马驿,,
仝春艳,
段博,
蒋琦
武汉大学遥感信息工程学院 武汉 430079
基金项目: 国家高技术研究发展计划(863计划)项目2013AA102401
详细信息
作者简介:刘怡晨, 主要研究方向为高光谱农业遥感。E-mail:grace_liu@whu.edu.cn
通讯作者:马驿, 主要研究方向为植被高光谱遥感。E-mail:mayi@whu.edu.cn
中图分类号:S127计量
文章访问数:731
HTML全文浏览量:6
PDF下载量:1176
被引次数:0
出版历程
收稿日期:2017-09-15
录用日期:2018-01-15
刊出日期:2018-07-01
Estimation of leaf area index of rapeseed and rice based on deflection angle and spectral retrieval algorithm
LIU Yichen,MA Yi,,
TONG Chunyan,
DUAN Bo,
JIANG Qi
School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
Funds: the National High-tech R&D Program of China (863 Program)2013AA102401
More Information
Corresponding author:MA Yi, E-mail:mayi@whu.edu.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:叶面积指数(LAI)是评价植被长势及产量预测的重要指标,对其进行精准快速估测有助于植被的生长状态诊断和管理。本研究以不同施氮水平、不同栽种方式下的油菜和不同品种水稻为试验对象,基于冠层高光谱曲线形态,引入偏角光谱检索算法(DABSR)提取光谱偏角,同时采用植被指数法和主成分分析法进行对比分析,探索适用于水稻、油菜LAI估算的统一模型构建方法。研究结果表明,估算油菜LAI时,DABSR反演精度较高,预测R2、RMSEP分别为0.74、0.47,偏移量MNB为0.16;主成分分析法反演精度次之,预测R2、RMSEP、MNB分别为0.73、0.48、-0.04;而植被指数法受不同生育期油菜株型、覆盖度影响反演精度普遍较低,精度较高模型的预测R2、RMSEP、MNB分别为0.61、0.57、0.17。在估算水稻LAI时,DABSR反演精度最优,预测R2、RMSEP、MNB可达0.70、0.80、0.05。综合考虑模型的验证精度、特征选择的合理性以及模型计算效率,DABSR偏角光谱检索法估算油菜和水稻LAI具有较高精度,且受施肥水平、栽种方式、生长期等因素影响较小,为构建精确的植被LAI统一估算模型提供了新思路。
关键词:油菜/
水稻/
叶面积指数/
高光谱/
偏角光谱检索
Abstract:Leaf area index (LAI) provides insight into productivity, physiological and phenological status of vegetation. The quick and accurate estimation of LAI contributes to growth status diagnosis and yield prediction. A variety of methods have been used for the estimation of LAI, however, the specific spectral bands applied differ widely among the methods and data used. Based on the general shape of the canopy reflectance curve, the spectral angles are found to be of great importance for the LAI estimation. The general objectives of this study were (i) to find informative spectral angles extracted by deflection angle based spectral retrieval (DABSR) and spectral bands retained in the other two common methods, vegetation indices (Ⅵ) and principle component analysis (PCA), for estimating LAI in rapeseed and rice; (ii) to compare the accuracy of the three methods as well as determine whether a robust algorithm for LAI estimation of two various crops can be devised. As the two main crops in China, rapeseed and rice, with different leaf structures as well as canopy architecture, were taken as the experimental subjects. Different nitrogen application rates (0, 45, 90, 135, 180, 225, 270, 360 kg×hm-2) and planting treatments (directed sowing and transplanting) were set for rapeseed, while 45 varieties of rice under the same growing environment were employed in the experiment. It was revealed that, for LAI estimation of rapeseed, the model built with DABSR performed the best as the coefficient of determination (R2), root mean square error (RMSEP) and mean normalized bias (MNB) of the predictive model were 0.74, 0.47 and 0.16 respectively; the model built with PCA was of medium accuracy with 0.73, 0.48 and -0.04 for R2, RMSEP and MNB, respectively. The selected Ⅵ models were of significantly poorer accuracy with 0.61, 0.57 and 0.17 for R2, RMSEP and MNB respectively, as a result of the effect induced by flowers and pods on canopy reflectance spectrum. From the perspective of rice, the relationship model based on DABSR-STEPWISE was of the best accuracy, as the R2, RMSEP and MNB could reach up to 0.70, 0.80 and 0.05. The models built with VIs performed the worst among three methods (R2 ≤ 0.61, RMSEP ≤ 0.92 and MNB ≤ 0.04), while the PCA model performed in between with 0.63, 0.88 and 0.04 for R2, RMSEP and MNB individually. The red edge and the NIR bands were selected in most models and considered the most informative. Among the three methods, DABSR-STEPWISE, proposed on the basis of spectral angle, was the most suitable for estimating LAI of two kinds of crops under different growing environments. The analysis allowed development of universal algorithms for LAI estimation in various crops. Being of high accuracy and high computational efficiency, these findings have significant implications on the development of uniform and robust algorithms, which is crucial for LAI estimation of specie-specific crops.
Key words:Rapeseed/
Rice/
Leaf area index/
Hyperspectral remote sensing/
Deflection angle based spectral retrieval
HTML全文
图1偏角光谱检索法(DABSR)基本流程
点1、2、3、4为4个特征波长, θ表示角度阈值, α1、α2为光谱偏角。
Figure1.Basic processes of deflection angle based spectral retrieval algorithm (DABSR)
Points 1, 2, 3, 4 represent 4 sensitive bands, θ denotes the threshold set for angles, α1 and α2 refer to the angle calculated.
下载: 全尺寸图片幻灯片
图2基于特征波长的光谱偏角变量构成
Figure2.Spectral angles formed on the basis of sensitive bands
下载: 全尺寸图片幻灯片
图3不同生育期作物冠层光谱反射率(A:水稻; B:油菜)及与LAI值的相关性(C:水稻; D:油菜)
Figure3.Canopy reflectance (A: rice; B: rapeseed) and correlation coefficients between LAI and reflectance (C: rice; D: rapeseed) at different growth periods
下载: 全尺寸图片幻灯片
图4DABSR在不同采样间隔及不同波长数量设定下筛选出的特征波长(以水稻为例, Nλ表示特征波长的个数)
Figure4.Sensitive bands selected by DABSR with different sample resolutions and various amounts of bands (rice, Nλ denotes the number of sensitive bands)
下载: 全尺寸图片幻灯片
表1植被指数计算方法及参考文献
Table1.Algorithm and references of vegetation indices
植被指数Vegetation index | 计算公式或定义Formulation | 文献Reference |
归一化植被指数Normalized difference vegetation index (NDVI) | (ρNIR-ρred)/(ρNIR+ρred) | [26] |
比值植被指数Ratio vegetation index (RVI) | ρNIR/ρred | [27] |
差值植被指数Difference vegetation index (DVI) | ρNIR-ρred | [28] |
非线性植被指数Nonlinear vegetation index (NLI) | (ρNIR2-ρred)/(ρNIR2+ρred) | [29] |
土壤调节植被指数Soil-adjusted vegetation index (SAVI) | (1+L)×(ρNIR-ρred)/(L+ρNIR+ρred) (L=0.5) | [30] |
重归一化植被指数Renormalized difference vegetation index (RDVI) | $ \sqrt {{\rm{NDVI}} \times ({\rho _{{\rm{NIR}}}} - {\rho _{{\rm{red}}}})} $ | [31] |
改进的简单比值指数Modified simple ratio (MSR) | $\left[ {({\rho _{{\rm{NIR}}}} - {\rho _{{\rm{red}}}}) - {\rm{1}}} \right]/(\sqrt {{\rho _{{\rm{NIR}}}} + {\rho _{{\rm{red}}}}} + {\rm{1}}) $ | [32] |
红边指数Red edge chlorophyll index (CIred edge) | (ρNIR/ρred)-1 | [6] |
绿边指数Green chlorophyll index (CIgreen) | (ρNIR/ρgreen)-1 | [6] |
ρNIB、ρred、ρgreen分别表示近红波段、红波段和绿波段处的冠层光谱反射率。ρNIR, ρred, ρgreen are canopy reflectance of NIR band, red band and green band, respectively. |
下载: 导出CSV
表2油菜与水稻LAI样本数据方差分析
Table2.ANOVA of rapeseed and rice LAI data
作物 Crop | 因变量 Dependent variable | 因子 Factor | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean square | F |
油菜 Rapeseed | LAI | 栽种方式Planting pattern | 0.878 | 1 | 0.878 | 8.922** |
生育期Growth period | 10.851 | 4 | 2.713 | 27.580** | ||
氮水平Nitrogen level | 98.304 | 7 | 14.043 | 142.781** | ||
栽种方式×生育期Planting pattern × growth period | 11.027 | 3 | 3.676 | 37.371** | ||
栽种方式×氮水平Planting pattern × nitrogen level | 6.572 | 7 | 0.939 | 9.546** | ||
氮水平×生育期Nitrogen level × growth period | 16.541 | 28 | 0.591 | 6.006** | ||
栽种方式×生育期×氮水平 Planting pattern × growth period × nitrogen level | 3.490 | 21 | 0.166 | 1.689** | ||
水稻 Rice | LAI | 品种Variety | 157.696 | 46 | 3.428 | 8.724** |
生育期Growth period | 102.661 | 2 | 51.330 | 130.624** | ||
**表示在5%水平下显著。** represents the significance at 5% level. |
下载: 导出CSV
表3油菜与水稻冠层高光谱数据PCA筛选后的最优波段排序及其贡献率
Table3.Sorted wavebands selected by contribution rate after PCA filter of canopy hyperspectral data of rapeseed and rice
作物 Crop | 权重系数排序 Eigenvector sequence number | 主成分序号Numbers of PCA | |||
1 | 2 | 3 | 4 | ||
油菜 Rapeseed | 1 | 1 015 | 505 | 420 | 1 300 |
2 | 1 010 | 510 | 425 | 1 200 | |
3 | 1 020 | 515 | 415 | 1 205 | |
4 | 1 005 | 520 | 430 | 1 195 | |
5 | 1 000 | 580 | 410 | 1 210 | |
6 | 1 025 | 575 | 405 | 1 190 | |
7 | 995 | 525 | 450 | 1 215 | |
8 | 990 | 585 | 445 | 1 185 | |
9 | 1 030 | 590 | 435 | 1 220 | |
10 | 985 | 570 | 400 | 1 295 | |
方差贡献率Variance contribution rate (%) | 59.93 | 23.03 | 12.23 | 3.12 | |
累计贡献率Accumulative contribution rate (%) | 59.93 | 82.96 | 95.19 | 98.31 | |
水稻 Rice | 1 | 790 | 735 | 1 300 | 350 |
2 | 785 | 730 | 1 200 | 355 | |
3 | 795 | 725 | 1 195 | 360 | |
4 | 815 | 720 | 1 205 | 365 | |
5 | 800 | 740 | 1 190 | 370 | |
6 | 780 | 365 | 1 210 | 375 | |
7 | 805 | 380 | 1 295 | 380 | |
8 | 820 | 360 | 1 185 | 385 | |
9 | 775 | 395 | 1 215 | 390 | |
10 | 810 | 385 | 1 180 | 395 | |
方差贡献率Variance contribution rate (%) | 91.86 | 5.97 | 1.63 | 0.21 | |
累计贡献率Accumulative contribution rate (%) | 91.86 | 97.84 | 99.47 | 99.67 |
下载: 导出CSV
表4油菜叶面积指数(Y)估计模型及检验
Table4.Calibration and validation of prediction models of rapeseed LAI (Y)
方法 Method | 序号 Serial number | 变量 Variable (X) | 模型 Model | 建模集Calibration (n=144) | 预测集Validation (n=72) | ||||
Rcal2 | RMSEC | Rval2 | RMSEP | MNB | |||||
植被指数法 Vegetation index method | 1 | NDVI | Y=4.64X-1.39 | 0.37 | 0.70 | 0.44 | 0.69 | 0.26 | |
2 | RVI | Y=0.22X+0.37 | 0.47 | 0.64 | 0.51 | 0.65 | 0.33 | ||
3 | DVI | Y=6.07X-0.42 | 0.48 | 0.64 | 0.61 | 0.57 | 0.17 | ||
4 | NLI | Y=2.34X+0.86 | 0.46 | 0.65 | 0.58 | 0.60 | 0.12 | ||
5 | SAVI | Y=5.25X-0.98 | 0.47 | 0.64 | 0.60 | 0.59 | 0.15 | ||
6 | RDVI | Y=5.60X-1.00 | 0.47 | 0.64 | 0.59 | 0.59 | 0.16 | ||
7 | MSR | Y=0.94X+0.02 | 0.45 | 0.65 | 0.50 | 0.66 | 0.29 | ||
8 | CIred edge | Y=0.22X+0.59 | 0.47 | 0.64 | 0.51 | 0.65 | 0.33 | ||
9 | CIgreen | Y=0.41X+0.51 | 0.31 | 0.73 | 0.23 | 0.81 | 0.46 | ||
PCA-STEPWISE | 10 | (5) | 0.70 | 0.48 | 0.73 | 0.48 | -0.04 | ||
DABSR-STEPWISE | 11 | (6) | 0.78 | 0.41 | 0.74 | 0.47 | 0.16 | ||
PAC-STEPWISE:主成分分析法与逐步回归分析法结合; DABSR-STEPWISE: DABSR偏角光谱检索与逐步回归分析结合。 PAC-STEPWISE: combination of principle component analysis and stepwise regression analysis; DABSR-STEPWISE: combination of deflection angle based spectral retrieval and stepwise regression analysis. |
下载: 导出CSV
表5水稻叶面积指数(Y)估计模型及检验
Table5.Calibration and validation of prediction models of rice LAI (Y)
方法 Method | 序号 Serial number | 变量(X) Variable | 模型 Model | 建模集Calibration (n=90) | 预测集Validation (n=45) | ||||
Rcal2 | RMSEC | Rval2 | RMSEP | MNB | |||||
植被指数法 Vegetation index method | 12 | NDVI | Y=14.61X-7.53 | 0.60 | 0.97 | 0.54 | 0.98 | 0.06 | |
13 | RVI | Y=0.10X+3.09 | 0.56 | 1.02 | 0.49 | 1.04 | 0.03 | ||
14 | DVI | Y=15.76X-1.63 | 0.56 | 1.02 | 0.54 | 0.99 | 0.03 | ||
15 | NLI | Y=6.64X+0.34 | 0.62 | 0.96 | 0.59 | 0.94 | 0.06 | ||
16 | SAVI | Y=14.36X-4.11 | 0.61 | 0.96 | 0.61 | 0.92 | 0.04 | ||
17 | RDVI | Y=15.26X-4.14 | 0.61 | 0.96 | 0.60 | 0.92 | 0.04 | ||
18 | MSR | Y=0.91X+1.65 | 0.63 | 0.94 | 0.52 | 1.00 | 0.04 | ||
19 | CIred edge | Y=2.38X+1.51 | 0.71 | 0.82 | 0.57 | 0.95 | 0.04 | ||
20 | CIgreen | Y=0.38X+1.98 | 0.59 | 0.99 | 0.43 | 1.10 | 0.04 | ||
PCA-STEPWISE | 21 | (7) | 0.76 | 0.76 | 0.63 | 0.88 | 0.04 | ||
DABSR-STEPWISE | 22 | (8) | 0.77 | 0.74 | 0.70 | 0.80 | 0.05 | ||
PAC-STEPWISE:主成分分析法与逐步回归分析法结合; DABSR-STEPWISE: DABSR偏角光谱检索与逐步回归分析结合。 PAC-STEPWISE: combination of principle component analysis and stepwise regression analysis; DABSR-STEPWISE: combination of deflection angle based spectral retrieval and stepwise regression analysis. |
下载: 导出CSV
参考文献
[1] | 刘洋, 刘荣高, 陈镜明, 等.叶面积指数遥感反演研究进展与展望[J].地球信息科学学报, 2013, 15(5): 734-743 http://www.dqxxkx.cn/CN/abstract/abstract24862.shtml LIU Y, LIU R G, CHEN J M, et al. Current status and perspectives of leaf area index retrieval from optical remote sensing data[J]. Journal of Geo-Information Science, 2013, 15(5): 734-743 http://www.dqxxkx.cn/CN/abstract/abstract24862.shtml |
[2] | VI?A A, GITELSON A A, NGUY-ROBERTSON A L, et al. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops[J]. Remote Sensing of Environment, 2011, 115(12): 3468-3478 doi: 10.1016/j.rse.2011.08.010 |
[3] | SELLERS P J, DICKINSON R E, RANDALL D A, et al. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere[J]. Science, 1997, 275(5299): 502-509 doi: 10.1126/science.275.5299.502 |
[4] | ABOU-ISMAIL O. Rice yield estimation by integrating remote sensing with rice growth simulation model[J]. Pedosphere, 2004, 14(4): 519-526 |
[5] | GITELSON A A, PENG Y, ARKEBAUER T J, et al. Relationships between gross primary production, green LAI, and canopy chlorophyll content in maize: Implications for remote sensing of primary production[J]. Remote Sensing of Environment, 2014, 144: 65-72 doi: 10.1016/j.rse.2014.01.004 |
[6] | GITELSON A A, GRITZ Y, MERZLYAK M N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves[J]. Journal of Plant Physiology, 2003, 160(3): 271-282 doi: 10.1078/0176-1617-00887 |
[7] | 石剑飞, 殷璀艳, 冷锁虎, 等.采用数码图像处理法测定油菜叶面积的方法探讨[J].中国油料作物学报, 2010, 32(3): 379-382 http://www.cqvip.com/QK/94281A/201003/35412765.html SHI J F, YIN C Y, LENG S H, et al. Digital image method for rapeseed leaf area measure[J]. Chinese Journal of Oil Crop Sciences, 2010, 32(3): 379-382 http://www.cqvip.com/QK/94281A/201003/35412765.html |
[8] | TANG H, BROLLY M, ZHAO F, et al. Deriving and validating leaf area index (LAI) at multiple spatial scales through lidar remote sensing: A case study in sierra national forest, CA[J]. Remote Sensing of Environment, 2014, 143: 131-141 doi: 10.1016/j.rse.2013.12.007 |
[9] | 黄敬峰, 王渊, 王福民, 等.油菜红边特征及其叶面积指数的高光谱估算模型[J].农业工程学报, 2006, 22(8): 22-26 https://www.wenkuxiazai.com/doc/edec8be2f705cc175527095f.html HUANG J F, WANG Y, WANG F M, et al. Red edge characteristics and leaf area index estimation model using hyperspectral data for rape[J]. Transactions of the CSAE, 2006, 22(8): 22-26 https://www.wenkuxiazai.com/doc/edec8be2f705cc175527095f.html |
[10] | 王李娟, 牛铮, 侯学会, 等.基于CHRIS数据的新型植被指数的LAI估算研究[J].光谱学与光谱分析, 2013, 33(4): 1082-1086 http://www.cqvip.com/qk/90993x/201304/45101502.html WANG L J, NIU Z, HOU X H, et al. The study of LAI estimation using a new vegetation index based on CHRIS data[J]. Spectroscopy and Spectral Analysis, 2013, 33(4): 1082-1086 http://www.cqvip.com/qk/90993x/201304/45101502.html |
[11] | DUAN S B, LI Z L, WU H, et al. Inversion of the PROSAIL model to estimate leaf area index of maize, potato, and sunflower fields from unmanned aerial vehicle hyperspectral data[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 26: 12-20 doi: 10.1016/j.jag.2013.05.007 |
[12] | 杨峰, 范亚民, 李建龙, 等.高光谱数据估测稻麦叶面积指数和叶绿素密度[J].农业工程学报, 2010, 26(2): 237-243 http://www.cnki.com.cn/Article/CJFDTotal-MLZW201305030.htm YANG F, FAN Y M, LI J L, et al. Estimating LAI and CCD of rice and wheat using hyperspectral remote sensing data[J]. Transactions of the CSAE, 2010, 26(2): 237-243 http://www.cnki.com.cn/Article/CJFDTotal-MLZW201305030.htm |
[13] | 赵娟, 黄文江, 张耀鸿, 等.冬小麦不同生育时期叶面积指数反演方法[J].光谱学与光谱分析, 2013, 33(9): 2546-2552 http://or.nsfc.gov.cn/bitstream/00001903-5/55933/1/1000006566082.pdf ZHAO J, HUANG W J, ZHANG Y H, et al. Inversion of leaf area index during different growth stages in winter wheat[J]. Spectroscopy and Spectral Analysis, 2013, 33(9): 2546-2552 http://or.nsfc.gov.cn/bitstream/00001903-5/55933/1/1000006566082.pdf |
[14] | 杨贵军, 黄文江, 王纪华, 等.多源多角度遥感数据反演森林叶面积指数方法[J].植物学报, 2010, 45(5): 566-578 http://www.oalib.com/paper/4430518 YANG G J, HUANG W J, WANG J H, et al. Inversion of forest leaf area index calculated from multi-source and multi-angle remote sensing data[J]. Chinese Bulletin of Botany, 2010, 45(5): 566-578 http://www.oalib.com/paper/4430518 |
[15] | 廖钦洪, 张东彦, 王纪华, 等.基于多角度成像数据的新型植被指数构建与叶绿素含量估算[J].光谱学与光谱分析, 2014, 34(6): 1599-1604 http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201406038.htm LIAO Q H, ZHANG D Y, WANG J H, et al. Assessment of chlorophyll content using a new vegetation index based on multi-angular hyperspectral image data[J]. Spectroscopy and Spectral Analysis, 2014, 34(6): 1599-1604 http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201406038.htm |
[16] | 李飞, 周成虎, 陈荣国.基于光谱曲线形态的高光谱影像检索方法研究[J].光谱学与光谱分析, 2008, 28(11): 2482-2486 doi: 10.3964/j.issn.1000-0593(2008)11-2482-05 LI F, ZHOU C H, CHEN R G. Spectral curve shape feature- based hyperspectral remote sensing image retrieval[J]. Spectroscopy and Spectral Analysis, 2008, 28(11): 2482-2486 doi: 10.3964/j.issn.1000-0593(2008)11-2482-05 |
[17] | 戴晓爱, 贾虎军, 吴芬芳, 等.空间数据压缩的高光谱降维技术比较[J].遥感信息, 2017, 32(2): 107-112 http://www.opticsjournal.net/abstract.htm?id=OJ1503250000175A8D0G DAI X A, JIA H J, WU F F, et al. Comparative analysis of hyperspectral dimensionality reduction technology on spatial data compression[J]. Remote Sensing Information, 2017, 32(2): 107-112 http://www.opticsjournal.net/abstract.htm?id=OJ1503250000175A8D0G |
[18] | HUANG W Q, LI J B, ZHANG C, et al. Identification of maize kernel embryo based on hyperspectral imaging technology and PCA[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(S2): 243-247 |
[19] | Palacios-Orueta A, Khanna S, Litago J, et al. Assessment of NDVI and NDWI spectral indices using MODIS time series analysis and development of a new spectral index based on MODIS shortwave infrared bands[C]//International Conference on Remote Sensing and Geoinformation Processing in the Assessment and Monitoring of Land Degradation and Desertification. Trier, Germany. 2005 |
[20] | KHANNA S, PALACIOS-ORUETA A, WHITING M L, et al. Development of angle indexes for soil moisture estimation, dry matter detection and land-cover discrimination[J]. Remote Sensing of Environment, 2007, 109(2): 154-165 doi: 10.1016/j.rse.2006.12.018 |
[21] | 邓兵, 杨武年, 慕楠, 等.基于光谱分析与角度斜率指数的植被含水量研究[J].光谱学与光谱分析, 2016, 36(8): 2546-2552 http://manu13.magtech.com.cn/gpx/CN/abstract/abstract6021.shtml DENG B, YANG W N, MU N, et al. The research of vegetation water content based on spectrum analysis and angle slope index[J]. Spectroscopy and Spectral Analysis, 2016, 36(8): 2546-2552 http://manu13.magtech.com.cn/gpx/CN/abstract/abstract6021.shtml |
[22] | 卫俊霞, 相里斌, 高晓惠, 等.基于K-均值聚类与夹角余弦法的多光谱分类算法[J].光谱学与光谱分析, 2011, 31(5): 1357-1360 WEI J X, XIANG L B, GAO X H, et al. The multi-spectra classification algorithm based on K-means clustering and spectral angle cosine[J]. Spectroscopy and Spectral Analysis, 2011, 31(5): 1357-1360 |
[23] | KIRA O, NGUY-ROBERTSON A L, ARKEBAUER T J, et al. Informative spectral bands for remote green LAI estimation in C3 and C4 crops[J]. Agricultural and Forest Meteorology, 2016, (218/219): 243-249 |
[24] | VERRELST J, CAMPS-VALLS G, MU?OZ-MARí J, et al. Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties - A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 108: 273-290 doi: 10.1016/j.isprsjprs.2015.05.005 |
[25] | GE S, EVERITT J, CARRUTHERS R, et al. Hyperspectral characteristics of canopy components and structure for phenological assessment of an invasive weed[J]. Environmental Monitoring and Assessment, 2006, 120(1/3): 109-126 |
[26] | ROUSE J W, HAAS R H, SCHELL J A, et al. Monitoring vegetation systems in the great plains with ERTS[C]// Proceedings of the 3rd ERTS Symposium. Washington, DC: NASA, 1973: 309-317 |
[27] | JORDAN C F. Derivation of leaf-area index from quality of light on the forest floor[J]. Ecology, 1969, 50(4): 663-666 doi: 10.2307/1936256 |
[28] | TUCKER C J. A spectral method for determining the percentage of green herbage material in clipped samples[J]. Remote Sensing of Environment, 1980, 9(2): 175-181 doi: 10.1016/0034-4257(80)90007-3 |
[29] | GOEL N S, QIN W H. Influences of canopy architecture on relationships between various vegetation indices and LAI and FPAR: A computer simulation[J]. Remote Sensing Reviews, 1994, 10(4): 309-347 doi: 10.1080/02757259409532252 |
[30] | HUETE A R. A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment, 1988, 25(3): 295-309 doi: 10.1016/0034-4257(88)90106-X |
[31] | ROUJEAN J L, BREON F M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements[J]. Remote Sensing of Environment, 1995, 51(3): 375-384 doi: 10.1016/0034-4257(94)00114-3 |
[32] | CHEN J M. Evaluation of vegetation indices and a modified simple ratio for boreal applications[J]. Canadian Journal of Remote Sensing, 1996, 22(3): 229-242 doi: 10.1080/07038992.1996.10855178 |
[33] | 霍雷刚, 冯象初.基于主成分分析和字典学习的高光谱遥感图像去噪方法[J].电子与信息学报, 2014, 36(11): 2723-2729 http://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201411030.htm HUO L G, FENG X C. Denoising of hyperspectral remote sensing image based on principal component analysis and dictionary learning[J]. Journal of Electronics & Information Technology, 2014, 36(11): 2723-2729 http://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201411030.htm |
[34] | 左青松, 蒯婕, 杨士芬, 等.不同氮肥和密度对直播油菜冠层结构及群体特征的影响[J].作物学报, 2015, 41(5): 758-765 http://www.cqvip.com/QK/90181X/201505/665283417.html ZUO Q S, KUAI J, YANG S F, et al. Effects of nitrogen fertilizer and planting density on canopy structure and population characteristic of rapeseed with direct seeding treatment[J]. Acta Agronomica Sinica, 2015, 41(5): 758-765 http://www.cqvip.com/QK/90181X/201505/665283417.html |
[35] | LIU T J, XU T, YAO J, et al. Quantitative relationship between leaf area index and canopy reflectance spectra of rice under different nitrogen levels[J]. Agricultural Basic Science and Technology, 2016, 17(11): 2446-2448 doi: 10.1007/s11104-013-1937-0 |
[36] | 王福民, 王渊, 黄敬峰.不同氮素水平油菜冠层反射光谱特征研究[J].遥感技术与应用, 2004, 19(2): 80-84 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjsfdxxb200703005 WANG F M, WANG Y, HUANG J F. Spectra characteristics of rape canopy at different nitrogen levels[J]. Remote Sensing Technology and Application, 2004, 19(2): 80-84 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjsfdxxb200703005 |
[37] | 李志花, 冯美臣, 王超, 等.冬小麦高光谱信息提取方法的研究[J].山西农业大学学报:自然科学版, 2015, 35(5): 467-473 http://www.cnki.com.cn/Article/CJFDTotal-SXNY201505004.htm LI Z H, FENG M C, WANG C, et al. The study of winter wheat hyperspectral information extraction method[J]. Journal of Shanxi Agricultural University: Natural Science Edition, 2015, 35(5): 467-473 http://www.cnki.com.cn/Article/CJFDTotal-SXNY201505004.htm |
[38] | 郑雯, 明金, 杨孟克, 等.基于波段深度分析和BP神经网络的水稻色素含量高光谱估算[J].中国生态农业学报, 2017, 25(8): 1224-1235 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170815&flag=1 ZHENG W, MING J, YANG M K, et al. Hyperspectral estimation of rice pigment content based on band depth analysis and BP neural network[J]. Chinese Journal of Eco-Agriculture, 2017, 25(8): 1224-1235 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170815&flag=1 |
[39] | 梁顺林, 李小文, 王锦地, 等.定量遥感[M].北京:科学出版社, 2013: 54-70 LIANG S L, LI X W, WANG J D, et al. Quantitative Remote Sensing[M]. Beijing: China Science Publishing, 2013: 54-70 |
[40] | 高洪智, 卢启鹏, 丁海泉, 等.基于连续投影算法的土壤总氮近红外特征波长的选取[J].光谱学与光谱分析, 2009, 29(11): 2951-2954 doi: 10.3964/j.issn.1000-0593(2009)11-2951-04 GAO H Z, LU Q P, DING H Q, et al. Choice of characteristic near-infrared wavelengths for soil total nitrogen based on successive projection algorithm[J]. Spectroscopy and Spectral Analysis, 2009, 29(11): 2951-2954 doi: 10.3964/j.issn.1000-0593(2009)11-2951-04 |
[41] | FANG S H, TANG W C, PENG Y, et al. Remote estimation of vegetation fraction and flower fraction in oilseed rape with unmanned aerial vehicle data[J]. Remote Sensing, 2016, 8(5): 416 doi: 10.3390/rs8050416 |
[42] | 佘宝, 黄敬峰, 石晶晶, 等.基于红边位置变化特征的油菜种植区域提取[J].农业工程学报, 2013, 29(15): 145-152 doi: 10.3969/j.issn.1002-6819.2013.15.018 SHE B, HUANG J F, SHI J J, et al. Extracting oilseed rape growing regions based on variation characteristics of red edge position[J]. Transactions of the CSAE, 2013, 29(15): 145-152 doi: 10.3969/j.issn.1002-6819.2013.15.018 |
[43] | 李鑫川, 徐新刚, 鲍艳松, 等.基于分段方式选择敏感植被指数的冬小麦叶面积指数遥感反演[J].中国农业科学, 2012, 45(17): 3486-3496 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201217003.htm LI X C, XU X G, BAO Y S, et al. Retrieving LAI of winter wheat based on sensitive vegetation index by the segmentation method[J]. Scientia Agricultura Sinica, 2012, 45(17): 3486-3496 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201217003.htm |
[44] | 马驿, 汪善勤, 李岚涛, 等.基于高光谱的油菜叶面积指数估计[J].华中农业大学学报, 2017, 36(2): 69-77 http://manu13.magtech.com.cn/gpx/CN/abstract/abstract9606.shtml MA Y, WANG S Q, LI L T, et al. Prediction of rapeseed leaf area index based on hyperspectal data[J]. Journal of Huazhong Agricultural University, 2017, 36(2): 69-77 http://manu13.magtech.com.cn/gpx/CN/abstract/abstract9606.shtml |