赵佳玉1, 肖薇,,1,*, 张弥1, 王晶苑2, 温学发2,3, 李旭辉41南京信息工程大学大气环境中心, 南京 210044 2中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室, 北京 100101 3中国科学院大学资源与环境学院, 北京 100190 4School of Forestry and Environmental Studies, Yale University, New Haven 06511, USA
Applications and prospect of the flux-gradient method in measuring the greenhouse gases and isotope fluxes
Jia-Yu ZHAO1, Wei XIAO,,1,*, Mi ZHANG1, Jing-Yuan WANG2, Xue-Fa WEN2,3, Xu-Hui LEE41Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044, China 2Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China 3College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China 4School of Forestry and Environmental Studies, Yale University, New Haven 06511, USA
National Key R&D Program of China(2017YFC0503904) National Natural Science Foundation of China(41975143) National Natural Science Foundation of China(41575147) National Natural Science Foundation of China(41475141) National Natural Science Foundation of China(41830860)
Abstract Flux-gradient method and eddy covariance technique are classical micrometeorological methods, which observe fluxes of mass and energy. Flux-gradient method can effectively measure the greenhouse gas and isotope fluxes between ecosystem (or soil) and atmosphere although gas analyzer with high measuring frequency was not available or the fetch was small. Flux-gradient method can be viewed as an ancillary measurement and useful complement of eddy covariance technique. This paper reviewed from the following aspects: the fundamental theory, concepts and assumptions of flux-gradient method; the methods measuring the gradient of greenhouse gases and the theory on turbulent diffusion coefficients; the applications of this method in measuring greenhouse gas fluxes, especially on isotope fluxes, over various ecosystems including forest, cropland, grassland, wetland and water bodies. Finally, the considerations and suggestions were provided regarding the measurement on concentration gradients of greenhouse gases and isotopes, and the calculation of turbulent diffusion coefficients. Keywords:flux-gradient method;greenhouse gas flux;isotope flux
PDF (1156KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 引用本文 赵佳玉, 肖薇, 张弥, 王晶苑, 温学发, 李旭辉. 通量梯度法在温室气体及同位素通量观测研究中的应用与展望. 植物生态学报, 2020, 44(4): 305-317. DOI: 10.17521/cjpe.2019.0227 ZHAO Jia-Yu, XIAO Wei, ZHANG Mi, WANG Jing-Yuan, WEN Xue-Fa, LEE Xu-Hui. Applications and prospect of the flux-gradient method in measuring the greenhouse gases and isotope fluxes. Chinese Journal of Plant Ecology, 2020, 44(4): 305-317. DOI: 10.17521/cjpe.2019.0227
Fig. 1Schematic diagram of the atmospheric layers within and above the forest canopy, and the vertical profiles for typical greenhouse gases concentration, wind speed and the turbulence diffusion coefficient under neutral stability condition during the daytime. d, zero-plane displacement; h, canopy height; K, turbulent diffusion coefficient; $~{{\bar{S}}_{\text{c}}}$, CO2 concentration; $\bar{u}$, wind speed; ${{u}_{*}}$, antitriptic wind speed.
AngotH, MagandO, HelmigD, RicaudP, QuennehenB, GalléeH, del GuastaM, SprovieriF, PirroneN, SavarinoJ, DommergueA (2016). New insights into the atmospheric mercury cycling in central Antarctica and implications on a continental scale Atmospheric Chemistry and Physics, 16, 8249-8264. DOI:10.5194/acp-16-8249-2016URL [本文引用: 2]
AubinetM, BerbigierP, BernhoferC, CescattiA, FeigenwinterC, GranierA, GrünwaldT, HavrankovaK, HeineschB, LongdozB, MarcollaB, MontagnaniL, SedlakP (2005). Comparing CO2 storage and advection conditions at night at different Carboeuroflux sites Boundary-Layer Meteorology, 116, 63-93. DOI:10.1007/s10546-004-7091-8URL [本文引用: 2] Anemometer and CO2 concentration data from temporary campaigns performed at six CARBOEUROFLUX forest sites were used to estimate the importance of non-turbulent fluxes in nighttime conditions. While storage was observed to be significant only during periods of both low turbulence and low advection, the advective fluxes strongly influence the nocturnal CO2 balance, with the exception of almost flat and highly homogeneous sites. On the basis of the main factors determining the onset of advective fluxes, the ‘advection velocity’, which takes net radiation and local topography into account, was introduced as a criterion to characterise the conditions of storage enrichment/depletion. Comparative analyses of the six sites showed several common features of the advective fluxes but also some substantial differences. In particular, all sites where advection occurs show the onset of a boundary layer characterised by a downslope flow, negative vertical velocities and negative vertical CO2 concentration gradients during nighttime. As a consequence, vertical advection was observed to be positive at all sites, which corresponds to a removal of CO2 from the ecosystem. The main differences between sites are the distance from the ridge, which influences the boundary-layer depth, and the sign of the mean horizontal CO2 concentration gradients, which is probably determined by the source/sink distribution. As a consequence, both positive and negative horizontal advective fluxes (corresponding respectively to CO2 removal from the ecosystem and to CO2 supply to the ecosystem) were observed. Conclusive results on the importance of non-turbulent components in the mass balance require, however, further experimental investigations at sites with different topographies, slopes, different land covers, which would allow a more comprehensive analysis of the processes underlying the occurrence of advective fluxes. The quantification of these processes would help to better quantify nocturnal CO2 exchange rates.
BaldocchiDD (2014). Measuring fluxes of trace gases and energy between ecosystems and the atmosphere—The state and future of the eddy covariance method Global Change Biology, 20, 3600-3609. URLPMID:24890749 [本文引用: 2]
BaldocchiDD, FalgeE, GuLH, OlsonR, HollingerD, RunningS, AnthoniP, BernhoferC, DavisK, EvansR, FuentesJ, GoldsteinA, KatulG, LawB, LeeX, MalhiY, MeyersT, MungerW, OechelW, PawKT, PilegaardK, SchmidHP, ValentiniR, VermaS, VesalaT, WilsonK, WofsyS (2001). FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities Bulletin of the American Meteorological Society, 82, 2415-2434. [本文引用: 1]
BaldocchiDD, HincksBB, MeyersTP (1988). Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods Ecology, 69, 1331-1340. [本文引用: 6]
BaldocchiDD, MeyersTP (1991). Trace gas-exchange above the floor of a deciduous forest 1. Evaporation and CO2 efflux Journal of Geophysical Research, 96, 7271-7285. [本文引用: 1]
BowlingDR, BurnsSP, ConwayTJ, MonsonRK, WhiteJWC (2005). Extensive observations of CO2 carbon isotope content in and above a high-elevation subalpine forest Global Biogeochemical Cycles, 19, GB3023. DOI: 10.1029/2004GB002394. [本文引用: 1]
BowlingDR, MillerJB, RhodesME, BurnsSP, MonsonRK, BaerD (2009). Soil, plant, and transport influences on methane in a subalpine forest under high ultraviolet irradiance Biogeosciences, 6, 1311-1324. [本文引用: 2]
BusingerJA (1986). Evaluation of the accuracy with which dry deposition can be measured with current micrometeorological techniques Journal of Climate and Applied Meteorology, 25, 1100-1124. [本文引用: 2]
ChenH, WinderlichJ, GerbigC, HoeferA, RellaCW, CrossonER, van PeltAD, SteinbachJ, KolleO, BeckV, DaubeBC, GottliebEW, ChowVY, SantoniGW, WofsySC (2010). High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique Atmospheric Measurement Techniques, 3, 375-386. [本文引用: 1]
CoplenTB (2011). Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results Rapid Communications in Mass Spectrometry, 25, 2538-2560. URLPMID:21910288 [本文引用: 1]
DawsonTE, BrooksPD (2001). Fundamentals of stable isotope chemistry and measurement //Unkovich MJ, Pate JS, McNeill AM, Gibbs DJ. Application of Stable Isotope Techniques to Study Biological Processes and Functioning of Ecosystems. Kluwer Academic, Dordrecht, Netherlands.1-18. [本文引用: 1]
DenmeadOT, BradleyEF (1985). Flux-gradient relationships in a forest canopy//Hutchison BA, Hicks BB. The Forest- Atmosphere Interaction. Springer, Dordrecht, Netherlands.421-442. [本文引用: 1]
DettoM, VerfaillieJ, AndersonF, XuLK, BaldocchiD (2011). Comparing laser-based open- and closed-path gas analyzers to measure methane fluxes using the eddy covariance method Agricultural and Forest Meteorology, 151, 1312-1324. [本文引用: 1]
DolmanAJ, WallaceJS (1991). Lagrangian and K-theory approaches in modelling evaporation from sparse canopies Quarterly Journal of the Royal Meteorological Society, 117, 1325-1340. [本文引用: 1]
DrewittG, Wagner-RiddleC, WarlandJ (2009). Isotopic CO2 measurements of soil respiration over conventional and no-till plots in fall and spring Agricultural and Forest Meteorology, 149, 614-622. [本文引用: 3]
DyerAJ, HicksBB (1970). Flux-gradient relationships in the constant flux layer Quarterly Journal of the Royal Meteorological Society, 96, 715-721. [本文引用: 1]
FinniganJ (2006). The storage term in eddy flux calculations Agricultural and Forest Meteorology, 136, 108-113. [本文引用: 1]
FritscheJ, ObristD, ZeemanMJ, ConenF, EugsterW, AlewellC (2008). Elemental mercury fluxes over a sub-alpine grassland determined with two micrometeorological methods Atmospheric Environment, 42, 2922-2933. [本文引用: 4]
GlennAJ, AmiroBD, TenutaM, Wagner-RiddleC, DrewittG, WarlandJ (2011). Contribution of crop residue carbon to soil respiration at a northern Prairie site using stable isotope flux measurements Agricultural and Forest Meteorology, 151, 1045-1054. [本文引用: 3]
GriffisTJ (2013). Tracing the flow of carbon dioxide and water vapor between the biosphere and atmosphere: a review of optical isotope techniques and their application Agricultural and Forest Meteorology, 174-175, 85-109. [本文引用: 3]
GriffisTJ, BakerJM, SargentSD, TannerBD, ZhangJ (2004). Measuring field-scale isotopic CO2 fluxes with tunable diode laser absorption spectroscopy and micrometeorological techniques Agricultural and Forest Meteorology, 124, 15-29. [本文引用: 4]
GriffisTJ, LeeX, BakerJM, SargentSD, KingJY (2005). Feasibility of quantifying ecosystem-atmosphere C18O16O exchange using laser spectroscopy and the flux-gradient method Agricultural and Forest Meteorology, 135, 44-60. [本文引用: 1]
GriffithDWT, LeuningR, DenmeadOT, JamieIM (2002). Air-land exchanges of CO2, CH4 and N2O measured by FTIR spectrometry and micrometeorological techniques Atmospheric Environment, 36, 1833-1842. DOI:10.1016/S1352-2310(02)00139-5URL [本文引用: 1]
KaimalJC, FinniganJJ (1994). Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, Oxford, UK. [本文引用: 1]
KarlssonK (2017). Greenhouse Gas Flux at a Temperate Peatland: a Comparison of the Eddy Covariance Method and the Flux-Gradient Method Master degree dissertation, Lund University, Lund, Sweden. [本文引用: 4]
LaubachJ, BarthelM, FraserA, HuntJE, GriffithDWT (2016). Combining two complementary micrometeorological methods to measure CH4 and N2O fluxes over pasture Biogeosciences, 13, 1309-1327. [本文引用: 7]
LeeX (2018). Fundamentals of Boundary-Layer Meteorology. Springer International Publishing, Cham. [本文引用: 7]
LeeX, KimK, SmithR (2007). Temporal variations of the 18O/16O signal of the whole-canopy transpiration in a temperate forest Global Biogeochemical Cycles, 21, GB3103. DOI: 10.1029/2006gb002871. [本文引用: 2]
MeredithLK, CommaneR, MungerJW, DunnA, TangJ, WofsySC, PrinnRG (2014). Ecosystem fluxes of hydrogen: a comparison of flux-gradient methods Atmospheric Measurement Techniques, 7, 2787-2805. DOI:10.5194/amt-7-2787-2014URL [本文引用: 6]
MeyersTP, HallME, LindbergSE, KimKI (1996). Use of the modified Bowen-ratio technique to measure fluxes of trace gases Atmospheric Environment, 30, 3321-3329. DOI:10.1016/1352-2310(96)00082-9URL [本文引用: 5]
MiyataA, LeuningR, DenmeadOT, KimJ, HarazonoY (2000). Carbon dioxide and methane fluxes from an intermittently flooded paddy field Agricultural and Forest Meteorology, 102, 287-303. [本文引用: 3]
MonteithJL, SzeiczG (1960). The carbon-dioxide flux over a field of sugar beet Quarterly Journal of the Royal Meteorological Society, 86, 205-214. [本文引用: 1]
O’DellD, EashNS, HicksBB, ZahnJA, OettingJN, SauerTJ, LambertDM, LoganJ, GoddardJJ (2019). Nutrient source and tillage effects on maize: I. Micrometeorological methods for measuring carbon dioxide emissions Agrosystems, Geosciences & Environment, 2, 1-10. [本文引用: 2]
PatteyE, StrachanIB, DesjardinsRL, EdwardsGC, DowD, MacPhersonJI (2006). Application of a tunable diode laser to the measurement of CH4 and N2O fluxes from field to landscape scale using several micrometeorological techniques Agricultural and Forest Meteorology, 136, 222-236. [本文引用: 2]
PhillipsFA, LeuningR, BaigentR, KellyKB, DenmeadOT (2007). Nitrous oxide flux measurements from an intensively managed irrigated pasture using micrometeorological techniques Agricultural and Forest Meteorology, 143, 92-105. [本文引用: 3]
PruegerJH, KustasWP (2005). Aerodynamic methods for estimating turbulent fluxes //Hatfield JL, Baker JL. Micrometeorology in Agricultural Systems, Agronomy Monograph No. 47. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, USA. 407-436. [本文引用: 1]
RouletNT, CrillPM, ComerNT, DoveA, BoubonniereRA (1997). CO2 and CH4 flux between a boreal beaver pond and the atmosphere Journal of Geophysical Research, 102, 29313-29319. DOI:10.1029/97JD01237URL [本文引用: 1]
SantosE, Wagner-RiddleC, LeeX, WarlandJ, BrownS, StaeblerR, BartlettP, KimK (2012). Use of the isotope flux ratio approach to investigate the C18O16O and 13CO2 exchange near the floor of a temperate deciduous forest Biogeosciences, 9, 2385-2399. [本文引用: 4]
SimpsonIJ, EdwardsGC, ThurtellGW, den HartogG, NeumannHH, StaeblerRM (1997). Micrometeorological measurements of methane and nitrous oxide exchange above a boreal aspen forest Journal of Geophysical Research, 102, 29331-29341. [本文引用: 3]
SimpsonIJ, ThurtellGW, KiddGE, LinM, Demetriades-ShahTH, FlitcroftID, KanemasuET, NieD, BronsonKF, NeueHU (1995). Tunable diode laser measurements of methane fluxes from an irrigated rice paddy field in the Philippines Journal of Geophysical Research, 100, 7283-7290. [本文引用: 3]
SimpsonIJ, ThurtellGW, NeumannHH, den HartogG, EdwardsGC (1998). The validity of similarity theory in the roughness sublayer above forests Boundary-Layer Meteorology, 87, 69-99. [本文引用: 5]
SmithKA, ClaytonH, ArabJRM, ChristensenS, AmbusP, FowlerD, HargreavesKJ, SkibaU, HarrisGW, WienholdFG, KlemedtssonL, GalleB (1994). Micrometeorological and chamber methods for measurement of nitrous oxide fluxes between soils and the atmosphere: overview and conclusions Journal of Geophysical Research, 99, 16541. [本文引用: 1]
TagessonT, M?lderM, MastepanovM, SigsgaardC, TamstorfMP, LundM, FalkJM, LindrothA, ChristensenTR, Str?mL (2012). Land-atmosphere exchange of methane from soil thawing to soil freezing in a high-Arctic wet tundra ecosystem Global Change Biology, 18, 1928-1940. [本文引用: 2]
Wagner-RiddleC, ThurtellGW, KiddGK, BeauchampEG, SweetmanR (1997). Estimates of nitrous oxide emissions from agricultural fields over 28 months Canadian Journal of Soil Science, 77, 135-144. [本文引用: 1]
WelpLR, KeelingRF, WeissRF, PaplawskyW, HeckmanS (2013). Design and performance of a Nafion dryer for continuous operation at CO2 and CH4 air monitoring sites Atmospheric Measurement Techniques, 6, 1217-1226. [本文引用: 1]
WolfA, SaliendraN, AkshalovK, JohnsonDA, LacaE (2008). Effects of different eddy covariance correction schemes on energy balance closure and comparisons with the modified Bowen ratio system Agricultural and Forest Meteorology, 148, 942-952. [本文引用: 1]
WuA, BlackA, VerseghyDL, BaileyWG (2001). Comparison of two-layer and single-layer canopy models with Lagrangian and K-theory approaches in modelling evaporation from forests International Journal of Climatology, 21, 1821-1839. [本文引用: 1]
WuZY, ZhangL, WangXM, MungerJW (2015). A modified micrometeorological gradient method for estimating O3 dry depositions over a forest canopy Atmospheric Chemistry and Physics, 15, 7487-7496. [本文引用: 1]
XiaoW, LeeX, HuYB, LiuSD, WangW, WenXF, WernerM, XieCY (2017). An experimental investigation of kinetic fractionation of open-water evaporation over a large lake Journal of Geophysical Research, 122, 11651-11663. [本文引用: 1]
XiaoW, LiuSD, LiHC, XiaoQT, WangW, HuZH, HuC, GaoYQ, ShenJ, ZhaoXY, ZhangM, LeeX (2014). A flux-gradient system for simultaneous measurement of the CH4, CO2, and H2O fluxes at a lake-air interface Environmental Science & Technology, 48, 14490-14498. URLPMID:25377990 [本文引用: 11]
ZhaoJY, ZhangM, XiaoW, WangW, ZhangZ, YuZ, XiaoQT, CaoZD, XuJZ, ZhangXF, LiuSD, LeeX (2019). An evaluation of the flux-gradient and the eddy covariance method to measure CH4, CO2, and H2O fluxes from small ponds Agricultural and Forest Meteorology, 275, 255-264. [本文引用: 10]
New insights into the atmospheric mercury cycling in central Antarctica and implications on a continental scale 2 2016
... 准确量化生物圈与大气圈之间的温室气体交换对于生态系统过程、物质循环机制和气候变化响应等方面的研究具有重要意义.同时相应温室气体稳定同位素信号则能为此提供独特的示踪信息, 是一个重要的研究手段.微气象学方法是观测温室气体及其稳定同位素通量的重要方法.该方法主要的优势是可以进行原位无干扰的连续观测, 而且在单点上观测的通量信号是通量贡献区内不同位置地面通量的加权平均(Baldocchi et al., 1988), 可以代表一定区域的通量交换信息.目前, 常用的微气象学方法主要包括涡度相关法(EC)和通量梯度法(FG).涡度相关法被认为是观测生态系统与大气之间能量和物质交换的直接方法, 其计算原理不基于任何假设且无需经验参数, 并且已有较完善的理论和实践验证, 已经被广泛应用于不同生态系统的物质及能量观测(Baldocchi et al., 2001; Baldocchi, 2014).根据涡度相关法的基本原理, 需要对观测的目标气体进行高频采样(≥10 Hz), 当前的科技可以实现对CO2、CH4、水汽浓度较为稳定的高频观测, 而且有比较完备的涡度相关系统可供使用, 但是对其他一些痕量气体(如N2O)和稳定同位素的观测要么仪器昂贵, 购置和维护成本高, 要么没有高频观测仪器.同时, 涡度相关系统中的三维超声风速仪的路径较长, 对架设高度有一定要求, 不适合对风浪区(即观测点与上风向下垫面边界之间的距离)很小的下垫面进行观测.相对而言, 通量梯度法对目标气体的采样频率要求没有那么高, 能够在无高频仪器可供使用的情况下实现对目标气体的浓度观测, 同时观测高度可以离地面更近, 对于风浪区较小的下垫面更加适用.对于同位素观测而言, 通量梯度法不受限于Keeling曲线方法的简单假设, 是更可靠的观测方法(Griffis, 2013).因此该方法被广泛用于森林、草地、农田、沼泽、泥炭地和小型水体的温室气体和同位素通量(Simpson et al., 1995, 1998; Miyata et al., 2000; Griffis et al., 2004; Pattey et al., 2006; Santos et al., 2012; Xiao et al., 2014; Laubach et al., 2016; Karlsson, 2017; O’Dell et al., 2019; Zhao et al., 2019)的观测研究中.此外, 通量梯度法也被用于其他痕量气体的通量观测, 如森林内外的H2通量(Meredith et al., 2014)、草地气态汞通量(Fritsche et al., 2008)和大气汞循环研究(Angot et al., 2016). ...
... 通量梯度法观测CO2通量的研究远远少于涡度相关法, 而是更多地被用于观测较难实现涡度相关观测的其他痕量气体, 如CH4通量(如Pattey et al., 2006; Bowling et al., 2009; Tagesson et al., 2012; Laubach et al., 2016), N2O通量(Simpson et al., 1997; Laubach et al., 2016), 稳定同位素通量(Griffis, 2013), H2通量(Meredith et al., 2014)、气态汞通量(Fritsche et al., 2008)和南极大气汞循环(Angot et al., 2016).此外, 通量梯度法的观测高度可以比涡度相关法更加贴近地面, 因此特别适合风浪区较小的下垫面的观测, 如小型水体(Zhao et al., 2019). ...
Comparing CO2 storage and advection conditions at night at different Carboeuroflux sites 2 2005
... 通量梯度法观测CO2通量的研究远远少于涡度相关法, 而是更多地被用于观测较难实现涡度相关观测的其他痕量气体, 如CH4通量(如Pattey et al., 2006; Bowling et al., 2009; Tagesson et al., 2012; Laubach et al., 2016), N2O通量(Simpson et al., 1997; Laubach et al., 2016), 稳定同位素通量(Griffis, 2013), H2通量(Meredith et al., 2014)、气态汞通量(Fritsche et al., 2008)和南极大气汞循环(Angot et al., 2016).此外, 通量梯度法的观测高度可以比涡度相关法更加贴近地面, 因此特别适合风浪区较小的下垫面的观测, 如小型水体(Zhao et al., 2019). ...
Evaluation of the accuracy with which dry deposition can be measured with current micrometeorological techniques 2 1986
... 通量梯度法观测CO2通量的研究远远少于涡度相关法, 而是更多地被用于观测较难实现涡度相关观测的其他痕量气体, 如CH4通量(如Pattey et al., 2006; Bowling et al., 2009; Tagesson et al., 2012; Laubach et al., 2016), N2O通量(Simpson et al., 1997; Laubach et al., 2016), 稳定同位素通量(Griffis, 2013), H2通量(Meredith et al., 2014)、气态汞通量(Fritsche et al., 2008)和南极大气汞循环(Angot et al., 2016).此外, 通量梯度法的观测高度可以比涡度相关法更加贴近地面, 因此特别适合风浪区较小的下垫面的观测, 如小型水体(Zhao et al., 2019). ...
... 如果目标气体的浓度梯度低, 温室气体和稳定同位素通量的观测结果就会受到影响.对于CO2通量而言, Karlsson (2017)在泥炭地和Fritsche等(2008)在亚高山草原上进行CO2通量观测, 发现涡度相关法和通量梯度法得到的观测结果较一致, 这两项研究的共同点是目标气体的浓度梯度较大, 而且观测系统的精度足够高, 能够捕捉到梯度信号.当浓度梯度较小时, 涡度相关法和通量梯度法在牧场(Laubach et al., 2016)和森林(Wu et al., 2015)观测到的通量结果则存在明显偏差. ...
Contribution of crop residue carbon to soil respiration at a northern Prairie site using stable isotope flux measurements 3 2011
... 对于13C-CO2通量同位素比来说, 通量梯度法主要被用于观测非生长季农田土壤的13C-CO2通量同位素比(Griffis et al., 2004; Drewitt et al., 2009; Glenn et al., 2011), 或者观测森林内地面上的13C-CO2和18O-CO2通量同位素比(Santos et al., 2012).Griffis等(2004)采用通量梯度法观测了美国明尼苏达州农田土壤在大豆收获后(之前4年种植的是玉米)土壤呼吸的12C-CO2通量和13C-CO2通量, 结果表明土壤呼吸的13C同位素组分与C3农田生态系统的信号一致, 说明降解的大豆植株是主要的呼吸基质.研究还发现, 耕地过后, 生态系统呼吸加强, 呼吸通量的δ13C下降, 说明有新鲜的大豆植株残茬参与到了呼吸过程.这项研究表明稳定同位素技术与微气象学方法的结合能够更好地解释碳循环过程.土壤呼吸的同位素值有助于推测土壤碳库对土壤CO2通量的贡献, 并分析翻耕对作物残体降解的影响.Drewitt等(2009)在加拿大安大略省的一块农田上(C4作物玉米收获后次年C3作物大豆出苗前)观测非生长季土壤呼吸δ13C, 相比没有翻耕的地块, 常规翻耕地块土壤呼吸的δ13C表现为较强的C4信号, 表明翻耕会促进“新”的作物残体快速分解.春季, 两类地块上δ13C均下降, 说明C4呼吸基质在减少, 转而分解土壤C3有机质.Glenn等(2011)在加拿大曼尼托巴省一个刚刚收获玉米的农田(之前种植C3作物)观测2个密集翻耕和2个少翻耕地块上的δ13C, 发现玉米的C4作物残体碳在秋季占总呼吸通量的70%, 在春季占20%-30%, 从秋季到次年春季的整个非生长季内, 玉米残茬的至少25%被呼吸作用分解, 而勤耕和少耕处理的地块区别不明显.此外, 研究者还采用通量梯度法观测森林和湖泊生态系统水汽同位素(Lee et al., 2007; Xiao et al., 2017). ...
... 有机质.Glenn等(2011)在加拿大曼尼托巴省一个刚刚收获玉米的农田(之前种植C3作物)观测2个密集翻耕和2个少翻耕地块上的δ13C, 发现玉米的C4作物残体碳在秋季占总呼吸通量的70%, 在春季占20%-30%, 从秋季到次年春季的整个非生长季内, 玉米残茬的至少25%被呼吸作用分解, 而勤耕和少耕处理的地块区别不明显.此外, 研究者还采用通量梯度法观测森林和湖泊生态系统水汽同位素(Lee et al., 2007; Xiao et al., 2017). ...
Tracing the flow of carbon dioxide and water vapor between the biosphere and atmosphere: a review of optical isotope techniques and their application 3 2013
... 准确量化生物圈与大气圈之间的温室气体交换对于生态系统过程、物质循环机制和气候变化响应等方面的研究具有重要意义.同时相应温室气体稳定同位素信号则能为此提供独特的示踪信息, 是一个重要的研究手段.微气象学方法是观测温室气体及其稳定同位素通量的重要方法.该方法主要的优势是可以进行原位无干扰的连续观测, 而且在单点上观测的通量信号是通量贡献区内不同位置地面通量的加权平均(Baldocchi et al., 1988), 可以代表一定区域的通量交换信息.目前, 常用的微气象学方法主要包括涡度相关法(EC)和通量梯度法(FG).涡度相关法被认为是观测生态系统与大气之间能量和物质交换的直接方法, 其计算原理不基于任何假设且无需经验参数, 并且已有较完善的理论和实践验证, 已经被广泛应用于不同生态系统的物质及能量观测(Baldocchi et al., 2001; Baldocchi, 2014).根据涡度相关法的基本原理, 需要对观测的目标气体进行高频采样(≥10 Hz), 当前的科技可以实现对CO2、CH4、水汽浓度较为稳定的高频观测, 而且有比较完备的涡度相关系统可供使用, 但是对其他一些痕量气体(如N2O)和稳定同位素的观测要么仪器昂贵, 购置和维护成本高, 要么没有高频观测仪器.同时, 涡度相关系统中的三维超声风速仪的路径较长, 对架设高度有一定要求, 不适合对风浪区(即观测点与上风向下垫面边界之间的距离)很小的下垫面进行观测.相对而言, 通量梯度法对目标气体的采样频率要求没有那么高, 能够在无高频仪器可供使用的情况下实现对目标气体的浓度观测, 同时观测高度可以离地面更近, 对于风浪区较小的下垫面更加适用.对于同位素观测而言, 通量梯度法不受限于Keeling曲线方法的简单假设, 是更可靠的观测方法(Griffis, 2013).因此该方法被广泛用于森林、草地、农田、沼泽、泥炭地和小型水体的温室气体和同位素通量(Simpson et al., 1995, 1998; Miyata et al., 2000; Griffis et al., 2004; Pattey et al., 2006; Santos et al., 2012; Xiao et al., 2014; Laubach et al., 2016; Karlsson, 2017; O’Dell et al., 2019; Zhao et al., 2019)的观测研究中.此外, 通量梯度法也被用于其他痕量气体的通量观测, 如森林内外的H2通量(Meredith et al., 2014)、草地气态汞通量(Fritsche et al., 2008)和大气汞循环研究(Angot et al., 2016). ...
... 通量梯度法观测CO2通量的研究远远少于涡度相关法, 而是更多地被用于观测较难实现涡度相关观测的其他痕量气体, 如CH4通量(如Pattey et al., 2006; Bowling et al., 2009; Tagesson et al., 2012; Laubach et al., 2016), N2O通量(Simpson et al., 1997; Laubach et al., 2016), 稳定同位素通量(Griffis, 2013), H2通量(Meredith et al., 2014)、气态汞通量(Fritsche et al., 2008)和南极大气汞循环(Angot et al., 2016).此外, 通量梯度法的观测高度可以比涡度相关法更加贴近地面, 因此特别适合风浪区较小的下垫面的观测, 如小型水体(Zhao et al., 2019). ...
Measuring field-scale isotopic CO2 fluxes with tunable diode laser absorption spectroscopy and micrometeorological techniques 4 2004
... 准确量化生物圈与大气圈之间的温室气体交换对于生态系统过程、物质循环机制和气候变化响应等方面的研究具有重要意义.同时相应温室气体稳定同位素信号则能为此提供独特的示踪信息, 是一个重要的研究手段.微气象学方法是观测温室气体及其稳定同位素通量的重要方法.该方法主要的优势是可以进行原位无干扰的连续观测, 而且在单点上观测的通量信号是通量贡献区内不同位置地面通量的加权平均(Baldocchi et al., 1988), 可以代表一定区域的通量交换信息.目前, 常用的微气象学方法主要包括涡度相关法(EC)和通量梯度法(FG).涡度相关法被认为是观测生态系统与大气之间能量和物质交换的直接方法, 其计算原理不基于任何假设且无需经验参数, 并且已有较完善的理论和实践验证, 已经被广泛应用于不同生态系统的物质及能量观测(Baldocchi et al., 2001; Baldocchi, 2014).根据涡度相关法的基本原理, 需要对观测的目标气体进行高频采样(≥10 Hz), 当前的科技可以实现对CO2、CH4、水汽浓度较为稳定的高频观测, 而且有比较完备的涡度相关系统可供使用, 但是对其他一些痕量气体(如N2O)和稳定同位素的观测要么仪器昂贵, 购置和维护成本高, 要么没有高频观测仪器.同时, 涡度相关系统中的三维超声风速仪的路径较长, 对架设高度有一定要求, 不适合对风浪区(即观测点与上风向下垫面边界之间的距离)很小的下垫面进行观测.相对而言, 通量梯度法对目标气体的采样频率要求没有那么高, 能够在无高频仪器可供使用的情况下实现对目标气体的浓度观测, 同时观测高度可以离地面更近, 对于风浪区较小的下垫面更加适用.对于同位素观测而言, 通量梯度法不受限于Keeling曲线方法的简单假设, 是更可靠的观测方法(Griffis, 2013).因此该方法被广泛用于森林、草地、农田、沼泽、泥炭地和小型水体的温室气体和同位素通量(Simpson et al., 1995, 1998; Miyata et al., 2000; Griffis et al., 2004; Pattey et al., 2006; Santos et al., 2012; Xiao et al., 2014; Laubach et al., 2016; Karlsson, 2017; O’Dell et al., 2019; Zhao et al., 2019)的观测研究中.此外, 通量梯度法也被用于其他痕量气体的通量观测, 如森林内外的H2通量(Meredith et al., 2014)、草地气态汞通量(Fritsche et al., 2008)和大气汞循环研究(Angot et al., 2016). ...
... 对于稳定同位素通量, 通常做两个前提假设: 第一, 轻重同位素分子的湍流扩散系数相同; 第二, 轻重同位素分子的源汇分布一致(Griffis et al., 2005).这样, 通量同位素比(flux ratio)就简化为同位素梯度之比(Griffis et al., 2004), 即 ...
... 对于13C-CO2通量同位素比来说, 通量梯度法主要被用于观测非生长季农田土壤的13C-CO2通量同位素比(Griffis et al., 2004; Drewitt et al., 2009; Glenn et al., 2011), 或者观测森林内地面上的13C-CO2和18O-CO2通量同位素比(Santos et al., 2012).Griffis等(2004)采用通量梯度法观测了美国明尼苏达州农田土壤在大豆收获后(之前4年种植的是玉米)土壤呼吸的12C-CO2通量和13C-CO2通量, 结果表明土壤呼吸的13C同位素组分与C3农田生态系统的信号一致, 说明降解的大豆植株是主要的呼吸基质.研究还发现, 耕地过后, 生态系统呼吸加强, 呼吸通量的δ13C下降, 说明有新鲜的大豆植株残茬参与到了呼吸过程.这项研究表明稳定同位素技术与微气象学方法的结合能够更好地解释碳循环过程.土壤呼吸的同位素值有助于推测土壤碳库对土壤CO2通量的贡献, 并分析翻耕对作物残体降解的影响.Drewitt等(2009)在加拿大安大略省的一块农田上(C4作物玉米收获后次年C3作物大豆出苗前)观测非生长季土壤呼吸δ13C, 相比没有翻耕的地块, 常规翻耕地块土壤呼吸的δ13C表现为较强的C4信号, 表明翻耕会促进“新”的作物残体快速分解.春季, 两类地块上δ13C均下降, 说明C4呼吸基质在减少, 转而分解土壤C3有机质.Glenn等(2011)在加拿大曼尼托巴省一个刚刚收获玉米的农田(之前种植C3作物)观测2个密集翻耕和2个少翻耕地块上的δ13C, 发现玉米的C4作物残体碳在秋季占总呼吸通量的70%, 在春季占20%-30%, 从秋季到次年春季的整个非生长季内, 玉米残茬的至少25%被呼吸作用分解, 而勤耕和少耕处理的地块区别不明显.此外, 研究者还采用通量梯度法观测森林和湖泊生态系统水汽同位素(Lee et al., 2007; Xiao et al., 2017). ...
... 通量梯度法观测CO2通量的研究远远少于涡度相关法, 而是更多地被用于观测较难实现涡度相关观测的其他痕量气体, 如CH4通量(如Pattey et al., 2006; Bowling et al., 2009; Tagesson et al., 2012; Laubach et al., 2016), N2O通量(Simpson et al., 1997; Laubach et al., 2016), 稳定同位素通量(Griffis, 2013), H2通量(Meredith et al., 2014)、气态汞通量(Fritsche et al., 2008)和南极大气汞循环(Angot et al., 2016).此外, 通量梯度法的观测高度可以比涡度相关法更加贴近地面, 因此特别适合风浪区较小的下垫面的观测, 如小型水体(Zhao et al., 2019). ...
... ; Laubach et al., 2016), 稳定同位素通量(Griffis, 2013), H2通量(Meredith et al., 2014)、气态汞通量(Fritsche et al., 2008)和南极大气汞循环(Angot et al., 2016).此外, 通量梯度法的观测高度可以比涡度相关法更加贴近地面, 因此特别适合风浪区较小的下垫面的观测, 如小型水体(Zhao et al., 2019). ...
... 如果目标气体的浓度梯度低, 温室气体和稳定同位素通量的观测结果就会受到影响.对于CO2通量而言, Karlsson (2017)在泥炭地和Fritsche等(2008)在亚高山草原上进行CO2通量观测, 发现涡度相关法和通量梯度法得到的观测结果较一致, 这两项研究的共同点是目标气体的浓度梯度较大, 而且观测系统的精度足够高, 能够捕捉到梯度信号.当浓度梯度较小时, 涡度相关法和通量梯度法在牧场(Laubach et al., 2016)和森林(Wu et al., 2015)观测到的通量结果则存在明显偏差. ...
... 通量梯度法观测CO2通量的研究远远少于涡度相关法, 而是更多地被用于观测较难实现涡度相关观测的其他痕量气体, 如CH4通量(如Pattey et al., 2006; Bowling et al., 2009; Tagesson et al., 2012; Laubach et al., 2016), N2O通量(Simpson et al., 1997; Laubach et al., 2016), 稳定同位素通量(Griffis, 2013), H2通量(Meredith et al., 2014)、气态汞通量(Fritsche et al., 2008)和南极大气汞循环(Angot et al., 2016).此外, 通量梯度法的观测高度可以比涡度相关法更加贴近地面, 因此特别适合风浪区较小的下垫面的观测, 如小型水体(Zhao et al., 2019). ...
Application of a tunable diode laser to the measurement of CH4 and N2O fluxes from field to landscape scale using several micrometeorological techniques 2 2006
... 准确量化生物圈与大气圈之间的温室气体交换对于生态系统过程、物质循环机制和气候变化响应等方面的研究具有重要意义.同时相应温室气体稳定同位素信号则能为此提供独特的示踪信息, 是一个重要的研究手段.微气象学方法是观测温室气体及其稳定同位素通量的重要方法.该方法主要的优势是可以进行原位无干扰的连续观测, 而且在单点上观测的通量信号是通量贡献区内不同位置地面通量的加权平均(Baldocchi et al., 1988), 可以代表一定区域的通量交换信息.目前, 常用的微气象学方法主要包括涡度相关法(EC)和通量梯度法(FG).涡度相关法被认为是观测生态系统与大气之间能量和物质交换的直接方法, 其计算原理不基于任何假设且无需经验参数, 并且已有较完善的理论和实践验证, 已经被广泛应用于不同生态系统的物质及能量观测(Baldocchi et al., 2001; Baldocchi, 2014).根据涡度相关法的基本原理, 需要对观测的目标气体进行高频采样(≥10 Hz), 当前的科技可以实现对CO2、CH4、水汽浓度较为稳定的高频观测, 而且有比较完备的涡度相关系统可供使用, 但是对其他一些痕量气体(如N2O)和稳定同位素的观测要么仪器昂贵, 购置和维护成本高, 要么没有高频观测仪器.同时, 涡度相关系统中的三维超声风速仪的路径较长, 对架设高度有一定要求, 不适合对风浪区(即观测点与上风向下垫面边界之间的距离)很小的下垫面进行观测.相对而言, 通量梯度法对目标气体的采样频率要求没有那么高, 能够在无高频仪器可供使用的情况下实现对目标气体的浓度观测, 同时观测高度可以离地面更近, 对于风浪区较小的下垫面更加适用.对于同位素观测而言, 通量梯度法不受限于Keeling曲线方法的简单假设, 是更可靠的观测方法(Griffis, 2013).因此该方法被广泛用于森林、草地、农田、沼泽、泥炭地和小型水体的温室气体和同位素通量(Simpson et al., 1995, 1998; Miyata et al., 2000; Griffis et al., 2004; Pattey et al., 2006; Santos et al., 2012; Xiao et al., 2014; Laubach et al., 2016; Karlsson, 2017; O’Dell et al., 2019; Zhao et al., 2019)的观测研究中.此外, 通量梯度法也被用于其他痕量气体的通量观测, 如森林内外的H2通量(Meredith et al., 2014)、草地气态汞通量(Fritsche et al., 2008)和大气汞循环研究(Angot et al., 2016). ...
... 通量梯度法观测CO2通量的研究远远少于涡度相关法, 而是更多地被用于观测较难实现涡度相关观测的其他痕量气体, 如CH4通量(如Pattey et al., 2006; Bowling et al., 2009; Tagesson et al., 2012; Laubach et al., 2016), N2O通量(Simpson et al., 1997; Laubach et al., 2016), 稳定同位素通量(Griffis, 2013), H2通量(Meredith et al., 2014)、气态汞通量(Fritsche et al., 2008)和南极大气汞循环(Angot et al., 2016).此外, 通量梯度法的观测高度可以比涡度相关法更加贴近地面, 因此特别适合风浪区较小的下垫面的观测, 如小型水体(Zhao et al., 2019). ...
Nitrous oxide flux measurements from an intensively managed irrigated pasture using micrometeorological techniques 3 2007
... 要确保仪器能够明确地分辨出两个进气口之间温室气体及稳定同位素组分的微小的差别, 这就要求气体分析仪的观测精度和准度足够高.目前, 通量梯度法中常使用的分析仪大多基于新型光谱技术, 如可调谐二极管激光吸收光谱(TDLAS)(Phillips et al., 2007)、离轴积分腔输出光谱(OA-ICOS)(Tagesson et al., 2012; Karlsson, 2017; Zhao et al., 2019)和波长扫描光腔衰荡光谱(WS-CRDS)(Xiao et al., 2014)等, 相比传统的红外光谱, 这些新型的激光光谱技术具有更高精度、准确度以及响应速度快等优势.但是为了避免仪器由于工作时长造成的系统偏差, 需要使用标准气体对仪器进行必要的标定.此外, 建议采用一台仪器在两个进气口之间进行切换观测, 以避免采用两台分析仪产生系统偏差(Baldocchi et al., 1988). ...
... 通量梯度法观测CO2通量的研究远远少于涡度相关法, 而是更多地被用于观测较难实现涡度相关观测的其他痕量气体, 如CH4通量(如Pattey et al., 2006; Bowling et al., 2009; Tagesson et al., 2012; Laubach et al., 2016), N2O通量(Simpson et al., 1997; Laubach et al., 2016), 稳定同位素通量(Griffis, 2013), H2通量(Meredith et al., 2014)、气态汞通量(Fritsche et al., 2008)和南极大气汞循环(Angot et al., 2016).此外, 通量梯度法的观测高度可以比涡度相关法更加贴近地面, 因此特别适合风浪区较小的下垫面的观测, 如小型水体(Zhao et al., 2019). ...
Land-atmosphere exchange of methane from soil thawing to soil freezing in a high-Arctic wet tundra ecosystem 2 2012
... 要确保仪器能够明确地分辨出两个进气口之间温室气体及稳定同位素组分的微小的差别, 这就要求气体分析仪的观测精度和准度足够高.目前, 通量梯度法中常使用的分析仪大多基于新型光谱技术, 如可调谐二极管激光吸收光谱(TDLAS)(Phillips et al., 2007)、离轴积分腔输出光谱(OA-ICOS)(Tagesson et al., 2012; Karlsson, 2017; Zhao et al., 2019)和波长扫描光腔衰荡光谱(WS-CRDS)(Xiao et al., 2014)等, 相比传统的红外光谱, 这些新型的激光光谱技术具有更高精度、准确度以及响应速度快等优势.但是为了避免仪器由于工作时长造成的系统偏差, 需要使用标准气体对仪器进行必要的标定.此外, 建议采用一台仪器在两个进气口之间进行切换观测, 以避免采用两台分析仪产生系统偏差(Baldocchi et al., 1988). ...
... 通量梯度法观测CO2通量的研究远远少于涡度相关法, 而是更多地被用于观测较难实现涡度相关观测的其他痕量气体, 如CH4通量(如Pattey et al., 2006; Bowling et al., 2009; Tagesson et al., 2012; Laubach et al., 2016), N2O通量(Simpson et al., 1997; Laubach et al., 2016), 稳定同位素通量(Griffis, 2013), H2通量(Meredith et al., 2014)、气态汞通量(Fritsche et al., 2008)和南极大气汞循环(Angot et al., 2016).此外, 通量梯度法的观测高度可以比涡度相关法更加贴近地面, 因此特别适合风浪区较小的下垫面的观测, 如小型水体(Zhao et al., 2019). ...
Estimates of nitrous oxide emissions from agricultural fields over 28 months 1 1997
... 通量梯度法观测CO2通量的研究远远少于涡度相关法, 而是更多地被用于观测较难实现涡度相关观测的其他痕量气体, 如CH4通量(如Pattey et al., 2006; Bowling et al., 2009; Tagesson et al., 2012; Laubach et al., 2016), N2O通量(Simpson et al., 1997; Laubach et al., 2016), 稳定同位素通量(Griffis, 2013), H2通量(Meredith et al., 2014)、气态汞通量(Fritsche et al., 2008)和南极大气汞循环(Angot et al., 2016).此外, 通量梯度法的观测高度可以比涡度相关法更加贴近地面, 因此特别适合风浪区较小的下垫面的观测, 如小型水体(Zhao et al., 2019). ...
... 对于梯度系统采样高度的设置, 其前提是需保证采样高度位于常通量层之内, 但文献中并没有对具体的高度进行统一的规定, 一般需结合观测地点的实际情况进行设置.以两个进气口为例, 对于上进气口, 在设置高度时应该考虑观测地点风浪区的大小, 需确保观测信号落在研究地点风浪区范围之内; 对于下进气口, 不同的生态系统有不同的标准, 其中对于有冠层的生态系统, 如森林生态系统, 应特别注意粗糙子层的影响, 基于文献的观测经验值(Simpson et al., 1998), 进气口的观测高度至少应在冠层高度的1.4倍以上, 才能满足湍流扩散系数方案的理论假设, 而对于无冠层的生态系统, 如水体生态系统, 设置时应注意下进气口是否会受到水体风浪波动的影响, 避免液态水倒吸损坏仪器, 如已有的在湖泊(Xiao et al., 2014)和池塘(Zhao et al., 2019)的观测, 其下进气口高度分别为1.0和0.9 m; 在明确上下进气口高度的大概范围后, 对于两层进气口高度差的设置, 根据温室气体浓度随高度的变化(图1), 其浓度在常通量层的变化相对较小, 因此常通量层内不同高度差的选取对于浓度梯度差的影响并不大. ...