删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

白术叶片对干旱胁迫的光谱特征响应

本站小编 Free考研考试/2022-01-01

徐琳煜1, 2,,
刘守赞3,
白岩1, 2,,,
张汝民1, 2,
丁恒1, 2,
吴学谦1, 2,
郑炳松1, 2
1.省部共建亚热带森林培育国家重点实验室 临安 311300
2.浙江农林大学林业与生物技术学院 临安 311300
3.浙江农林大学植物园 临安 311300
基金项目: 浙江省自然科学基金项目LY13C130010

详细信息
作者简介:徐琳煜, 主要从事药用植物栽培与生理研究。E-mail: xlyzjnl@163.com
通讯作者:白岩, 主要从事药用植物栽培与生理生化调控研究。E-mail: hzbaiyan@163.com
中图分类号:R282.2

计量

文章访问数:741
HTML全文浏览量:1
PDF下载量:935
被引次数:0
出版历程

收稿日期:2017-08-02
录用日期:2018-01-11
刊出日期:2018-05-01

Responses of leaf spectral characteristics of Atractylodes macrocephala Koidz. to drought stress

XU Linyu1, 2,,
LIU Shouzan3,
BAI Yan1, 2,,,
ZHANG Rumin1, 2,
DING Heng1, 2,
WU Xueqian1, 2,
ZHENG Bingsong1, 2
1. State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Lin'an 311300, China
2. School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin'an 311300, China
3. Botanical Garden, Zhejiang Agricultural and Forestry University, Lin'an 311300, China
Funds: the Natural Science Foundation of Zhejiang Province of ChinaLY13C130010

More Information
Corresponding author:BAI Yan,E-mail: hzbaiyan@163.com


摘要
HTML全文
(4)(5)
参考文献(26)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:白术根茎膨大初期对轻度的土壤水分缺失具有一定的耐受性,但是过度干旱会抑制其根茎膨大及成分积累,因此,无损伤诊断该时期白术是否受到干旱胁迫至关重要。本文以2年生白术为试验材料,在根茎膨大初期控制土壤水分,形成不同程度的干旱胁迫,利用UniSpec-SC光谱分析仪测定其光谱反射率,并结合光合色素含量,探讨白术叶片光谱特征对干旱胁迫的响应规律,为利用光谱参数监测白术生长状况提供技术依据。结果显示,随着干旱胁迫程度增加,可见光区域(400~750 nm)白术叶片光谱反射率升高,说明其光能吸收利用能力下降;但在750~1 000 nm的近红外波段,光谱反射率则逐渐平稳,在1 000 nm处,干旱胁迫下的全部叶片反射率均低于对照。微分光谱在680~750 nm间差异明显,并与叶绿素含量在700~750 nm间呈显著相关。同时,大多数光谱参数与色素含量呈显著相关(P < 0.05),尤其类胡萝卜指数(mCRI)、色素归一化指数(PSNDb)、红边位置(λred)、红边幅值(Dλred)、红边面积(Sred)与之呈极显著相关(P < 0.01)。从上述结果可知,微分光谱680~750 nm可作为检测白术是否受到干旱影响的主要监测波段,红边参数、类胡萝卜指数及色素归一化指数可以作为重要指标,快速、准确、无伤害诊断白术受干旱胁迫程度。本研究结果可为应用反射光谱进行白术干旱胁迫程度诊断提供理论依据和技术支持。
关键词:白术/
干旱胁迫/
光谱特征/
光谱反射率/
光合色素/
光谱参数
Abstract:Atractylodes macrocephala Koidz. is a perennial herb belonging to Compositae family, which is fond of cool climate regions. Rhizome dried for over 2 years are used for a series of medicinal functions. It is a top medicinal herb in Zhejiang Province, China. At the early stage of rhizome enlargement, A. macrocephala has a certain tolerance to mild soil drought, but excessive drought can inhibit rhizome enlargement and accumulation of constituent chemicals. Increasing degree of drought stress could slow down growth, inhibit rhizome enlargement and limit yield. In order to provide reference for drought stress control and cultivation of drought-resistant varieties, biennial A. macrocephala were planted under different drought stress. Spectral reflectance of A. macrocephala leaves determined by UniSpec-SC spectrum analyzer and combined with photosynthetic pigment contents were used to explain the response of spectral characteristics under drought stress. The results showed that spectral reflectance increased in the visible region (400-750 nm) with increasing drought stress. This indicated that the absorption and utilization ability of light energy decreased under increased drought stress. However, spectral reflectance gradually stabilized in the near-infrared band 750-1 000 nm. The reflectance of all the leaves under drought stress was lower than that of the control at 1 000 nm. The difference in spectrum of 680-750 nm was significant, which was correlated with chlorophyll content in 700-750 nm. This band could be used to monitor whether A. macrocephala was affected by drought. The contents of photosynthetic pigments increased initially and then decreased with the increased drought stress. It indicated that a suitable degree of drought was good for growth. Most of the spectral parameters were significantly correlated with pigments contents (P < 0.05). Spectral parameters of mCRI, PSNDb, red-edge position (λred), red-edge amplitude (Dλred) and red-edge area (Sred) were significantly correlated with leaf pigments contents (P < 0.01), which could be used to diagnose drought indicators. In summary, differential spectrum of 680-750 nm could be used to detect drought impact on A. macrocephala. Red-edge parameters, carotenoid reflectance indexes and pigment specific normalized difference may be used as indicators to diagnose drought stress degree of A. macrocephala. This conclusion not only provided a reference for the study of high-spectrum plant research, but also provided theoretical basis and technical support for the application of spectrum diagnosis of A. macrocephala in drought stress analysis.
Key words:Atractylodes macrocephala Koidz./
Drought stress/
Spectral characteristics/
Spectral reflectance/
Photosynthetic pigment/
Spectral parameter

HTML全文


图1不同干旱胁迫对白术叶片反射光谱的影响
CK:对照组, 正常浇水, 即每天浇水量0.5 L; Tr1、Tr2、Tr3和Tr4为干旱处理组, 分别停止浇水2 d、4 d、6 d和8 d。
Figure1.Effect of drought stress on reflectance spectra of Atractylodes macrocephala leaves
CK: control group, watered 0.5 L per day; Tr1, Tr2, Tr3 and Tr4 were drought-treated groups, stopped watering for 2 days, 4 days, 6 days and 8 days, respectively.


下载: 全尺寸图片幻灯片


图2不同干旱胁迫处理白术叶片反射光谱一阶导数
CK:对照组, 正常浇水, 即每天浇水量0.5 L; Tr1、Tr2、Tr3和Tr4为干旱处理组, 分别停止浇水2 d、4 d、6 d和8 d。
Figure2.First derivative of reflectance spectra of Atractylodes macrocephala leaves under different drought stresses
CK: control group, watered 0.5 L per day; Tr1, Tr2, Tr3 and Tr4 were drought-treated groups, stopped watering for 2 days, 4 days, 6 days and 8 days, respectively.


下载: 全尺寸图片幻灯片


图3白术叶片光合色素含量与光谱反射率的相关性
Ca:叶绿素a; Cb:叶绿素b; Cars:胡萝卜素; a/b:叶绿素a/b; T:总叶绿素含量; 0.05:显著性水平为0.05; 0.01:显著性水平为0.01。
Figure3.Correlation between reflectance spectra and photosynthetic pigments contents of Atractylodes macrocephala leaves
Ca: chlorophyll a; Cb: chlorophyll b; Cars: carotene; a/b: chlorophyll a/b; T: total chlorophyll content; 0.05: significant level 0.05; 0.01: significant level 0.01.


下载: 全尺寸图片幻灯片


图4白术叶片光合色素含量与微分光谱的相关性
Ca:叶绿素a; Cb:叶绿素b; Cars:胡萝卜素; a/b:叶绿素a/b; T:总叶绿素含量; 0.05:显著性水平为0.05; 0.01:显著性水平为0.01。
Figure4.Correlation between derivative spectra and photosynthetic pigments contents of Atractylodes macrocephala leaves
Ca: chlorophyll a; Cb: chlorophyll b; Cars: carotene; a/b: chlorophyll a/b; T: total chlorophyll content; 0.05: significant level 0.05; 0.01: significant level 0.01.


下载: 全尺寸图片幻灯片

表1不同水分胁迫处理的土壤含水量
Table1.Soil water contents of different water stress treatments
%
CK Tr1 Tr2 Tr3 Tr4
土壤含水量Soil water content 52.52±1.07a 44.37±1.07b 31.40±1.15c 21.97±0.55d 12.70±0.60d
CK:对照组,正常浇水,每天浇水量0.5 L; Tr1、Tr2、Tr3和Tr4为干旱处理组,分别停止浇水2d、4d、6d和8d。不同字母表示在0.05水平上差异显著。CK: control group, watered 0.5 L per day; Tr1, Tr2, Tr3 and Tr4 were drought-treated groups, stopped watering for 2 days, 4 days, 6 days and 8 days, respectively. Different lowercase letters mean significant differences at 0.05 level.


下载: 导出CSV
表2干旱胁迫对白术叶片光合色素含量的影响
Table2.Effect of drought stress on photosynthetic pigments contents of Atractylodes macrocephala leaves
光合色素Photosynthetic pigment CK Tr1 Tr2 Tr3 Tr4
叶绿素a (Chla) Chlorophyll a (mg·g-1) 2.115±0.132a 2.352±0.211a 2.707±0.362a 2.053±0.484a 0.893±0.018b
叶绿素b (Chlb) Chlorophyll b (mg·g-1) 0.923±0.034ab 1.017±0.063a 1.016±0.123b 0.762±0.153a 0.420±0.027c
叶绿素总量(Chla+b) Total chlorophyll (mg·g-1) 3.038±0.166a 3.369±0.273a 3.723±0.486a 2.815±0.636a 1.312±0.044b
类胡萝卜素Carotenoids (mg·g-1) 0.330±0.006bc 0.482±0.061a 0.470±0.099bc 0.292±0.092ab 0.173±0.021c
叶绿素a/b (Chl a/b) Chlorophyll a/b 2.290±0.060b 2.311±0.063b 2.662±0.036a 2.681±0.146a 2.132±0.102b
CK:对照组,正常浇水,每天浇水量0.5 L; Tr1、Tr2、Tr3和Tr4为干旱处理组,分别停止浇水2 d、4 d、6 d和8 d。同行不同字母表示在0.05水平上差异显著。CK: control group, watered 0.5 L per day; Tr1, Tr2, Tr3 and Tr4 were drought-treated groups, stopped watering for 2 days, 4 days, 6 days and 8 days, respectively. Different lowercase letters in the same line mean significant differences at 0.05 level.


下载: 导出CSV
表3不同干旱胁迫处理下白术叶片红边、黄边和蓝边参数
Table3.Red edge, yellow edge and blue edge parameters of Atractylodes macrocephala leaves under different drought stressess
参数Parameter CK Tr1 Tr2 Tr3 Tr4
红边位置(λred) Red edge position 704.667±0.557a 714.333±1.528a 705.000±1.000a 708.000±5.196a 707.333±9.292a
红边幅值(Dλred) Red edge amplitude 1.346±0.076a 1.154±0.059ab 1.263±0.142ab 1.080±0.062b 1.053±0.085b
红边面积(Sred) Red edge area 51.281±1.477ab 53.687±2.436ab 58.431±3.204a 54.132±4.092ab 47.161±4.665b
黄边位置(λyellow) Yellow edge position 571.667±1.528a 570.000±0.000a 570.667±1.155a 571.333±2.309a 571.667±2.082a
黄边幅值(Dλyellow)Yellow edge amplitude 0.182±0.057a 0.243±0.008a 0.242±0.043a 0.242±0.025a 0.230±0.018a
黄边面积(Syellow) Yellow edge area -8.757±0.649a -10.002±0.404a -9.972±1.430a -10.575±1.486a -9.860±1.086a
蓝边位置(λblue) Blue edge position 520.333±0.577a 520.333±3.780a 521.333±0.577a 518.000±5.000a 519.000±2.646a
蓝边幅值(Dλblue) Blue edge amplitude 0.375±0.0278a 0.394±0.016a 0.417±0.062a 0.438±0.070a 0.408±0.050a
蓝边面积(Sblue) Blue edge area 9.427±0.796a 10.366±0.654a 11.057±1.586a 11.768±1.855a 10.827±1.302a
CK:对照组,正常浇水,即每天浇水量0.5 L; Tr1、Tr2、Tr3和Tr4为干旱处理组,分别停止浇水2 d、4 d、6 d和8 d。同行不同字母表示在0.05水平上差异显著。CK: control group,watered 0.5 L per day; Tr1,Tr2, Tr3 and Tr4 were drought-treated groups,stopped watering for 2 days,4 days,6 days and 8 days,respectively. Different lowercase letters in the same line mean significant differences at 0.05 level.


下载: 导出CSV
表4不同干旱胁迫处理下白术叶片反射光谱参数的影响s
Table4.Effect of drought stress on reflectance spectra parameter values of Atractylodes macrocephala leaves
参数Parameter CK Tr1 Tr2 Tr3 Tr4
反射率倒数(RR) Reciprocal reflectance 4.622±0.430a 4.841±0.297a 4.478±0.414ab 4.188±0.485ab 3.504±0.054b
反射光谱指数680 (SR680) Spectral reflectance index 680 7.649±1.378a 7.259±0.691a 7.428±0.402a 6.624±0.032a 4.326±0.353b
反射光谱指数705 (SR705) Spectral reflectance index 705 2.100±0.082b 2.399±0.179a 2.180±0.106ab 2.180±0.070ab 1.716±0.027c
反射光谱比值指数a (RARSa) Reflectance spectrum ratio index a 0.368±0.042ab 0.386±0.025ab 0.358±0.004b 0.383±0.022ab 0.444±0.043a
反射光谱比值指数b (RARSb) Reflectance spectrum ratio index b 0.451±0.052ab 0.452±0.010ab 0.434±0.010b 0.527±0.006a 0.521±0.038a
归一化指数(NDVI) Normalized difference vegetation index 0.765±0.040a 0.757±0.021a 0.762±0.011a 0.738±0.001a 0.623±0.025b
红度归一化指数(rNDVI) Red edge NDVI 0.355±0.017b 0.411±0.032a 0.371±0.021ab 0.371±0.014ab 0.263±0.007c
改良的红边比值指数(mND705) Modified red edge ratio index 705 0.454±0.010a 0.523±0.041a 0.466±0.024a 0.472±0.028a 0.380±0.024b
绿度归一化指数(gNDN) Green normalized difference 0.493±0.040a 0.489±0.030a 0.484±0.019a 0.432±0.021a 0.353±0.003b
色素归一化差值指数a (PSNDa) Pigment specific normalized difference a 0.774±0.039a 0.774±0.020a 0.778±0.010a 0.754±0.002a 0.641±0.026b
色素归一化差值指数b (PSNDb) Pigment specific normalized difference b 0.730±0.044a 0.740±0.025a 0.737±0.010a 0.676±0.010a 0.591±0.021b
结构不敏感色素指数(SIPI) Structure-insensitive pigment 0.747±0.032a 0.746±0.020a 0.753±0.009a 0.738±0.007a 0.615±0.024b
类胡萝卜素指数1 (CRI1) Carotenoid reflectance index 1 3.567±0.842ab 3.376±0.253ab 3.817±0.278a 2.557±0.212bc 2.011±0.221c
类胡萝卜素指数2 (CRI2) Carotenoid reflectance index 2 3.919±1.028a 3.223±0.193ab 3.971±0.407a 2.343±0.252b 2.114±0.231b
改良类胡萝卜指数(mCRI) Modified carotenoid reflectance index 2.201±0.498ab 2.131±0.228ab 2.430±0.116a 1.665±0.041bc 1.167±0.139c
光化学反射指数(PRI) Photochemical reflectance index 0.016±0.004b 0.033±0.003a 0.012±0.007b 0.018±0.003b 0.016±0.001b
红绿比指数(RGI) Red/green index 0.676±0.025ab 0.642±0.013b 0.663±0.016b 0.665±0.014b 0.723±0.026a
CK:对照组, 正常浇水, 即每天浇水量0.5 L; Tr1、Tr2、Tr3和Tr4为干旱处理组, 分别停止浇水2 d、4 d、6 d和8 d。同行不同字母表示在0.05水平上差异显著。CK: control group, watered 0.5 L per day; Tr1, Tr2, Tr3 and Tr4 were drought-treated groups, stopped watering for 2 days, 4 days, 6 days and 8 days, respectively. Different lowercase letters in the same line mean significant differences at 0.05 level.


下载: 导出CSV
表5不同干旱胁迫处理下白术叶片反射光谱参数与光合色素含量的相关性
Table5.Correlation between reflectance spectra parameters and photosynthetic pigments contents of Atractylodes macrocephala leaves under different drought stresses
参数
Parameter
叶绿素a
Chlorophyll a
叶绿素b
Chlorophyll b
叶绿素a+b
Chlorophyll a+b
类胡萝卜素
Carotinoid
反射率倒数(RR) Reciprocal reflectance 0.868 0.962** 0.900* 0.873
反射光谱指数680 (SR680) Spectral reflectance index 680 0.931* 0.960** 0.946* 0.807
反射光谱指数705 (SR705) Spectral reflectance index 705 0.866 0.893* 0.880* 0.872
反射光谱比值指数a (RARSa) Reflectance spectrum ratio index a -0.948* -0.900* -0.944* -0.757
反射光谱比值指数b (RARSb) Reflectance spectrum ratio index b -0.742 -0.837 -0.773 -0.827
归—化指数(NDVI) Normalized difference vegetation index 0.945* 0.955* 0.954* 0.809
红度归一化指数(rNDVI) Red edge NDVI 0.891* 0.908* 0.902* 0.867
改良的红边比值指数(mND705) Modified red edge ratio index 705 0.820 0.860 0.837 0.850
绿度归一化指数(gNDN) Green normalized difference 0.915* 0.980** 0.939* 0.861
色素归一化差值指数a (PSNDa) Pigment specific normalized difference a 0.956* 0.961** 0.965** 0.830
色素归一化差值指数b (PSNDb) Pigment specific normalized difference b 0.943* 0.995** 0.964** 0.905*
结构不敏感色素指数(SIPI) Structure-insensitive pigment 0.952* 0.939* 0.955* 0.801
类胡萝卜素指数1 (CRI1) Carotenoid reflectance index 1 0.892* 0.940* 0.911* 0.863
类胡萝卜素指数2 (CRI2) Carotenoid reflectance index 2 0.764 0.828 0.787 0.722
改良类胡萝卜指数(mCRI) Modified carotenoid reflectance index 0.936* 0.964** 0.950* 0.888*
光化学反射指数(PRI) Photochemical reflectance index 0.131 0.287 0.174 0.394
红绿比指数(RGI) Red/green index -0.894* -0.905* -0.904* -0.881*
红边位置(λred) Red edge position 0.045 0.151 0.074 0.328
红边幅值(Dλred) Red edge amplitude 0.604 0.685 0.630 0.492
红边面积(Sred) Red edge area 0.924* 0.796 0.896* 0.816
*表示相关性显著(P < 0.05); **表示相关性极显著(P < 0.01)。* and ** mean significant correlation at 0.05 and 0.01 levels, respectively.


下载: 导出CSV

参考文献(26)
[1]胡宏远, 王振平.干旱胁迫对赤霞珠葡萄叶片水分及叶绿素荧光参数的影响[J].干旱区资源与环境, 2017, 31(4):124-130 http://www.cqvip.com/QK/96735X/201704/671906140.html
HU H Y, WANG Z P. Effects of drought stress on leaf water content and chlorophyll fluorescence parameters of Cabernet Sauvignon[J]. Journal of Arid Land Resources and Environment, 2017, 31(4):124-130 http://www.cqvip.com/QK/96735X/201704/671906140.html
[2]郭晓飞, 黄春燕, 田春燕, 等.不同水分处理条件下棉花高光谱植被指数与光合参数的相关分析[J].新疆农业科学, 2017, 54(1):20-26 doi: 10.6048/j.issn.1001-4330.2017.01.003
GUO X F, HUANG C Y, TIAN C Y, et al. Correlation analysis between hyperspectral vegetation indices and photosynthetic parameters of cotton under different water treatments[J]. Xinjiang Agricultural Sciences, 2017, 54(1):20-26 doi: 10.6048/j.issn.1001-4330.2017.01.003
[3]MOORTHY I, MILLER J R, NOLAND T L. Estimating chlorophyll concentration in conifer needles with hyperspectral data:An assessment at the needle and canopy level[J]. Remote Sensing of Environment, 2008, 112(6):2824-2838 doi: 10.1016/j.rse.2008.01.013
[4]OSóRIO J, OSóRIO M L, ROMANO A. Reflectance indices as nondestructive indicators of the physiological status of Ceratonia siliqua seedlings under varying moisture and temperature regimes[J]. Functional Plant Biology, 2012, 39(7):588-597 doi: 10.1071/FP11284
[5]陈智芳, 宋妮, 王景雷, 等.基于高光谱遥感的冬小麦叶水势估算模型[J].中国农业科学, 2017, 50(5):871-880 doi: 10.3864/j.issn.0578-1752.2017.05.010
CHEN Z F, SONG N, WANG J L, et al. Leaf water potential estimating models of winter wheat based on hyperspectral remote sensing[J]. Scientia Agricultura Sinica, 2017, 50(5):871-880 doi: 10.3864/j.issn.0578-1752.2017.05.010
[6]张树斌, 张教林, 曹坤芳.季节性干旱对白皮乌口树(Tarenna depauperata Hutchins)水分状况、叶片光谱特征和荧光参数的影响[J].植物科学学报, 2016, 34(1):117-126 doi: 10.11913/PSJ.2095-0837.2016.10117
ZHANG S B, ZHANG J L, CAO K F. Effects of seasonal drought on water status, leaf spectral traits and fluorescence parameters in Tarenna depauperata Hutchins, a Chinese savanna evergreen species[J]. Plant Science Journal, 2016, 34(1):117-126 doi: 10.11913/PSJ.2095-0837.2016.10117
[7]李梦竹, 刘国顺, 贾方方.干旱胁迫下旺长期烤烟冠层叶绿素密度的高光谱估测[J].中国烟草科学, 2017, 38(1):23-28 http://www.cqvip.com/QK/94446X/201701/7000131560.html
LI M Z, LIU G S, JIA F F. Hyperspectral estimation of canopy chlorophyll density in flue-cured Tobacco under different drought stress at the vigorous growth stage[J]. Chinese Tobacco Science, 2017, 38(1):23-28 http://www.cqvip.com/QK/94446X/201701/7000131560.html
[8]林毅, 李倩, 王宏博, 等.干旱条件下春玉米高光谱特征及土壤含水量反演[J].生态学杂志, 2016, 35(5):1323-1329 http://www.cqvip.com/QK/90811X/201605/668836627.html
LIN Y, LI Q, WANG H B, et al. Hyperspectral characteristics of spring maize and the inversion of soil moisture under drought stress[J]. Chinese Journal of Ecology, 2016, 35(5):1323-1329 http://www.cqvip.com/QK/90811X/201605/668836627.html
[9]国家药典委员会.中华人民共和国药典(第一部)[M].北京:中国医药科技出版社, 2015:103-104
State Pharmacopeia Committee of China. Pharmacopoeia of the People's Republic of China (Volume Ⅰ)[M]. Beijing:China Medicine Science and Technology Press, 2015:103-104
[10]陈静, 孙云超, 冉小库, 等.白术利尿作用研究[J].中国现代中药, 2016, 18(5):563-567 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zyyjyxx201605005
CHEN J, SUN Y C, RAN X K, et al. Study on diuretic effect of Atractylodis macrocephalae Rhizoma[J]. Modern Chinese Medicine, 2016, 18(5):563-567 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zyyjyxx201605005
[11]林海雄, 王晓彤, 王菁, 等.参苓白术散对高脂血症小鼠血糖血脂及瘦素水平的影响[J].中华中医药学刊, 2017, 35(1):143-145 http://www.cqvip.com/QK/97216X/201701/671107299.html
LIN H X, WANG X T, WANG J, et al. Effects of Shenling Baizhu powder on blood lipid, glucose and leptin in hyperlipidemia mice[J]. Chinese Archives of Traditional Chinese Medicine, 2017, 35(1):143-145 http://www.cqvip.com/QK/97216X/201701/671107299.html
[12]唐琪晶, 陈素红, 潘丹丹, 等.白术精提物对代谢性高脂血症大鼠的药效及机制研究[J].中国中药杂志, 2015, 40(9):1803-1807 http://www.cqvip.com/QK/95973X/201509/664665713.html
TANG Q J, CHEN S H, PAN D D, et al. Preliminary study on efficacy and mechanism of Atractylodes Macrocephelae Rhizoma extracts in metabolic hyperlipidemia rats[J]. China Journal of Chinese Materia Medica, 2015, 40(9):1803-1807 http://www.cqvip.com/QK/95973X/201509/664665713.html
[13]周琼.参苓白术散加味治疗肿瘤化疗后白细胞减少临床观察[J].实用中医药杂志, 2017, 33(2):128-129 http://www.cqvip.com/QK/94249X/201702/671163719.html
ZHOU Q. Clinical observation on treatment of leukopenia after chemotherapy with Shenling baizhu powder[J]. Journal of Practical Traditional Chinese Medicine, 2017, 33(2):128-129 http://www.cqvip.com/QK/94249X/201702/671163719.html
[14]赵玉娇, 徐文慧, 沈小丽, 等.白术中内酯类成分的TLC鉴别与UPLC含量测定[J].中国中药杂志, 2017, 42(3):531-535 http://www.cqvip.com/QK/95973X/201703/671360221.html
ZHAO Y J, XU W H, SHEN X L, et al. Study on TLC identification and UPLC determination method of atractylenolide in Atractylodes macrocephala[J]. China Journal of Chinese Materia Medica, 2017, 42(3):531-535 http://www.cqvip.com/QK/95973X/201703/671360221.html
[15]徐洋洋, 蔡皓, 段煜, 等.白术芍药散治疗溃疡性结肠炎研究进展[J].中国中药杂志, 2017, 42(5):856-862 http://www.cqvip.com/QK/95973X/201705/671661445.html
XU Y Y, CAI H, DUAN Y, et al. Research progress of Baizhu Shaoyao powder in treating ulcerative colitis[J]. China Journal of Chinese Materia Medica, 2017, 42(5):856-862 http://www.cqvip.com/QK/95973X/201705/671661445.html
[16]张彩霞, 张亚杰, 江滨, 等.白术内酯Ⅱ促进大肠癌Lovo细胞凋亡及对PARP1和Caspase-3表达的影响[J].中国实验方剂学杂志, 2017, 23(5):157-161 http://www.cnki.com.cn/Article/CJFDTotal-LYYZ201801006.htm
ZHANG C X, ZHANG Y J, JIANG B, et al. Effect of Atractylenolide Ⅱ in promoting apoptosis of Lovo cells and its impact on expression of PARP1 and Caspase-3[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2017, 23(5):157-161 http://www.cnki.com.cn/Article/CJFDTotal-LYYZ201801006.htm
[17]郭晨旭, 刘静波, 赵艳, 等.白术抑制胃癌细胞SGC-7901增殖并促进其凋亡[J].中国组织化学与细胞化学杂志, 2017, 26(5):468-474 http://www.cqvip.com/QK/85162X/201705/673614178.html
GUO C X, LIU J B, ZHAO Y, et al. Atractylode inhibits proliferation and promotes apoptosis in gastric cancer cell line SGC-7901[J]. Chinese Journal of Histochemistry and Cytochemistry, 2017, 26(5):468-474 http://www.cqvip.com/QK/85162X/201705/673614178.html
[18]林大仪.土壤学实验指导[M].北京:中国林业出版社, 2004
LIN D Y. Soil Science Experiment Guidance[M]. Beijing:China Forestry Publishing House, 2004
[19]张志良, 瞿伟菁, 李小方.植物生理学实验指导[M].第4版.北京:高等教育出版社, 2009
ZHANG Z L, QU W Q, LI X F. Plant Physiology Experiment Guidance[M]. 4th ed. Beijing:Higher Education Press, 2009
[20]哀建国, 金松恒.干旱胁迫对浙江雪胆光合特性的影响[J].中草药, 2008, 39(7):1074-1078 http://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO200807045.htm
AI J G, JIN S H. Effects of drought stress on photosynthetic characteristics in Hemsleya zhejiangensis[J]. Chinese Traditional and Herbal Drugs, 2008, 39(7):1074-1078 http://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO200807045.htm
[21]李洁, 周春娥, 梁志英, 等.干旱胁迫对乌头部分生理指标的影响[J].中国水土保持科学, 2011, 9(3):93-100 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgstbckx201103017
LI J, ZHOU C E, LIANG Z Y, et al. Impacts of drought stress on physiological characteristics of Aconitums[J]. Science of Soil and Water Conservation, 2011, 9(3):93-100 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgstbckx201103017
[22]NAIDU R A, PERRY E M, PIERCE F J, et al. The potential of spectral reflectance technique for the detection of Grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars[J]. Computers and Electronics in Agriculture, 2009, 66(1):38-45 doi: 10.1016/j.compag.2008.11.007
[23]毛罕平, 高洪燕, 张晓东.生菜叶片含水率光谱特征模型研究[J].农业机械学报, 2011, 42(5):166-170 http://www.cqvip.com/QK/90304X/201105/37799548.html
MAO H P, GAO H Y, ZHANG X D. Spectral characteristics model of lettuce leaves' water content[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(5):166-170 http://www.cqvip.com/QK/90304X/201105/37799548.html
[24]李方舟, 冯美臣, 杨武德, 等.水旱地冬小麦叶绿素含量高光谱监测[J].生态学杂志, 2013, 32(12):3213-3218 http://www.oalib.com/paper/4975414
LI F Z, FENG M C, YANG W D, et al. Monitoring of winter wheat chlorophyll content in irrigated and dry lands of Shanxi Province of China based on hyperspectral remote sensing[J]. Chinese Journal of Ecology, 2013, 32(12):3213-3218 http://www.oalib.com/paper/4975414
[25]苏毅, 王克如, 李少昆, 等.棉花植株水分含量的高光谱监测模型研究[J].棉花学报, 2010, 22(6):554-560 https://www.researchgate.net/profile/Xiuliang_Jin/publication/272797421_Monitoring_Models_of_the_Plant_Water_Content_Based_on_Cotton_Canopy_Hyperspectral_Reflectance/links/580745d208ae03256b777b67.pdf?origin=publication_list
SU Y, WANG K R, LI S K, et al. Monitoring models of the plant water content based on cotton canopy hyperspectral reflectance[J]. Cotton Science, 2010, 22(6):554-560 https://www.researchgate.net/profile/Xiuliang_Jin/publication/272797421_Monitoring_Models_of_the_Plant_Water_Content_Based_on_Cotton_Canopy_Hyperspectral_Reflectance/links/580745d208ae03256b777b67.pdf?origin=publication_list
[26]贺可勋, 赵书河, 来建斌, 等.水分胁迫对小麦光谱红边参数和产量变化的影响[J].光谱学与光谱分析, 2013, 33(8):2143-2147 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201308028
HE K X, ZHAO S H, LAI J B, et al. Effects of water stress on red-edge parameters and yield in wheat cropping[J]. Spectroscopy and Spectral Analysis, 2013, 33(8):2143-2147 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201308028

相关话题/光谱 中药 科学 图片 细胞