genomes based on whole-genome sequence data , 2017,100(7):5515-5525. [本文引用: 1]
DangiSS, GuptaM, DangiSK, ChouhanVS, MauryaVP, KumarP, SinghG, SarkarM . Expression of HSPs: an adaptive mechanism during long-term heat stress in goats (Capra hircus) , 2015,59(8):1095-1106. [本文引用: 1]
GuanD, LuoN, TanX, ZhaoZ, HuangY, NaR, ZhangJ, ZhaoY . Scanning of selection signature provides a glimpse into important economic traits in goats (Capra hircus) , 2016,6:36372. [本文引用: 1]
ZederMA, HesseB . The initial domestication of goats (Capra hircus) in the Zagros mountains 10, 000 years ago , 2000,287(5461):2254-2257. [本文引用: 1]
JiangHZ, GuoD, ChenY, ZhangSW . Industry status of Chinese Cashmere Goat and analysis of Its prospects Anim Husb Feed Sci, 2009,30(10):100-103. [本文引用: 1]
MarxH, HahneH, UlbrichSE, SchniekeA, RottmannO, FrishmanD, KusterB . Annotation of the domestic pig genome by quantitative proteogenomics , 2017,16(8):2887-2898. [本文引用: 1]
VaronaL, LegarraA, HerringW, VitezicaZG . Genomic selection models for directional dominance: an example for litter size in pigs , 2018,50(1):1. [本文引用: 1]
JenkoJ, WiggansGR, CooperTA, EaglenSAE, LuffWGL, BichardM, Pong-WongR, WoolliamsJA . Cow genotyping strategies for genomic selection in a small dairy cattle population , 2017,100(1):439-452. [本文引用: 1]
BennewitzJ, EdelC, FriesR, MeuwissenTHE, WellmannR . Application of a Bayesian dominance model improves power in quantitative trait genome-wide association analysis , 2017,49(1):7. [本文引用: 1]
Naval-Sanchez M1, NguyenQ, McWilliamS, Porto-NetoLR, TellamR, VuocoloT, ReverterA, Perez-EncisoM, BrauningR, ClarkeS, McCullochA, ZamaniW, NaderiS, RezaeiHR, PompanonF, TaberletP, WorleyKC, GibbsRA, MuznyDM, JhangianiSN, CockettN, DaetwylerH, KijasJ . Sheep genome functional annotation reveals proximal regulatory elements contributed to the evolution of modern breeds , 2018,9(1):859. [本文引用: 1]
FangXT, ChenH, ZhuBC, FanZW, SunJJ . Study on the karyotype of chromosome in Xuhuai white goat Chin Herbiv, 2005. 25(3):16-18. [本文引用: 1]
FangXT, ChenH, YangZP, XuHX, YouYQ, FanZW, SunJJ . Karyotype analysis of chromosome of two local goat breeds in Jiangsu Province Jiangsu Agri Sci, 2007, ( 1):000112-000116. [本文引用: 1]
LeiCZ, Li RB Chen H, HanZS, LiuJ . Comparative study on chromosome Karyotype of goat and sheep Acta Agric Boreali-Occid Sin, 2001,10(3):12-15. [本文引用: 1]
AnYJ, NaRH, WangZx, GaoSL, WangWX . Research and analysis of Karyotype of different type white Cashmere goat in Inner Mongolia Journal of Inner Mongolia College of Agriculture and Animal Husbandry, 1998, ( 3):12-16. [本文引用: 1]
FábiánR, KovácsA, StégerV, FrankK, EgerszegiI, OláhJ, BodóS . X- and Y-chromosome-specific variants of the amelogenin gene allow non-invasive sex diagnosis for the detection of pseudohermaphrodite goats , 2017,65(4):500-504. [本文引用: 1]
RefsdalAO . Low fertility in daughters of bulls with 1/29 translocation , 1976,17(2):190-195. [本文引用: 1]
ParmaP, FeliginiM, GreppiG, EnneG . The complete nucleotide sequence of goat (Capra hircus) mitochondrial genome , 2003,14(3):199-203. [本文引用: 1]
DouH, ZhangL, LiC, MuJ, WangT, GeJ, FengL . The complete mitochondrial genome of Capricornis sp., possible a new species of Serow from Guizhou, China , 2016,27(2):848-849. [本文引用: 1]
ZhangH, DuanX, LiH, NiuL, WangL, LiL, ZhangH, ZhongT . The complete mitochondrial genome of Chinese tibetan goat (Capra hircus) , 2016,27(2):1161-1162. [本文引用: 1]
TangYX, LiuF, TangHX, YangSK, ZhangXY . The complete mitochondrial genome of Yunnan black goat (Capra hircus) , 2016,27(1):224-225. [本文引用: 1]
EGX, Zhao YJ, ChenLP, MaYH, ChuMX, LiXL, HongQH, LiLH, GuoJJ, ZhuL, HanYG, GaoHJ, ZhangJH, JiangHZ, JiangCD, WangGF, RenHX, JinML, SunYZ, ZhouP, HuangYF, . Genetic diversity of the Chinese goat in the littoral zone of the Yangtze River as assessed by microsatellite and mtDNA , 2018,8(10):5111-5123. [本文引用: 1]
VaimanD, SchiblerL, BourgeoisF, OustryA, AmiguesY, CribiuEP . A genetic linkage map of the male goat genome , 1996,144(1):279-305. [本文引用: 2]
SchiblerL, VaimanD, OustryA, Giraud-DelvilleC, CribiuEP . Comparative gene mapping: a fine-scale survey of chromosome rearrangements between ruminants and humans , 1998,8(9):901-915. [本文引用: 1]
XuL, YaoJG, YangZS, LaiSY, ZhangWG, LiJQ, WuP, WangZX, QiaoF, WangM, HuDT, MengLGKRL . A linkage map of 7 microsatellite markers on chromosome X in cashmere goats Chin Anim Husb Vet Med, 2010,37(7):109-112. Magsci [本文引用: 1] <FONT face=Verdana>本研究利用内蒙古白绒山羊的7个父系半同胞家系共794个个体,用X染色体上的7个微卫星标记进行了系谱确认,构建了绒山羊X染色体遗传连锁图。结果表明,7个标记的等位基因数变化范围为9~14,杂合度在0.585~0.918之间,平均杂合度为0.726;多态信息含量在0.759~0.897之间,平均多态信息含量为0.834。构建的内蒙古白绒山羊X染色体遗传连锁图总长度139.4 cM,与英国罗斯林研究所公布的SM4.7绵羊连锁图标记顺序一致,可用于下一步的QTL定位研究。</FONT> 徐磊, 姚继广, 杨子森, 赖双英, 张文广, 李金泉, 吴萍, 王志新, 乔峰, 王敏, 呼都特 , 孟克格日乐. 绒山羊X染色体7个微卫星标记的遗传连锁图谱的构建 , 2010,37(7):109-112. Magsci [本文引用: 1] <FONT face=Verdana>本研究利用内蒙古白绒山羊的7个父系半同胞家系共794个个体,用X染色体上的7个微卫星标记进行了系谱确认,构建了绒山羊X染色体遗传连锁图。结果表明,7个标记的等位基因数变化范围为9~14,杂合度在0.585~0.918之间,平均杂合度为0.726;多态信息含量在0.759~0.897之间,平均多态信息含量为0.834。构建的内蒙古白绒山羊X染色体遗传连锁图总长度139.4 cM,与英国罗斯林研究所公布的SM4.7绵羊连锁图标记顺序一致,可用于下一步的QTL定位研究。</FONT>
PerucattiA, FloriotS, Di MeoGP, SogliaD, RulloR, MaioneS, IncarnatoD, EggenA, SacchiP, RaseroR, IannuzziL . Comparative FISH mapping of mucin 1, transmembrane (MUC1) among cattle, river buffalo, sheep and goat chromosomes: comparison between bovine chromosome 3 and human chromosome 1 , 2006,112(1-2):103-105. [本文引用: 1]
PerucattiA, Di MeoG, VallinotoM, KiersteinG, SchneiderM, IncarnatoD, Caputi JambrenghiA, MohammadiG, VonghiaG, SilvaA, BrenigB, IannuzziL . FISH-mapping of LEP and SLC26A2 genes in sheep, goat and cattle R-banded chromosomes: comparison between bovine, ovine and caprine chromosome 4 (BTA4/OAR4/ CHI4) and human chromosome 7 (HSA7) , 2006,115(1):7-9. [本文引用: 1]
SchiblerL, Di MeoGP, CribiuEP, IannuzziL . Molecular cytogenetics and comparative mapping in goats (Capra hircus, 2n=60) , 2009,126(1-2):77-85. [本文引用: 1]
DuXY, ServinB, WomackJE, CaoJH, YuM, DongY, WangM, ZhaoSH . An update of the goat genome assembly using dense radiation hybrid maps allows detailed analysis of evolutionary rearrangements in Bovidae , 2014,15(1):625. [本文引用: 2]
RenF . Construction of a BAC library of saanen dairy goat and screening the library for BLG positive clone [Dissertation] Nanjing Agricultural University, 2007. [本文引用: 1]
LaiFN, ZhaiHL, ChengM, MaJY, ChengSF, GeW, ZhangGL, WangJJ, ZhangRQ, WangX, MinLJ, SongJZ, ShenW . Whole-genome scanning for the litter size trait associated genes and SNPs under selection in dairy goat ( Capra hircus) , 2016,6:38096. [本文引用: 1]
WangXL, LiuJ, ZhouGX, GuoJZ, YanHL, NiuYY, LiY, YuanC, GengRQ, LanXY, AnXP, TianXG, ZhouHK, SongJZ, JiangY, ChenYL . Whole-genome sequencing of eight goat populations for the detection of selection signatures underlying production and adaptive traits , 2016,6:38932. [本文引用: 1]
LiX, SuR, WanW, ZhangW, JiangH, QiaoX, FanY, ZhangY, WangR, LiuZ, WangZ, LiuB, MaY, ZhangH, ZhaoQ, ZhongT, DiR, JiangY, ChenW, WangW, DongY, LiJ . Identification of selection signals by large-scale whole-genome resequencing of cashmere goats , 2017,7(1):15142. [本文引用: 1]
MahabaRouzi . Identification of candidate genes for milk production traits in dairy goat[Dissertation] Chinese Academy of Agricultural Sciences, 2017. [本文引用: 1]
JinM, GuoCL, HuJH, GaoWB, WangW . Correlation analysis of economic traits in Liaoning new breed of cashmere goats using microsatellite DNA markers , 2006,33(3):230-235. [本文引用: 1]
MinLJ, FengYN, LanLI, Mei-YuLI . Associations of MSTN gene's polymorphisms with some economic traits in goats Acta Vet Et Zootech Sin, 2015,49(9):1515-1524. [本文引用: 1]
KijasJW, OrtizJS, MccullochR, JamesA, BriceB, SwainB, TosserkloppG . Genetic diversity and investigation of polledness in divergent goat populations using 52 088 SNPs , 2013,44(3):325-335. [本文引用: 1]
MartinPM, PalhièreI, RicardA, Tosser-KloppG, RuppR . Genome wide association study identifies new loci associated with undesired coat color phenotypes in Saanen goats , 2016,11(3):e0152426. [本文引用: 1]
LanR, ZhuL, YaoXR, WangP, ShaoQY, HongQH . A genome-wide association analysis of goat litter size Acta Vet Et Zootech Sin, 2015,46(4):549-554. Magsci [本文引用: 1] 本研究旨在通过对山羊产羔性状的全基因组关联分析(GWAS),寻找和定位与山羊产羔性状密切关联的新基因。以云南黑山羊6个公羊家系的302只山羊为试验材料,用Illumina 公司Iselect Goat60k芯片技术进行SNP分型,分型结果利用plink V1.07的线性回归模型对山羊产羔数性状进行全基因组关联分析。研究结果表明:在2号染色体上有2个SNPs位点与山羊产羔数达到5%基因组水平显著相关(P<1.48E-6),分别位于SLC4A10基因的下游和TBR1基因的上游;5个SNPs位点与山羊产羔数达潜在关联(P<2.97E-5),分别位于1号染色体SENP7基因上游,21号染色体Hypothetical Protein基因的上游,以及28号染色体WDFY4基因和TMEM26基因的上游、 BICC1基因的下游。这些基因可作为山羊产羔数性状的相关候选基因,也可为山羊产羔性状的分子机制研究和今后标记辅助选择的开展提供理论基础及新的研究线索。 兰蓉, 朱兰, 姚新荣, 王鹏, 邵庆勇, 洪琼花 . 山羊产羔数全基因组关联分析 , 2015,46(4):549-554. Magsci [本文引用: 1] 本研究旨在通过对山羊产羔性状的全基因组关联分析(GWAS),寻找和定位与山羊产羔性状密切关联的新基因。以云南黑山羊6个公羊家系的302只山羊为试验材料,用Illumina 公司Iselect Goat60k芯片技术进行SNP分型,分型结果利用plink V1.07的线性回归模型对山羊产羔数性状进行全基因组关联分析。研究结果表明:在2号染色体上有2个SNPs位点与山羊产羔数达到5%基因组水平显著相关(P<1.48E-6),分别位于SLC4A10基因的下游和TBR1基因的上游;5个SNPs位点与山羊产羔数达潜在关联(P<2.97E-5),分别位于1号染色体SENP7基因上游,21号染色体Hypothetical Protein基因的上游,以及28号染色体WDFY4基因和TMEM26基因的上游、 BICC1基因的下游。这些基因可作为山羊产羔数性状的相关候选基因,也可为山羊产羔性状的分子机制研究和今后标记辅助选择的开展提供理论基础及新的研究线索。
BertoliniF, CardosoTF, MarrasG, NicolazziEL, RothschildMF, AmillsM . Genome-wide patterns of homozygosity provide clues about the population history and adaptation of goats , 2018,50(1):59. [本文引用: 1]
ColliL, MilanesiM, TalentiA, BertoliniF, ChenM, CrisàA, DalyKG, Del CorvoM, GuldbrandtsenB, LenstraJA, RosenBD, VajanaE, CatilloG, JoostS, NicolazziEL, RochatE, RothschildMF, ServinB, SonstegardTS, SteriR, Van TassellCP, Ajmone-MarsanP, CrepaldiP, StellaA . Genome-wide SNP profiling of worldwide goat populations reveals strong partitioning of diversity and highlights post-domestication migration routes , 2018,50(1):58. [本文引用: 1]
BertoliniF, ServinB, TalentiA, RochatE, KimES, OgetC, PalhièreI, CrisàA, CatilloG, SteriR, AmillsM, ColliL, MarrasG, MilanesiM, NicolazziE, RosenBD, Van TassellCP, GuldbrandtsenB, SonstegardTS, Tosser- KloppG, StellaA, RothschildMF, JoostS, CrepaldiP . Signatures of selection and environmental adaptation across the goat genome post-domestication , 2018,50(1):57. [本文引用: 1]
TanC, BianC, YangD, LiN, WuZF, HuXX . Application of genomic selection in farm animal breeding Hereditas (Beijing), 2017,39(11):1033-1045. [本文引用: 2]
CarillierC, LarroqueH, PalhièreI, ClémentV, RuppR, RobertgraniéC . A first step toward genomic selection in the multi-breed French dairy goat population , 2013,96(11):7294-7305. [本文引用: 1]
MuchaS, MrodeR, Maclaren-LeeI, CoffeyM, ConingtonJ . Estimation of genomic breeding values for milk yield in UK dairy goats , 2015,98(11):8201-8208. [本文引用: 1]
TeissierM, LarroqueH, RobertgraniéC . Weighted single-step genomic BLUP improves accuracy of genomic breeding values for protein content in French dairy goats: a quantitative trait influenced by a major gene , 2018,50(1):31. [本文引用: 1]