(哈尔滨工业大学社会计算与信息检索研究中心 哈尔滨 150001) (ymdu@ir.hit.edu.cn)
出版日期:
2018-01-01基金资助:
国家“九七三”重点基础研究发展计划基金项目(2014CB340503);国家自然科学基金项目(61472107,61502120)Topic Augmented Convolutional Neural Network for User Interest Recognition
Du Yumeng, Zhang Weinan, Liu Ting(Research Center for Social Computing and Information Retrieval, Harbin Institute of Technology, Harbin 150001)
Online:
2018-01-01摘要/Abstract
摘要: 提出了一种基于主题增强卷积神经网络的用户兴趣识别的方法,通过构造一个双通道CNN模型,融合连续语义信息和离散主题信息,获取用户微博类别分布,在此基础上,通过极大似然估计识别用户的兴趣.实验结果表明,相较于基于Labeled LDA主题模型的方法和传统卷积神经网络的方法,提出的主题增强卷积神经网络缓解了噪声词对用户兴趣词的影响,并且通过融入主题信息提高了对于包含噪声词较多的微博的分类效果,在微博分类及用户兴趣识别上的效果获得了显著的提升.
参考文献
相关文章 15
[1] | 郑值, 徐童, 秦川, 廖祥文, 郑毅, 刘同柱, 童贵显. 基于多源情境协同感知的药品推荐[J]. 计算机研究与发展, 2020, 57(8): 1741-1754. |
[2] | 于亚新, 刘梦, 张宏宇. Twitter社交网络用户行为理解及个性化服务推荐算法研究[J]. 计算机研究与发展, 2020, 57(7): 1369-1380. |
[3] | 李若南, 李金宝. 一种无源被动室内区域定位方法的研究[J]. 计算机研究与发展, 2020, 57(7): 1381-1392. |
[4] | 邢新颖, 冀俊忠, 姚垚. 基于自适应多任务卷积神经网络的脑网络分类方法[J]. 计算机研究与发展, 2020, 57(7): 1449-1459. |
[5] | 于海涛, 杨小汕, 徐常胜. 基于多模态输入的对抗式视频生成方法[J]. 计算机研究与发展, 2020, 57(7): 1522-1530. |
[6] | 王庆林, 李东升, 梅松竹, 赖志权, 窦勇. 面向飞腾多核处理器的Winograd快速卷积算法优化[J]. 计算机研究与发展, 2020, 57(6): 1140-1151. |
[7] | 刘烨, 黄金筱, 马于涛. 基于混合神经网络和注意力机制的软件缺陷自动分派方法[J]. 计算机研究与发展, 2020, 57(3): 461-473. |
[8] | 杜鹏, 丁世飞. 基于混合词向量深度学习模型的DGA域名检测方法[J]. 计算机研究与发展, 2020, 57(2): 433-446. |
[9] | 程艳, 尧磊波, 张光河, 唐天伟, 项国雄, 陈豪迈, 冯悦, 蔡壮. 基于注意力机制的多通道CNN和BiGRU的文本情感倾向性分析[J]. 计算机研究与发展, 2020, 57(12): 2583-2595. |
[10] | 贺周雨, 冯旭鹏, 刘利军, 黄青松. 面向大规模图像检索的深度强相关散列学习方法[J]. 计算机研究与发展, 2020, 57(11): 2375-2388. |
[11] | 左笑晨,窦志成,黄真,卢淑祺,文继荣. 微博热门话题关联商品品类挖掘[J]. 计算机研究与发展, 2019, 56(9): 1927-1938. |
[12] | 石文浩,孟军,张朋,刘婵娟. 融合CNN和Bi-LSTM的miRNA-lncRNA互作关系预测模型[J]. 计算机研究与发展, 2019, 56(8): 1652-1660. |
[13] | 徐少平,刘婷云,李崇禧,唐祎玲,胡凌燕. 基于CNN噪声分离模型的噪声水平估计算法[J]. 计算机研究与发展, 2019, 56(5): 1060-1070. |
[14] | 武铮,安虹,金旭,迟孟贤,吕国锋,文可,周鑫. 基于Intel平台的Winograd快速卷积算法研究与优化[J]. 计算机研究与发展, 2019, 56(4): 825-835. |
[15] | 郭雨潇,陈雷霆,董悦. 单帧图像下的环境光遮蔽估计[J]. 计算机研究与发展, 2019, 56(2): 385-393. |
PDF全文下载地址:
https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=3614