A New Progress of Green Revolution: Epigenetic Modification Dual-regulated by Gibberellin and Nitrogen Supply Contributes to Breeding of High Yield and Nitrogen Use Efficiency Rice
Mei-ling Han1,2, Ru-jiao Tan1,3, Dai-yin Chao,1,*1National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3Jiangsu Normal University, Xuzhou 221000, China
Abstract The Green Revolution represented by the breeding of semi-dwarf crops greatly promoted agriculture yield, but it also unfortunately led to the problem of low nitrogen use efficiency (NUE). The achievement of Green Revolution was mainly based on modification of gibberellin (GA) metabolic or signaling pathways in crops. A previous study has found that the central regulator of GA signaling pathway DELLA protein negatively regulates NUE through suppressing GRF4, an essential NUE regulator, which provided a resolution for improving NUE of semi-dwarf rice. A recent study further revealed a novel mechanism underlying the crosstalk between GA signaling and nitrogen response. The study revealed that NGR5 is a key gene controlling tiller number changes under different nitrogen conditions, which is inducible by nitrogen. Further investigation established that the NGR5 suppresses branching inhibitory genes, such as D14 and OsSPL14, through nitrogen-dependent recruitment of polycomb repressive complex 2 that promotes histone H3 lysine 27 tri-methylation in the regions habouring the branching suppressors. In addition to be responsive to nitrogen, NGR5 is also negatively regulated by GA and its receptor GID, and overexpression of NGR5 in the semi-dwarf background is thus able to significantly improve rice yields under low nitrogen conditions. This study not only uncovered a new mechanism of GA signaling, but also enlightens the new generation of Green Revolution by breeding high yield crops with enhanced NUE. Keywords:rice;tiller number;nitrogen use efficiency;histone modification
PDF (1225KB)摘要页面多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 引用本文 韩美玲, 谭茹姣, 晁代印. “绿色革命”新进展: 赤霉素与氮营养双重调控的表观修饰助力水稻高产高效育种. 植物学报, 2020, 55(1): 5-8 doi:10.11983/CBB20002 Han Mei-ling, Tan Ru-jiao, Chao Dai-yin. A New Progress of Green Revolution: Epigenetic Modification Dual-regulated by Gibberellin and Nitrogen Supply Contributes to Breeding of High Yield and Nitrogen Use Efficiency Rice. Chinese Bulletin of Botany, 2020, 55(1): 5-8 doi:10.11983/CBB20002
在“绿色革命”中, 抑制GA信号通路导致DELLA蛋白积累, 产生半矮秆表型, 但同时也抑制GRF4的活性进而降低植物氮利用效率。GRF4以及NGR5为下一代高产高效的育种目标提供了优秀的靶点。增强它们的活性可以兼顾高产和营养高效, 突破以肥增产的瓶颈。红色及大字号代表增加, 而绿色和小字号代表降低。 Figure 1The targets and molecular mechanisms of Green Revolution and next generation breeding
In Green Revolution, suppression of GA signaling leads to accumulation of DELLA protein that results in semi-dwarf phenotype, but it also inhibits activity of GRF4 and subsequently decreases nitrogen use efficiency of crops. GRF4 and NGR5 provide excellent targets for next generation breeding which aims to crops with high nitrogen use efficiency and high yield. Improvement of these two genes helps to achieve yield with low nitrogen input and break through the bottle neck of fertilizer dependent yield increasing. The font size and color of the characters represent increase (red and larger font) or decrease (green and smaller font).
CrawfordNM, FordeBG (2002). Molecular and developmental biology of inorganic nitrogen nutrition 1, e0011. [本文引用: 1]
GoodingMJ, AddisuM, UppalRK, SnapeJW, JonesHE (2012). Effect of wheat dwarfing genes on nitrogen-use efficiency 150, 3-22. [本文引用: 1]
GuoJH, LiuXJ, ZhangY, ShenJL, HanWX, ZhangWF, ChristieP, GouldingKWT, VitousekPM, ZhangFS (2010). Significant acidification in major Chinese crop- lands 327, 1008-1010. [本文引用: 1]
HarberdNP, BelfieldE, YasumuraY (2009). The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: how an "inhibitor of an inhibitor" enables flexible response to fluctuating environments 21, 1328-1339. [本文引用: 1]
KhushGS (1999). Green Revolution: preparing for the 21st century 42, 646-655. [本文引用: 1]
KongWD, ZhuYG, FuBJ, HanXZ, ZhengL, HeJZ (2008). Effect of long-term application of chemical fertilizers on microbial biomass and functional diversity of a black soil 18, 801-808. [本文引用: 1]
Effect of wheat dwarfing genes on nitrogen-use efficiency 1 2012
... 半矮秆水稻品种株高较低、抗倒伏性强, 但同时也存在一个显著缺陷, 即氮的吸收和利用效率显著降低(Gooding et al., 2012).该缺陷导致其最大产量潜力必须依靠施用大量氮肥来实现, 使农民不得不大量增加化肥施用量, 增加农业生产成本的同时还加剧了氮肥流失, 导致土壤酸化和水系富营养化等一系列环境问题(Kong et al., 2008; Guo et al., 2010).理解株高与氮素利用效率正相关的分子机制, 进而使两者解偶联, 无疑是进一步解决产量与氮素利用效率矛盾的关键.2018年, 中国科学院遗传与发育生物学研究所傅向东课题组在攻克这一问题上取得突破性进展, 他们探明水稻株高与氮素正相关的原因在于DELLA蛋白在控制株高的同时也控制氮素的吸收和同化(Li et al., 2018).该研究进一步表明,水稻生长调节因子GRF4 (GROWTH-REGULATING FACTOR 4)可与GIF1 (GRF-INTERACTING FAC- TOR 1)结合, 并激活下游氮素吸收和同化相关基因, 而DELLA蛋白则抑制GRF4与GIF1的结合.因此当DELLA蛋白积累时, GRF4与GIF1的互作被抑制, 氮素的吸收和同化也因此降低.此外, GRF4还促进碳同化相关基因的表达, 通过调节碳氮平衡提高水稻氮素利用效率和产量(Li et al., 2018). ...
Significant acidification in major Chinese crop- lands 1 2010
... 半矮秆水稻品种株高较低、抗倒伏性强, 但同时也存在一个显著缺陷, 即氮的吸收和利用效率显著降低(Gooding et al., 2012).该缺陷导致其最大产量潜力必须依靠施用大量氮肥来实现, 使农民不得不大量增加化肥施用量, 增加农业生产成本的同时还加剧了氮肥流失, 导致土壤酸化和水系富营养化等一系列环境问题(Kong et al., 2008; Guo et al., 2010).理解株高与氮素利用效率正相关的分子机制, 进而使两者解偶联, 无疑是进一步解决产量与氮素利用效率矛盾的关键.2018年, 中国科学院遗传与发育生物学研究所傅向东课题组在攻克这一问题上取得突破性进展, 他们探明水稻株高与氮素正相关的原因在于DELLA蛋白在控制株高的同时也控制氮素的吸收和同化(Li et al., 2018).该研究进一步表明,水稻生长调节因子GRF4 (GROWTH-REGULATING FACTOR 4)可与GIF1 (GRF-INTERACTING FAC- TOR 1)结合, 并激活下游氮素吸收和同化相关基因, 而DELLA蛋白则抑制GRF4与GIF1的结合.因此当DELLA蛋白积累时, GRF4与GIF1的互作被抑制, 氮素的吸收和同化也因此降低.此外, GRF4还促进碳同化相关基因的表达, 通过调节碳氮平衡提高水稻氮素利用效率和产量(Li et al., 2018). ...
The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: how an "inhibitor of an inhibitor" enables flexible response to fluctuating environments 1 2009
... “绿色革命”中的半矮秆育种主要通过调控植物激素赤霉素(gibberellin, GA)的代谢和信号转导来实现.活性GA与其受体蛋白GID1 (GIBBERELLIN INSENSITIVE DWARF1)结合后促进后者与生长抑制转录因子DELLA蛋白互作, 使DELLA蛋白能被SCF (Skp, Cullin, F-box)泛素连接酶复合体泛素化, 并进入26S蛋白酶体中降解(Sasaki et al., 2003; Murase et al., 2008; Shimada et al., 2008; Harberd et al., 2009).水稻(Oryza sativa)矮秆育种主要利用赤霉素合成酶基因SD1的突变, 该基因突变导致赤霉素不能正常合成, 从而抑制水稻生长, 产生半矮秆表型(Sasaki et al., 2002; Spielmeyer et al., 2002).而小麦(Triticum aestivum)中利用的半矮秆基因Rht1则是DELLA蛋白编码基因的一个显性突变座位, 该显性突变使其编码的DELLA蛋白难以被降解, 从而使DELLA蛋白在细胞中积累, 进而产生半矮秆性状(Peng et al., 1999; Zhang et al., 2014). ...
Green Revolution: preparing for the 21st century 1 1999