删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Lie symmetry analysis and exact solutions of two-component Camassa-Holm equation

本站小编 Free考研考试/2021-12-25

田红霞, 高犇
太原理工大学数学学院, 太原 030024
摘要: 利用李群分析法研究二元Camassa-Holm方程,该方程以具有线性剪切流的浅水波为模型。通过对称分析得到方程的相似约化和精确解,再用幂级数法获得方程的解。证明了所得幂级数解的收敛性。从变换群的角度考虑了方程所得解的物理意义。
关键词: 李对称分析二元Camassa-Holm方程相似约化精确解
In this paper,we consider the following two-component Camassa-Holm equation
$\left\{ \begin{matrix} {{u}_{i}}-{{u}_{xxt}}+3u{{u}_{x}}-2{{u}_{x}}-u{{u}_{xxx}}+\rho {{\rho }_{x}}=0, \\ {{\rho }_{t}}+{{\rho }_{x}}u+\rho {{u}_{x}}=0, \\\end{matrix} \right.$ (1)
which was first derived as a bi-Hamiltonian model by Olver and Rosenau[1]. Eq.(1) includes both velocity and density variables in the dynamics of shallow water waves. In Ref. [2],Constantin and Ivanov derived (1) in the context of shallow water waves theory. The variable u(x,t) describes the horizontal velocity of the fluid and the variable ρ(x,t) is in connection with the horizontal deviation of the surface from the equilibrium,all measured in dimensionless units[2].
For ρ≡0,(1) becomes the Camassa-Holm equation,modeling the unidirectional propagation of shallow water waves over a flat bottom. Here u(x,t) stands for the fluid velocity at time t in the spatial x-direction[3-8]. The Camassa-Holm equation is also a model for the propagation of axially symmetric waves in hyperelastic rods[9-10]. It has a bi-Hamiltonian structure[11-12] and is completely integrable[3, 13]. It was claimed that the equation might be relevant to the modeling of tsunami[14](see also the discussion in Ref. [15]).
The Cauchy problem and initial-boundary value problem for the Camassa-Holm equation have been studied extensively[16-20]. It has been shown that this equation is locally well-posed for some initial data. More interestingly,it has global strong solutions[16-17, 21] and also finite time blow-up solutions[16-17, 21-22]. For ρ≠0,the Cauchy problems of (1) have been discussed in Refs.[2, 23].
For the sake of providing more information to understand the shallow water waves moving over a linear shear flow,we will investigate the vector fields,symmetry reductions,and exact solutions to (1) by the Lie symmetry analysis method.
It is known that the Lie symmetry analysis is a powerful and systematic method for dealing with partial differential equations (PDEs)[24-27]. Moreover,this method has had a profound impact on both pure and applied areas of mathematics,physics,and mechanics,etc. For the PDEs,admitting symmetry is one of the intrinsic properties of the equations. Based on the symmetries of a PDE,many other important properties of the equation such as integrability,conservation laws,reducing equations,and exact solutions can be considered successively[24-28].
The main purpose of this paper is to apply the Lie group analysis method for dealing with symmetries,symmetry reductions,and exact solutions to the two-component exact Camassa-Holm equation.
1 Lie symmetry analysis for the two-component Camassa-Holm equation In this section,we perform Lie symmetry analysis for (1),and obtain its infinitesimal generators and commutation table of Lie algebra.
According to the method of determining the infinitesimal generator of PDEs,the infinitesimal generator of (1) can be written as
$V=\xi \left( x,t,u,\rho \right)\frac{\partial }{\partial x}+\tau \left( x,t,u,\rho \right)\frac{\partial }{\partial t}+\phi \left( x,t,u,\rho \right)\frac{\partial }{\partial u}+\psi \left( x,t,u,\rho \right)\frac{\partial }{\partial \rho },$ (2)
where the coefficient functions ξ(x,t,u,ρ),τ(x,t,u,ρ),(x,t,u,ρ),and ψ(x,t,u,ρ) of the vector field are to be determined later.
If the vector field (2) generates a symmetry of (1),then V must satisfy the Lie symmetry condition
$\left\{ \begin{align} & p{{r}^{\left( 3 \right)}}V\left( {{\Delta }_{1}} \right)\left| _{{{\Delta }_{1=0}}}=0, \right. \\ & p{{r}^{\left( 1 \right)}}V\left( {{\Delta }_{2}} \right)\left| _{{{\Delta }_{2=0}}}=0, \right. \\ \end{align} \right.$ (3)
where pr(3)V and pr(1)V denote the 3rd and 1st prolongations of V,respectively,and
${{\Delta }_{1}}={{u}_{t}}-{{u}_{xxt}}+3u{{u}_{x}}-2{{u}_{x}}-u{{u}_{xxx}}+\rho {{\rho }_{x}},$ (4)
${{\Delta }_{2}}={{\rho }_{t}}+{{\rho }_{x}}u+\rho {{u}_{x}},$ (5)
for Eq.(1). That is
$\left\{ \begin{align} & p{{r}^{\left( 3 \right)}}V=\phi \frac{\partial }{\partial u}+\psi \frac{\partial }{\partial \rho }+{{\psi }^{x}}\frac{\partial }{\partial {{u}_{x}}}+{{\psi }^{x}}\frac{\partial }{\partial \rho }+{{\phi }^{t}}\frac{\partial }{\partial {{u}_{t}}}+{{\phi }^{xx}}\frac{\partial }{\partial {{u}_{xx}}}+{{\phi }^{xxx}}\frac{\partial }{\partial {{u}_{xxx}}}+{{\phi }^{xxt}}\frac{\partial }{\partial {{u}_{xxt}}}, \\ & p{{r}^{\left( 1 \right)}}V=\phi \frac{\partial }{\partial u}+\psi \frac{\partial }{\partial \rho }+{{\phi }^{x}}\frac{\partial }{\partial {{u}_{x}}}+{{\psi }^{x}}\frac{\partial }{\partial {{\rho }_{x}}}+{{\psi }^{t}}\frac{\partial }{\partial {{\rho }_{t}}}, \\ \end{align} \right.$ (6)
where xx,tt,xx,xxx,and xxt are the coefficients of pr(3)V and pr(1)V. Furthermore,we have
${{\phi }^{x}}={{D}_{x}}\phi -{{u}_{x}}{{D}_{x}}\xi -{{u}_{t}}{{D}_{x}}\tau ,$ (7)
${{\phi }^{t}}={{D}_{t}}\phi -{{u}_{x}}{{D}_{t}}\xi -{{u}_{t}}{{D}_{t}}\tau ,$ (8)
${{\psi }^{x}}={{D}_{x}}\psi -{{u}_{x}}{{D}_{x}}\xi -{{u}_{t}}{{D}_{x}}\tau ,$ (9)
${{\psi }^{t}}={{D}_{t}}\psi -{{u}_{x}}{{D}_{t}}\xi -{{u}_{t}}{{D}_{t}}\tau ,$ (10)
${{\phi }^{xx}}=D_{x}^{2}\left( \phi -\xi {{u}_{x}}-\tau {{u}_{t}} \right)+\xi {{u}_{xxx}}+\tau {{u}_{xxt}},$ (11)
${{\phi }^{xxt}}={{D}_{t}}D_{x}^{2}\left( \phi -\xi {{u}_{x}}-\tau {{u}_{t}} \right)+\xi {{u}_{xxxt}}+\tau {{u}_{xxtt}},$ (12)
${{\phi }^{xxx}}=D_{x}^{3}\left( \phi -\xi {{u}_{x}}-\tau {{u}_{t}} \right)+\xi {{u}_{xxxx}}+\tau {{u}_{xxxt}},$ (13)
where Dx and Dt are the total derivatives with respect to x and t,respectively.
Substituting (7)-(13) into (6),in terms of the Lie symmetry analysis method,we obtain the following equations for the symmetry group of (1)
$\left\{ \begin{align} & {{\xi }_{x}}={{\xi }_{t}}={{\xi }_{u}}={{\xi }_{\rho }}=0, \\ & {{\tau }_{x}}={{\tau }_{u}}={{\tau }_{\rho }}=0,{{\tau }_{t,t}}=0, \\ & \phi =-u{{\tau }_{t}}, \\ & \psi =-\rho {{\tau }_{t}}. \\ \end{align} \right.$ (14)
Solving (14),we obtain
$\begin{align} & \xi ={{c}_{1}},\tau ={{c}_{2}}t+{{c}_{3}}, \\ & \phi =-{{c}_{2}}u,\psi =-{{c}_{2}}\rho , \\ \end{align}$ (15)
where c1,c2,and c3 are arbitrary constants. Hence the Lie algebra of infinitesimal symmetries of (1) is spanned by the following vector fields
${{V}_{1}}=\frac{\partial }{\partial x},{{V}_{2}}=t\frac{\partial }{\partial t}-u\frac{\partial }{\partial u}-\rho \frac{\partial }{\partial \rho },{{V}_{3}}=\frac{\partial }{\partial t}.$ (16)
It is easy to verify that {V1,V2,V3} is closed under the Lie bracket. In fact,we have
$\begin{align} & \left[ {{V}_{1}},{{V}_{1}} \right]=\left[ {{V}_{2}},{{V}_{2}} \right]=\left[ {{V}_{3}},{{V}_{3}} \right]=0, \\ & \left[ {{V}_{1}},{{V}_{2}} \right]=-\left[ {{V}_{2}},{{V}_{1}} \right]=\left[ {{V}_{1}},{{V}_{3}} \right]=-\left[ {{V}_{3}},{{V}_{1}} \right]=0, \\ & \left[ {{V}_{2}},{{V}_{3}} \right]=-\left[ {{V}_{3}},{{V}_{2}} \right]=-{{V}_{3}}. \\ \end{align}$ (17)
2 Symmetry groups of the two-component Camassa-Holm equation In section 1,we have obtained the infinitesimal symmetries of (1). Furthermore,for (1),the one-parameter groups Gi generated by V1,V2,and V3 are given as follows:
$\begin{align} & {{G}_{1}}:\left( x,t,u,\rho \right)\to \left( x+\in ,t,u,\rho \right), \\ & {{G}_{2}}:\left( x,t,u,\rho \right)\to \left( x,t{{e}^{\in }},u{{e}^{-\in }},\rho {{e}^{-\in }} \right), \\ & {{G}_{3}}:\left( x,t,u,\rho \right)\to \left( x+\in ,t,u,\rho \right), \\ \end{align}$
where ∈ is any real number. We note that G1 is a space translation; G3 is a time translation; and G2 is a genuinely local group of transformation. They are very important in our study of the exact solutions of PDEs.
Consequently,if u=f(x,t) and ρ=g(x,t) is a solution of (1),then u(i) and ρ(i)(i=1,2,3) given as follows are solutions of (1) as well
${{u}_{\left( 1 \right)}}=f\left( x-\in ,t \right),{{\rho }_{\left( 1 \right)}}g\left( x-\in ,t \right),$ (18)
${{u}_{\left( 2 \right)}}={{e}^{-\in }}f\left( x,t{{e}^{-\in }} \right),{{\rho }_{\left( 1 \right)}}{{e}^{-\in }}g\left( x,t{{e}^{-\in }} \right),$ (19)
${{u}_{\left( 3 \right)}}=f\left( x-\in ,t \right),{{\rho }_{\left( 3 \right)}}g\left( x-\in ,t \right).$ (20)
where ∈ is any real number.
3 Symmetry reductions and exact solutions of the two-component Camassa-Holm equation Now we deal with the exact solutions for (1) based on the symmetry analysis. To do this,linear combinations of infinitesimals are considered and their corresponding invariants are determined.
(i) For the generator ${{V}_{1}}=\frac{\partial }{\partial x}$,we have the similarity variables
$\xi =t,\omega =u,v=\rho ,$
and the group-invariant solution is ω=f(ξ),ν=g(ξ),that is,
$u=f\left( t \right),\rho =g\left( t \right).$ (21)
Substituting Eq. (21) into Eq.(1),we obtain the reduction equation
$\left\{ \begin{align} & f'=0, \\ & g'=0, \\ \end{align} \right.$ (22)
where $f'=\frac{df}{d\xi },g'=\frac{dg}{d\xi }$. Therefore,(1) has a solution u=c1,ρ=c2,where c1,c2 are arbitrary constants. Obviously,the solution is not meaningful.
(ii) For the generator ${{V}_{2}}=t\frac{\partial }{\partial t}-u\frac{\partial }{\partial u}-\rho \frac{\partial }{\partial \rho }$,we have the similarity variables
$\xi =x,\omega =ut,v=\rho t,$
and the group-invariant solution is ω=f(ξ),ν=g(ξ),that is,
$u=f\left( x \right){{t}^{-1}},\rho =g\left( x \right){{t}^{-1}}.$ (23)
Substituting (23) into (1),we obtain the reduction equation
$\left\{ \begin{align} & -f+3ff'+f''-2f'f''-f{{f}^{\left( 3 \right)}}+gg'=0, \\ & -g+gf'+g'f=0, \\ \end{align} \right.$ (24)
where $f'=\frac{df}{d\xi },g'=\frac{dg}{d\xi }$.
(iii) For the generator ${{V}_{1}}+{{V}_{2}}=\frac{\partial }{\partial x}+t\frac{\partial }{\partial t}-u\frac{\partial }{\partial u}-\rho \frac{\partial }{\partial \rho }$,we have the similarity variables
and the group-invariant solution is $\omega =f\left( \xi \right),\text{ }\nu =g\left( \xi \right)$, that is,
$u={{e}^{-x}}f\left( t{{e}^{-x}} \right),\rho ={{e}^{-x}}g\left( t{{e}^{-x}} \right).$ (25)
Substituting (25) into (1),we obtain the following reduction equation
$\left\{ \begin{align} & -3f'+12\xi ff'+6{{\xi }^{2}}f{{'}^{2}}-5\xi f''+8{{\xi }^{2}}ff''+2{{\xi }^{3}}f'f''-{{\xi }^{2}}{{f}^{\left( 3 \right)}}+{{\xi }^{3}}f{{f}^{\left( 3 \right)}}-{{g}^{2}}-\xi gg'=0, \\ & -2gf+g'-\xi gf'-\xi g'f=0, \\ \end{align} \right.$ (26)
where $f'=\frac{df}{d\xi },g'=\frac{dg}{d\xi }$.
(iv) For the infinitesimal generator $c{{V}_{1}}+{{V}_{3}}=c\frac{\partial }{\partial x}+\frac{\partial }{\partial t}$,we have the similarity variables
and the group-invariant solution is $\omega =f\left( \xi \right),\text{ }\nu =g\left( \xi \right)$,that is,
$u=f\left( x-ct \right),\rho =g\left( x-ct \right).$ (27)
Substituting (27) into (1),we obtain the reduction equation
$\left\{ \begin{align} & \left( 3f-c \right)f'-2f'f''+\left( c-f \right){{f}^{\left( 3 \right)}}+gg'=0, \\ & \left( f-c \right)g'+gf'=0, \\ \end{align} \right.$ (28)
where $f'=\frac{df}{d\xi },g'=\frac{dg}{d\xi }$.
Remark 3.1 Noting that the reduced equations such as (24) and (26) are all higher-order nonlinear or nonautonomous ODEs,we will deal with such equations in the next section.
4 The power series solutionsIn section 3,we have obtained the reduced equations by using Lie symmetry reductions. In this section,we will treat the nonlinear ODEs (24),(26),and (28). The power series can be used to solve differential equations,including many complicated differential equations with nonconstant coefficients[29]. Now we consider the power series solutions to the reduced equations.
4.1 The power series solutions to Eq.(24)Now,we seek a solution of (24) in the form of a power series
$f\left( \xi \right)=\sum\limits_{n=0}^{\infty }{=}{{p}_{n}}{{\xi }^{n}},\text{ }g\left( \xi \right)=\sum\limits_{n=0}^{\infty }{{{q}_{n}}}{{\xi }^{n}},$ (29)
where the coefficients pn and qn are all constants to be determined.
Substituting (29) into (24),we have
$\begin{align} & -\sum\limits_{n=0}^{\infty }{{{p}_{n}}}{{\xi }^{n}}+3\sum\limits_{n=0}^{\infty }{\sum\limits_{k=0}^{n}{\left( n+1-k \right)}}{{p}_{k}}{{p}_{n+1-k}}{{\xi }^{n}}+\sum\limits_{n=0}^{\infty }{\left( n+1 \right)\left( n+2 \right)}{{p}_{n+2}}{{\xi }^{n}} \\ & -2\sum\limits_{n=0}^{\infty }{\sum\limits_{k=0}^{n}{\left( k+1 \right)\left( n+1-k \right)\left( n+2-k \right)}}{{p}_{k+1}}{{p}_{n+2-k}}{{\xi }^{n}}- \\ & \sum\limits_{n=0}^{\infty }{\sum\limits_{k=0}^{n}{\left( n+1-k \right)}}\left( n+2-k \right)\left( n+3-k \right){{p}_{k}}{{p}_{n+3-k}}{{\xi }^{n}}+ \\ & \sum\limits_{n=0}^{\infty }{\sum\limits_{k=0}^{n}{\left( n+1-k \right)}}{{q}_{k}}{{q}_{n+1-k}}{{\xi }^{n}}=0,-\sum\limits_{n=0}^{\infty }{{{q}_{n}}{{\xi }^{n}}}+\sum\limits_{n}^{\infty }{=0} \\ & \sum\limits_{k=0}^{n}{\left( n+1-k \right)}{{q}_{k}}{{p}_{n+1-k}}{{\xi }^{n}}+\sum\limits_{n=0}^{\infty }{\sum\limits_{k=0}^{n}{\left( n+1-k \right)}}{{p}_{k}}{{q}_{n+1-k}}{{\xi }^{n}}=0. \\ \end{align}$ (30)
From (30),comparing coefficients,we obtain the recursion formula
$\begin{align} & {{p}_{n+3}}=\frac{1}{\left( n+1 \right)\left( n+2 \right)\left( n+3 \right){{p}_{0}}}\{-{{p}_{n}}+\left( n+1 \right) \\ & [3{{p}_{0}}{{p}_{n+1}}+\left( n+2 \right)(1-2{{p}_{1}}){{p}_{n+2}}+{{q}_{0}}{{q}_{n+1}}]+\sum\limits_{k=1}^{n}{\left( n+1-k \right)} \\ & [3{{p}_{k}}{{p}_{n+1-k}}+{{q}_{k}}{{q}_{n+1-k}}-\left( n+2-k \right)(2\left( k+1 \right){{p}_{k+1}}{{p}_{n+2-k}} \\ & +\left( n+3-k \right){{p}_{k}}{{p}_{n+3-k}})]\},{{q}_{n+1}}=\frac{1}{\left( n+1 \right){{p}_{0}}} \\ & [{{q}_{n}}-\left( n+1 \right){{q}_{0}}{{p}_{n+1}}-\sum\limits_{k=1}^{n}{\left( n+1-k \right)}({{q}_{k}}{{p}_{n+1-k}}+{{p}_{k}}{{q}_{n+1-k}})], \\ \end{align}$ (31)
for all n=0,1,2,….Thus,for arbitrarily chosen constants p0≠0,p1,p2,and q0,from (31),we obtain
$\begin{align} & {{p}_{3}}=\frac{{{p}_{0}}(-1+3{{p}_{1}})+2{{p}_{2}}(1-2{{p}_{1}})+{{q}_{0}}{{q}_{1}}}{6{{p}_{0}}}, \\ & {{q}_{1}}=\frac{{{q}_{0}}(1-{{p}_{1}})}{{{p}_{0}}}. \\ \end{align}$ (32)
then,we have
$\begin{align} & {{p}_{4}}=\frac{{{p}_{1}}(3{{p}_{1}}-1)+2{{p}_{2}}(3{{p}_{0}}-4{{p}_{2}})}{24{{p}_{0}}}+\frac{6{{p}_{3}}(1-3{{p}_{1}})+2{{q}_{0}}{{q}_{2}}+{{q}^{2}}_{1}24{{p}_{0}}}{24{{p}_{0}}}, \\ & {{q}_{2}}=\frac{{{q}_{1}}-2{{q}_{0}}{{p}_{2}}-2{{p}_{1}}{{q}_{1}}}{2{{p}_{0}}}, \\ \end{align}$ (33)
and so on.
Thus,the other terms of the sequence {pn}n=0 and {qn}n=0 can be determined successively from (31) in a unique manner. This implies that,for (24),there exists a power series solution (29) with the coefficients given in (31). Furthermore,it is easy to prove the convergence of the power series (29) with the coefficients given in (31). As an example,we consider the convergence of the power series solution (29) of (24). From (31),we have
$\begin{align} & |{{p}_{n+3}}|\le M[|{{p}_{n}}\left| + \right|{{p}_{n+1}}\left| + \right|{{p}_{n+2}}\left| + \right|{{q}_{n+1}}|+ \\ & \sum\limits_{k+1}^{n}{(|{{p}_{k}}||{{p}_{n+1-k}}\left| + \right|{{q}_{k}}||{{q}_{n+1-k}}|+}|{{p}_{k+1}}||{{p}_{n+2-k}}\left| + \right|{{p}_{k}}||{{p}_{n+3-k}}|)], \\ & n=0,1,2,\ldots , \\ \end{align}$
where $M=max\left\{ \frac{1}{\left| {{p}_{0}} \right|} \right\},1,\frac{|1-2{{p}_{1}}|}{\left| {{p}_{0}} \right|},\left. \frac{\left| {{q}_{0}} \right|}{\left| {{p}_{0}} \right|} \right\}$. Similarly,from (31),we have
$|{{q}_{n+1}}\left| \le N[ \right|{{q}_{n}}\left| + \right|\left. {{p}_{n+1}} \right|\sum\limits_{k=1}^{n}{\left( \left| {{q}_{k}} \right| \right)}|{{p}_{n+1-k}}|+|{{p}_{k}}||{{q}_{n+1-k}}|)],n=0,1,2,\ldots ,$
where $N=max\left\{ \frac{1}{\left| {{p}_{0}} \right|},\frac{\left| {{q}_{0}} \right|}{\left| {{p}_{0}} \right|} \right\}$.
Now,we define two power series $R=R\left( \xi \right)=\sum\limits_{n=0}^{\infty }{{{r}_{n}}{{\xi }^{n}}}$ and $S=S\left( \xi \right)=\sum\limits_{n=0}^{\infty }{{{s}_{n}}{{\xi }^{n}}}$,by taking
${{r}_{i}}=|{{p}_{i}}|,\text{ }{{s}_{j}}=|{{q}_{j}}|,\text{ }i=0,1,2,\text{ }j=0,$
and
$\begin{align} & {{r}_{n+3}}=M[|{{r}_{n}}\left| + \right|{{r}_{n+1}}\left| + \right|{{r}_{n+2}}\left| + \right|{{s}_{n+1}}|+ \\ & \sum\limits_{k=1}^{n}{(|{{r}_{k}}||{{r}_{n+1-k}}\left| + \right|}\left. {{s}_{k}} \right|{{s}_{n+1-k}}|+{{r}_{k+1}}|{{r}_{n+2-k}}\left| + \right|\left. {{r}_{k}} \right||{{r}_{n+3-k}}|)], \\ & {{s}_{n+1}}=N[|{{s}_{n}}\left| + \right|{{r}_{n+1}}+\sum\limits_{k=1}^{n}{\left( \left| {{s}_{k}} \right| \right)}|{{r}_{n+1-k}}|+|{{r}_{k}}||{{s}_{n+1-k}}|)], \\ \end{align}$
where n=0,1,2,…. Then,it is easily seen that
$|{{p}_{n}}|\le {{r}_{n}},\text{ }|{{q}_{n}}|\le {{s}_{n}},\text{ }n=0,1,2,\cdots .$
In other words,the two series $ are majorant series of (29),respectively. Next,we show that the series R=R(ξ) and S=S(ξ) have positive radius of convergence. Indeed,by formal calculation,we have
$\begin{align} & R\left( \xi \right)={{r}_{0}}+{{r}_{1}}\xi +{{r}_{2}}{{\xi }^{2}}+\sum\limits_{n=0}^{\infty }{{{r}_{n+3}}}{{\xi }^{n+3}}={{r}_{0}}+{{r}_{1}}\xi +{{r}_{2}}{{\xi }^{2}}+ \\ & M[\sum\limits_{n=0}^{\infty }{{{r}_{n}}}{{\xi }^{n+3}}+\sum\limits_{n=0}^{\infty }{{{r}_{n+1}}}{{\xi }^{n+3}}+\sum\limits_{n=0}^{\infty }{{{r}_{n+2}}}{{\xi }^{n+3}}+\sum\limits_{n=0}^{\infty }{{{s}_{n+1}}} \\ & {{\xi }^{n+3}}+\sum\limits_{n=0}^{\infty }{\sum\limits_{k=1}^{n}{{{r}_{k}}}}{{r}_{n+1-k}}{{\xi }^{n+3}}+\sum\limits_{n=0}^{\infty }{\sum\limits_{k=1}^{n}{{{s}_{k}}{{s}_{n+1-k}}{{\xi }^{n+3}}}} \\ & +\sum\limits_{n=0}^{\infty }{\sum\limits_{k=1}^{n}{{{r}_{k+1}}{{r}_{n+2-k}}{{\xi }^{n+3}}}}+\sum\limits_{n=0}^{\infty }{\sum\limits_{k=1}^{n}{{{r}_{k}}}}{{r}_{n+3-k}}{{\xi }^{n+3}}]={{r}_{0}}+{{r}_{1}}\xi +{{r}_{2}}{{\xi }^{2}}+ \\ & M[{{\xi }^{3}}R+({{\xi }^{2}}-{{r}_{1}}\xi -{{r}_{0}}{{\xi }^{2}}+{{\xi }^{2}}R-{{\xi }^{2}}{{r}_{2}})(R-{{r}_{0}})+ \\ & 2{{R}^{2}}-3{{r}_{0}}R+{{r}^{2}}_{0}+(\xi -{{r}_{1}}\xi -{{r}_{0}})(R-{{r}_{0}}- \\ & {{r}_{1}}\xi )+({{\xi }^{2}}-{{s}_{0}}{{\xi }^{2}}+{{\xi }^{2}}S)(S-{{s}_{0}})-\xi {{r}_{1}}R], \\ \end{align}$
and
S(ξ)=s0+N[ξS+(1+2S-2s0)(R-r0)].
Consider now the implicit functional system with respect to the independent variable ξ,
$S\left( \xi \right)={{s}_{0}}+N[\xi S+(1+2S-2{{s}_{0}})(R-{{r}_{0}})].$
Since F,G are analytic in the neighborhood of (0,r0,s0),F(0,r0,s0)=0,G(0,r0,s0)=0.
Furthermore,the Jacobian determinant
$\frac{\partial \left( F,G \right)}{\partial \left( R,S \right)}\left| _{(0,{{r}_{0}},{{s}_{0}})} \right.=1\ne 0,$
if we choose the parameters r0=|p0| and s0=|q0|[JP4] properly. By the implicit function theorem[30],we see that R=R(ξ) and S=S(ξ) are analytic in a neighborhood of the point (0,r0,s0) and with the positive radius. This implies that the two power series (29) converge in a neighborhood of the point (0,r0,s0).
The power series solution of (1) can be written as
$\begin{align} & u\left( x,t \right)={{p}_{0}}{{t}^{-1}}+{{p}_{1}}x{{t}^{-1}}+{{p}_{2}}{{x}^{2}}{{t}^{-1}}+{{p}_{3}}{{x}^{3}}{{t}^{-1}}+ \\ & \sum\limits_{n=1}^{\infty }{{{p}_{n+3}}}{{x}^{n+3}}{{t}^{-1}}={{p}_{0}}{{t}^{-1}}+{{p}_{1}}x{{t}^{-1}}+{{p}_{2}}{{x}^{2}}{{t}^{-1}}+ \\ & \frac{{{p}_{0}}(-1+3{{p}_{1}})+2{{p}_{2}}(1-2{{p}_{1}})+{{q}_{0}}{{q}_{1}}}{6{{p}_{0}}}{{x}^{3}}{{t}^{-1}}+ \\ & \sum\limits_{n=1}^{\infty }{\frac{1}{\left( n+1 \right)\left( n+2 \right)\left( n+3 \right){{p}_{0}}}}\{-{{p}_{n}}+\left( n+1 \right) \\ & \left[ 3{{p}_{0}}{{p}_{n+1}}+\left( n+2 \right)(1-2{{p}_{1}}){{p}_{n+2}}+{{q}_{0}}{{q}_{n+1}} \right]+\sum\limits_{k=1}^{n}{\left( n+1-k \right)} \\ & \left[ 3{{p}_{k}}{{p}_{n+1-k}}+{{q}_{k}}{{q}_{n+1-k}}-\left( n+2-k \right)(2\left( k+1 \right){{p}_{k+1}}{{p}_{n+2-k}}+\left( n+3-k \right){{p}_{k}}{{p}_{n+3-k}}) \right] \\ & {{x}^{n+3}}{{t}^{-1}},\rho \left( x,t \right)={{q}_{0}}{{t}^{-1}}+{{q}_{1}}x{{t}^{-1}}+\sum\limits_{n=1}^{\infty }{{{q}_{n+1}}{{x}^{n+1}}{{t}^{-1}}}= \\ & {{q}_{0}}{{t}^{-1}}+{{q}_{0}}(1-{{p}_{1}}){{p}_{0}}x{{t}^{-1}}+\sum\limits_{n=1}^{\infty }{\frac{1}{\left( n+1 \right){{p}_{0}}}} \\ & [{{q}_{n}}-\left( n+1 \right){{q}_{0}}{{p}_{n+1}}-\sum\limits_{k=1}^{n}{n\left( n+1-k \right)}({{q}_{k}}{{p}_{n+1-k}}+{{p}_{k}}{{q}_{n+1-k}})]{{x}^{n+1}}{{t}^{-1}}, \\ \end{align}$ (34)
where p0≠0,p1,p2,and q0 are arbitrary constants. The other coefficients pn(n≥3) and qn(n≥1) can be determined successively from (31).
In physical applications,it will be convenient to write the solution of (1) in the approximate form
$\begin{align} & u\left( x,t \right)={{p}_{0}}{{t}^{-1}}+{{p}_{1}}x{{t}^{-1}}+{{p}_{2}}{{x}^{2}}{{t}^{-1}}+ \\ & \frac{{{p}_{0}}(-1+3{{p}_{1}})+2{{p}_{2}}(1-2{{p}_{1}})+{{q}_{0}}{{q}_{1}}}{6{{p}_{0}}}{{x}^{3}}{{t}^{-1}}+ \\ & \frac{{{p}_{1}}(3{{p}_{1}}-1)+2{{p}_{2}}(3{{p}_{0}}-4{{p}_{2}})}{24{{p}_{0}}}{{x}^{4}}{{t}^{-1}}+ \\ & \frac{6{{p}_{3}}(1-3{{p}_{1}})+2{{q}_{0}}{{q}_{2}}+{{q}^{2}}_{1}}{24{{p}_{0}}}{{x}^{4}}{{t}^{-1}}+\cdots , \\ & \rho \left( x,t \right)={{q}_{0}}{{t}^{-1}}+\frac{{{q}_{0}}(1-{{p}_{1}})}{{{p}_{0}}}x{{t}^{-1}}+\frac{{{q}_{1}}-2{{q}_{0}}{{p}_{2}}-2{{p}_{1}}{{q}_{1}}}{2{{p}_{0}}}{{x}^{2}}{{t}^{-1}}+\cdots , \\ \end{align}$
in terms of the above computation.
4.2 The power series solutions to (26)Now,we seek a solution of (26) in the form of the power series (29). Substituting (29) into (26) and comparing the coefficients,we obtain
$\begin{align} & {{p}_{1}}=-\frac{{{q}^{2}}_{0}}{3},~{{q}_{1}}=-2{{q}_{0}}{{p}_{0}}, \\ & {{p}_{2}}=\frac{3(-{{q}_{0}}{{q}_{1}}+4{{p}_{0}}{{p}_{1}})}{16}, \\ & {{p}_{3}}=\frac{2(-2{{q}_{0}}{{q}_{2}}-{{q}^{2}}_{1}+20{{p}_{0}}{{p}_{2}}+9{{p}^{2}}_{1})}{45}. \\ \end{align}$ (35)
Generally,for n≥0,we have
$\begin{align} & {{p}_{n+4}}=\frac{1}{{{\left( n+4 \right)}^{2}}\left( n+6 \right)} \\ & \{\sum\limits_{k=0}^{n}{[-\left( n-k+4 \right)}{{q}_{k}}{{q}_{n-k+3}}+\left( n-k+3 \right) \\ & (12+\left( n-k+2 \right)\left( n-k+9 \right)){{p}_{k}}{{p}_{n-k+3}}+ \\ & 2\left( k+1 \right)(n-k+2)\left( n-k+4 \right){{p}_{k+1}}{{p}_{n-k+2}}]- \\ & 3{{q}_{n+1}}{{q}_{2}}-2{{q}_{n+2}}{{q}_{1}}-{{q}_{n+3}}{{q}_{0}}+40{{p}_{n+1}}{{p}_{2}}+6\left( n+4 \right){{p}_{n+2}}{{p}_{1}}\}, \\ & {{q}_{n+2}}=\frac{1}{\left( n+2 \right)}\{\sum\limits_{k=0}^{n}{[\left( n-k+3 \right)}{{q}_{k}}{{p}_{n-k+1}}+\left( n-k+1 \right){{p}_{k}}{{q}_{n-k+1}}]+2{{q}_{n+1}}{{p}_{0}}\}. \\ \end{align}$ (36)
Thus,for arbitrarily chosen constants p0 and q0,from (36) we have
$\begin{align} & {{p}_{4}}=\frac{-5{{q}_{0}}{{q}_{3}}+90{{p}_{0}}{{p}_{3}}+80{{p}_{1}}{{p}_{2}}-5{{q}_{1}}{{q}_{2}}}{96}, \\ & {{q}_{2}}=\frac{3}{2}({{q}_{0}}{{p}_{1}}+{{q}_{1}}{{p}_{0}}), \\ \end{align}$ (37)
and so on.
Thus,for arbitrary chosen constants p0 and q0,the other terms of the sequence {pn}n=0 and {qn}n=0 can be determined successively from (35) and (36) in a unique manner. This implies that,for (26),there exists a power series solution (29) with the coefficients given by (35) and (36).
4.3 The power series solutions to (28)Similarly,we seek a solution of (28) in the form of the power series (29). Substituting (29) into (28) and comparing the coefficients,we obtain recursion formula
$\begin{align} & {{p}_{n+3}}=\frac{1}{c\left( n+1 \right)\left( n+2 \right)\left( n+3 \right)}\{c\left( n+1 \right){{p}_{n+1}}+ \\ & \sum\limits_{k=0}^{n}{\left( n+1-k \right)}[-3{{p}_{k}}{{p}_{n+1-k}}-{{q}_{k}}{{q}_{n+1-k}}+ \\ & 2\left( k+1 \right)\left( n+2-k \right){{p}_{k+1}}{{p}_{n+2-k}}+\left( n+3-k \right)\left( n+2-k \right){{p}_{k}}{{p}_{n+3-k}}]\}, \\ & {{q}_{n+1}}=\frac{1}{c\left( n+1 \right)}[\sum\limits_{k=0}^{n}{\left( n+1-k \right)}({{q}_{k}}{{p}_{n+1-k}}+{{p}_{k}}{{q}_{n+1-k}})], \\ \end{align}$ (38)
for all n=0,1,2,….
Thus,for arbitrarily chosen constants p0≠0,p1,p2,and q0,from (38),we obtain
$\begin{align} & {{p}_{3}}=\frac{c{{p}_{1}}-3{{p}_{0}}{{p}_{1}}+4{{p}_{1}}{{p}_{2}}+6{{p}_{0}}{{p}_{3}}-{{q}_{0}}{{q}_{1}}}{6c}, \\ & {{q}_{1}}=\frac{{{q}_{0}}{{p}_{1}}+{{q}_{1}}{{p}_{0}}}{c}, \\ \end{align}$ (39)
and so on.
Thus,for arbitrary chosen constants c≠0,p0≠0,p1,p2,and q0,the other terms of the sequence {pn}n=0 and {qn}n=0 can be determined successively from (38) in a unique manner. This implies that,for (28),there exists a power series solution (29) with the coefficients given by (38).
The approximate solution of (1) can be obtained in terms of the above computation. The details are omitted here.
Remark 4.1 The proofs for the convergence of the power series solutions to (26) and (28) are similar to the one for (24). The details are omitted here. We reiterate that the power series solutions which have been obtained in this paper are approximate solutions. Furthermore,such power series solutions converge quickly. So it is convenient for computations in both theory and application.
5 ConclusionsIn this paper,the exact solutions of the two-component Camassa-Holm equation have been studied by using Lie symmetry analysis and the power series method. The similarity reductions and exact solutions are given for the first time. These similarity solutions possess significant features in physical systems. The results of this paper show that the Lie symmetry analysis is a very powerful method.
References
[1] Olver P J, Rosenau P. Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support[J].Physical Review E, 1996, 53:1900–1906.
[2] Constantin A, Ivanov R I. On an integrable two-component Camassa-Holm shallow water system[J].Physics Letters A, 2008, 372:7129–7132.DOI:10.1016/j.physleta.2008.10.050
[3] Camassa R, Holm D. An integrable shallow water equation with peaked solitons[J].Phys Rev Lett, 1993, 71:1661–1664.DOI:10.1103/PhysRevLett.71.1661
[4] Constantin A, Lannes D. The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations[J].Arch Ration Mech Anal, 2009, 192:165–186.DOI:10.1007/s00205-008-0128-2
[5] Dullin H R, Gottwald G A, Holm D D. An integrable shallow water equation with linear and nonlinear dispersion[J].Phys Rev Lett, 2001, 87:4501–4504.
[6] Ionescu-Krus D. Variational derivation of the Camassa-Holm shallow water equation[J].J Nonlinear Math Phys, 2007, 14:303–312.
[7] Ivanov R I. Water waves and integrability[J].Philos Trans R Soc Lond Ser A Math Phys Eng Sci, 2007, 365:2267–2280.DOI:10.1098/rsta.2007.2007
[8] Johnson R S. Camassa-Holm, Korteweg-de Vries and related models for water waves[J].J Fluid Mech, 2002, 457:63–82.
[9] Constantin A, Strauss W A. Stability of a class of solitary waves in compressible elastic rods[J].Phys Lett A, 2000, 270:140–148.DOI:10.1016/S0375-9601(00)00255-3
[10] Dai H H. Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod[J].Acta Mech, 1998, 127:193–207.DOI:10.1007/BF01170373
[11] Constantin A. The Hamiltonian structure of the Camassa-Holm equation[J].Expo Math, 1997, 15:53–85.
[12] Fokas A, Fuchssteiner B. Symplectic structures, their Bcklund transformation and hereditary symmetries[J].Phys D, 1981, 4:47–66.DOI:10.1016/0167-2789(81)90004-X
[13] Constantin A. On the scattering problem for the Camassa-Holm equation[J].Proc R Soc Lond Ser A Math Phys Eng Sci, 2001, 457:953–970.DOI:10.1098/rspa.2000.0701
[14] Lakshmanan M. Tsunami and nonlinear waves[M].Berlin: Springer, 2007.
[15] Constantin A, Johnson R S. Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis[J].Fluid Dynam Res, 2008, 4:175–211.
[16] Constantin A, Escher J. Global existence and blow-up for a shallow water equation[J].Ann Sc Norm Super Pisa Cl Sci, 1998, 26:303–328.
[17] Constantin A, Escher J. Well-posedness, global existence and blowup phenomena for a periodic quasi-linear hyperbolic equation[J].Comm Pure Appl Math, 1998, 51:475–504.DOI:10.1002/(ISSN)1097-0312
[18] Danchin R. A few remarks on the Camassa-Holm equation[J].Differential Integral Equations, 2001, 14:953–988.
[19] Escher J, Yin Z. Initial boundary value problems of the Camassa-Holm equation[J].Comm Partial Differential Equations, 2008, 33:377–395.
[20] Escher J, Yin Z. Initial boundary value problems for nonlinear dispersive wave equations[J].J Funct Anal, 2009, 25:479–508.
[21] Constantin A. Existence of permanent and breaking waves for a shallow water equation: a geometric approach[J].Ann Inst Fourier (Grenoble), 2000, 50:321–362.DOI:10.5802/aif.1757
[22] Constantin A, Escher J. On the blow-up rate and the blow-up of breaking waves for a shallow water equation[J].Math Z, 2000, 233:75–91.DOI:10.1007/PL00004793
[23] Escher J, Lechtenfeld O, Yin Z. Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation[J].Discrete Contin Dyn Syst Ser A, 2007, 19:493–513.DOI:10.3934/dcdsa
[24] Olver P J. Grauate texts in mathematics[M].New York: Springer, 1993.
[25] Bluman G, Anco S. Symmetry and integration methods for differential equations[M].New York: Springer-Verlag, 2002.
[26] Sinkala W, Leach P, Hara J O. Invariance properties of a general-pricing equation[J].J Differential Equations, 2008, 244:2820–2835.DOI:10.1016/j.jde.2008.02.044
[27] Craddock M, Lennox K. Lie group symmetries as integral transforms of fundamental solutions[J].J Differential Equations, 2007, 232:652–674.DOI:10.1016/j.jde.2006.07.011
[28] Liu H, Li J, Liu L. Conservation law classification and integrability of generalized nonlinear second-order equation[J].Commun Theor Phys, 2011, 56:987–991.DOI:10.1088/0253-6102/56/6/02
[29] Asmar N H. Partial differential equations with fourier series and boundary value problems[M].2nd ed. Beijing: China Machine Press, 2005.
[30] Rudin W. Principles of mathematical analysis[M].Beijing: China Machine Press, 2004.


相关话题/原文 太原理工大学 物理 数学学院 方程

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 判断有理系数多项式方程是否存在实数解的初等方法
    王蒙,陈玉福中国科学院大学数学科学学院,北京1000492015年03月18日收稿;2015年04月14日收修改稿基金项目:国家自然科学基金(11271363)资助通信作者:E-mail:kami518@126.com摘要:给出判断有理系数多元多项式方程组是否存在实数解的初等方法,从而证明多元多项式 ...
    本站小编 Free考研考试 2021-12-25
  • 非连续变形分析中方程组的并行化求解方法
    肖云帆,肖俊,缪青海,王颖中国科学院大学工程科学学院,北京1000492017年01月09日收稿;2017年02月24日收修改稿基金项目:国家自然科学基金(61471338)、中国科学院青年促进会(2015361)、中国科学院前沿科学重点研究项目(QYZDY-SSW-SYS004)和北京市科技新星计 ...
    本站小编 Free考研考试 2021-12-25
  • 增强型地热系统的多区域多物理场耦合三维数值模拟
    丁军锋,王世民中国科学院大学地球与行星科学学院,北京100049;中国科学院计算地球动力学重点实验室,北京1000492018年4月13日收稿;2018年4月27日收修改稿基金项目:国家自然科学基金(41374090,41674086)和中国科学院“****”项目资助通信作者:王世民,E-mail: ...
    本站小编 Free考研考试 2021-12-25
  • 一类具有强奇性的矩阵型偏微分方程的正解的存在性
    双震,孙义静中国科学院大学数学科学学院,北京1000492018年1月22日收稿;2018年4月13日收修改稿基金项目:国家自然科学基金(11571339,11771468)资助通信作者:双震,E-mail:shuangzhen16@mails.ucas.edu.cn摘要:研究矩阵型强奇异偏微分方程 ...
    本站小编 Free考研考试 2021-12-25
  • 一类带Hardy-Sobolev临界指数的Kirchhoff型方程正解的存在性
    李红英1,廖家锋1,21.西华师范大学数学与信息学院,四川南充63700;2.遵义师范学院数学学院,贵州遵义5630062017年5月8日收稿;2017年11月16日收修改稿基金项目:西华师范大学英才科研基金(17YC383)、贵州省教育厅创新群体重大项目(黔教合KY[2016]046)、贵州省科技 ...
    本站小编 Free考研考试 2021-12-25
  • 基于Hamilton体系的Lagrange方程盒式倾转旋翼无人机建模*
    随着“V-247”、“鹰眼”等倾转旋翼飞行器的产生,飞行器的发展已由传统的单一模式逐步向变体以及多功能多用途模式发展。倾转旋翼飞行器属于变体类飞行器的一大重要分支,目前国内外众多****已经对倾转旋翼飞行器的布局、气动[1]及结构[2]进行了深入的研究。针对其动力学模型,国内文献[3-5]和国外文献 ...
    本站小编 Free考研考试 2021-12-25
  • AUV自航对接的类物理数值模拟*
    自主水下机器人(AutonomousUnderwaterVehicle,AUV)水下对接能解决AUV能源受限问题,延长其水下作业时间,使AUV在全生命周期内智能化,在军民海洋网络中发挥重要的远程作战和协同作业能力。这促进了AUV水下对接系统[1]的发展。分析对接系统的结构和后期的试验结果表明:对接过 ...
    本站小编 Free考研考试 2021-12-25
  • 热力耦合问题数学均匀化方法的物理意义*
    复合材料具有比强度高、比刚度大等优点,广泛应用于航天、航空工业领域。众所周知,对于很多复合材料的宏观解,如低阶频率和模态,可以使用等应变模型或等应力模型[1]及其他均匀化方法[2]求解,但相对于宏观应力分析,细观结构分析要复杂很多。为了在计算精度和效率之间达到平衡,各种多尺度方法相继被提出,如数学均 ...
    本站小编 Free考研考试 2021-12-25
  • 基于凯恩方程的无人机伞降回收动力学建模与仿真*
    随着美国X47b、欧洲“神经元”等无人机的问世,飞翼类[1-2]无人机已逐步成为国内外研究的热点,飞翼类无人机具有升阻比高等特性,这些特性在无人机起飞时具有较大优势,但飞翼无人机在着陆时尤其对于低翼载飞翼无人机而言,其着陆轨迹容易受到风力的影响,而飞翼无人机本身又不是很稳定,因此将会对此类无人机的安 ...
    本站小编 Free考研考试 2021-12-25
  • 六相永磁容错轮毂电机多物理场综合设计方法*
    电动装甲车兴起于20世纪60年代,相比于传统装甲车辆,电驱动装甲车省去了传动轴等机械部件,对车的牵引力控制可直接通过电机控制器完成,极大地提高了整车机动性[1-2]。轮毂电机作为电驱动系统的核心部件,其性能优劣对整车系统的可靠性有直接影响。装甲车工况复杂多变,恶劣的工作环境导致电机更容易出现故障[3 ...
    本站小编 Free考研考试 2021-12-25