删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一类具有强奇性的矩阵型偏微分方程的正解的存在性

本站小编 Free考研考试/2021-12-25

双震, 孙义静
中国科学院大学数学科学学院, 北京 100049
2018年1月22日 收稿; 2018年4月13日 收修改稿
基金项目: 国家自然科学基金(11571339,11771468)资助
通信作者: 双震, E-mail:shuangzhen16@mails.ucas.edu.cn

摘要: 研究矩阵型强奇异偏微分方程 $\left\{ \begin{array}{l} - {\rm{div}}(M\left( x \right)\nabla u) = {\rm{ }}f\left( x \right){u^{ - p}} + \lambda {u^q},\;\;\;\;\;\;{\rm{in}}~\Omega ,\\u > 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{in}}~\Omega ,\\u = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{on}}\;\partial \Omega ,\end{array} \right.$ 其中,$ \Omega \subset {{\mathbb{R}}^{n}}$是有界开集,Mx)是定义在Ω上的实对称矩阵,$ -p <-1, \text{ }0 <q <1, \lambda >0$是参数,$f\left( x \right)\in {{L}^{1}}\left( \Omega \right), \text{ }f\left( x \right)>0~\ \ \text{a}\text{.e}\text{.}\ \ \text{ in}\ \ ~\Omega $。证明,如果存在${{u}_{0}}~\in H_{0}^{1}\left( \Omega \right) $满足$\int_{\Omega }{{}}f\left( x \right){{\left| {{u}_{0}} \right|}^{1-p}}{\rm{d}}x\text{ } <+\infty $,则对任意的λ>0上述方程都有正H01-解,即慢速解。我们注意到,对于奇异方程,古典解即${{C}^{2}}\left( \Omega \right)\cap C\left( {\bar{\Omega }} \right) $解不一定是$ H_{0}^{1}\left( \Omega \right)$解。
关键词: H01-解实对称矩阵强奇性
Exsitence of positive solutions for matrix-type partial differential equations with strongly singular nonlinearities
SHUANG Zhen, SUN Yijing
School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China


Abstract: We investigate the strongly singular partial differential equations of matrix-type, $\left\{ \begin{array}{l} - {\rm{div}}(M\left( x \right)\nabla u) = {\rm{ }}f\left( x \right){u^{ - p}} + \lambda {u^q},\;\;\;\;\;\;{\rm{in}}~\Omega ,\\u > 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{in}}~\Omega ,\\u = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{on}}\;\partial \Omega ,\end{array} \right.$ where Ω is a bound and open set in $ {{\mathbb{R}}^{n}}$, M(x) is a real symmetric matrix on Ω, $-p <-1, \text{ }0 <q <1, \lambda >0 $ are parameters, f(x)∈L1(Ω), f(x)>0 a.e. in Ω. We prove that the above-mentioned equation admits at least one positive H01-solution when λ>0 if there exists ${{u}_{0}}~\in H_{0}^{1}\left( \Omega \right) $ such that $\int_{\Omega }{{}}f\left( x \right){{\left| {{u}_{0}} \right|}^{1-p}}{\rm{d}}x\text{ } <+\infty $. It should be noted that a classical solution, namely, the $ {{C}^{2}}\left( \Omega \right)\cap C\left( {\bar{\Omega }} \right)$ -solution, is not necessarily a $ H_{0}^{1}\left( \Omega \right)$ -solution for singular equations.
Keywords: H01-solutionreal symmetric matrixstrong singularity
本文研究一类具有强奇性的矩阵型偏微分方程。
$\left\{ {\begin{array}{*{20}{l}}{ - {\mathop{\rm div}\nolimits} \left( {\mathit{\boldsymbol{M}}(x){\nabla _u}} \right) = f(x){u^{ - p}} + \lambda {u^q},}&{{\rm{in }}\;\;\;\Omega ,}\\{u > 0,}&{{\rm{in }}\;\;\;\Omega ,}\\{u = 0,}&{{\rm{on }}\;\;\;\partial \Omega ,}\end{array}} \right.$ (1)
其中$ \Omega \subset {{\mathbb{R}}^{n}}$是有界开集, M(x)是Ω上实对称矩阵, 满足存在正常数α, β使得$\mathit{\boldsymbol{M}}\left( x \right)\xi \cdot\xi \ge \alpha {\left| \xi \right|^2}, |{\rm{det}}\;\mathit{\boldsymbol{M}}\left( x \right)|{\rm{ }} \le \beta , \forall \xi \in {{\mathbb{R}}^n}, \forall x \in \Omega , - p < - 1, {\rm{ }}0 < q < 1, {\rm{ }}f\left( x \right) > 0\;\;{\rm{a}}{\rm{.e}}{\rm{.}}\;\;{\rm{in}}\;\;{\rm{ }}\Omega , \lambda > 0 $是参数。
1991年, 美国数学家Lazer和McKenna[1]研究一类特殊情形M(x)≡I, λ=0, 即方程$ - \Delta u = h\left( x \right){u^{ - p}}$。得到如下结果:如果$h\left( x \right) \in {C^\alpha }(\bar \Omega )\left( {0 <\alpha <1} \right), h\left( x \right) > 0, \forall x \in \bar \Omega $, 那么对任一-p < 0方程存在唯一解${u_{ - p}} \in {C^{2 + \alpha }}(\Omega ) \cap C(\bar \Omega ), {\rm{ }}{u_{ - p}} $不属于${C^1}(\bar \Omega ) $如果-p < -1, u-p属于H01(Ω)当且仅当-p>-3。其实当-p < -1时u-p的梯度在$\partial \Omega $处爆破, 当-p≤-3时u-p的梯度的爆破速度快到没有L2可积性, 即${\smallint _\Omega }|\nabla {u_{ - p}}{|^2}{\rm{d}}x = + \infty $.这就好像唯一解u-p随着-p→-∞在Ω的边界附近变得越来越陡峭。意大利数学家Boccardo和Orsina[2]证明当f(x)是非负L1可积函数并且λ=0时, 对任意的-p < -1方程存在Hloc1(Ω)解u${u^{\frac{{1 + p}}{2}}} \in H_0^1(\Omega ) $。关于矩阵型方程的解的存在性问题, 其中矩阵的性质如前文所述, Boccardo和其他数学家做出过大量研究, 详情可见文献[3-7]。本文处理问题的主要思想来源于文献[8-11]。
1 本文的结论定理1.1??设Ω是${{\mathbb{R}}^{n}}$中具有光滑边界的有界开集, 其中n≥3, M(x)是定义在Ω上的实对称矩阵, 满足存在正常数α, β使得$\mathit{\boldsymbol{M}}\left( x \right)\xi \cdot\xi \ge \alpha {\left| \xi \right|^2}, {\rm{ }}|{\rm{det}}\;M\left( x \right)|{\rm{ }} \le \beta , {\rm{ }}\forall \xi \in {{\mathbb{R}}^{n}}, \forall x \in \Omega , - p < - 1, {\rm{ }}0 <q < 1, {\rm{ }}f\left( x \right) > 0\;\;{\rm{a}}{\rm{.e}}{\rm{. }}\;\;{\rm{in}}\;\;{\rm{ }}\Omega . $如果存在$ {u_0} \in H_0^1\left( \Omega \right)$满足
$\int_{\Omega} f(x)\left|u_{0}\right|^{1-p} \mathrm{d} x<+\infty,$ (2)
那么对每一个λ>0方程(1)都有$H_0^1(\Omega ) $-解。
定理1.2 ??设Ω是${{\mathbb{R}}^{n}}$中包含原点的具有光滑边界的有界开集, n≥3, M(x)是Ω上的实对称矩阵满足定理1.1中的条件, 0 < μ < n, -3 < -p < -1, 则对任意的λ>0, 在$f\left( x \right) = {\left| x \right|^{ - \mu }} $的情况下方程(1)存在正解$ {u_\lambda } \in H_0^1(\Omega )$
注:在定理1.1和定理1.2中, 要求Ω具有光滑边界, 实际上只要Ω具有锥性质就足够了。因为只需要保证Sobolev嵌入定理成立, 具体可见文献[12]。
我们称u是方程(1)的$H_0^1(\Omega ) $-解, 如果$ u \in H_0^1(\Omega )$, u>0 a.e. in Ω, 满足$\forall \varphi \in H_0^1(\Omega ), {\smallint _\Omega }\mathit{\boldsymbol{M}}\left( x \right)\nabla {\rm{ }}u\cdot\nabla {\rm{ }}\varphi {\rm{d}}x - {\smallint _\Omega }\frac{{f\left( x \right)}}{{{u^p}}}\cdot{\rm{ }}\varphi {\rm{d}}x - \lambda {\smallint _\Omega }{u^q}\varphi {\rm{d}}x = 0. $
由于M(x)是实对称矩阵$ (\mathit{\boldsymbol{M}}\left( x \right)\nabla u\cdot\nabla \varphi = {\rm{ }}\mathit{\boldsymbol{M}}\left( x \right)\nabla \varphi \cdot\nabla u)$, 故考虑如下的能量泛函:
$\begin{array}{l}I(u) = \frac{1}{2}\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla u \cdot \nabla u{\rm{d}}x + \\\;\;\;\;\;\;\;\;\;\;\frac{1}{{p - 1}}\int_\Omega f (x)|u{|^{1 - p}}{\rm{d}}x - \\\;\;\;\;\;\;\;\;\;\;\frac{\lambda }{{1 + q}}\int_\Omega | u{|^{1 + q}}{\rm{d}}x.\end{array}$ (3)
需要注意, 由于强奇性(-p < -1), 泛函I$H_0^1(\Omega ) $上有奇性。我们将通过对如下两个约束集合之间的交替运用讨论方程(1)的可解性。
$\begin{array}{l}{N_1}: = \left\{ {u \in H_0^1(\Omega ):u > 0{\rm{ a}}{\rm{.e}}{\rm{.e}}{\rm{.in }}\Omega {\rm{ and }}} \right.\\\;\;\;\;\;\;\;\;\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla u \cdot \nabla u{\rm{d}}x - \int_\Omega f (x){u^{1 - p}}{\rm{d}}x - \\\;\;\;\;\;\;\;\;\left. {\lambda \int_\Omega {{u^{1 + q}}} {\rm{d}}x \ge 0} \right\},\end{array}$ (4)
$\begin{array}{l}{N_2}: = \left\{ {u \in H_0^1(\Omega ):u > 0{\rm{ a}}{\rm{.e}}{\rm{. in }}\Omega {\rm{ and }}} \right.\\\;\;\;\;\;\;\;\;\;\int_\Omega M (x){\nabla _u} \cdot \nabla u{\rm{d}}x - \int_\Omega f (x){u^{1 - p}}{\rm{d}}x - \\\;\;\;\;\;\;\;\;\;\left. {\lambda \int_\Omega {{u^{1 + q}}} {\rm{d}}x = 0} \right\}.\end{array}$ (5)
这里用‖·‖表示$H_0^1(\Omega ) $中常用的范数, 即$ \parallel u\parallel = {\left( {{\smallint _\Omega }|\nabla u{|^2}{\rm{d}}x} \right)^{\frac{1}{2}}}$
2 定理的证明先介绍一些引理。
引理2.1 ??设M(x)是定义Ω上实对称矩阵, 满足存在正常数α, β使得$ \mathit{\boldsymbol{M}}\left( x \right)\mathit{\boldsymbol{\xi }}\cdot\mathit{\boldsymbol{\xi }} \ge \alpha {\mathit{\boldsymbol{\xi }}^2}, |{\rm{det}}\;\mathit{\boldsymbol{M}}\left( x \right)|{\rm{ }} \le \beta , \forall \mathit{\boldsymbol{\xi }} \in {{{\mathbb{R}}^{n}}}, \forall x \in \Omega $
$\begin{array}{*{20}{c}} {|\mathit{\boldsymbol{M}}(x)\mathit{\boldsymbol{\xi }} \cdot \mathit{\boldsymbol{\eta }}| \leqslant \frac{\beta }{{{\alpha ^{n - 1}}}}|\mathit{\boldsymbol{\xi }}||\mathit{\boldsymbol{\eta }}|,} \\ {\forall x \in \Omega ,\forall \mathit{\boldsymbol{\xi }},\mathit{\boldsymbol{\eta }} \in {\mathbb{R}^n}.} \end{array}$ (6)
证明??固定x∈Ω。因为M(x)是实对称矩阵, 所以存在正交矩阵Q(x)使得
$\mathit{\boldsymbol{Q}}{\left( x \right)^{\text{T}}}\mathit{\boldsymbol{M}}\left( x \right)\mathit{\boldsymbol{Q}}\left( x \right) = \left( {\begin{array}{*{20}{c}} {{\lambda _1}\left( x \right)}&{}&{} \\ {}& \ddots &{} \\ {}&{}&{{\lambda _n}\left( x \right)} \end{array}} \right)$
其中$ {\lambda _i}\left( x \right), i = 1, \ldots , n, $是矩阵M(x)的特征值, 且${\lambda _i}\left( x \right) \ge \alpha > 0, i = 1, \ldots , n $, 这是因为λi(x)是M(x)的特征值, 所以存在x0≠0, 满足M(x)x0=λi(x)x0, 从而$ \alpha |{x_0}{|^2} \le \mathit{\boldsymbol{M}}\left( x \right){x_0}\cdot{x_0} = {\lambda _i}\left( x \right){x_0}\cdot{x_0} = {\lambda _i}\left( x \right)|{x_0}{|^2}$, 故${\lambda _i}\left( x \right) \ge \alpha , i = 1 \ldots n $
对任意$ \mathit{\boldsymbol{\xi }}, \mathit{\boldsymbol{\eta }} \in {{{\mathbb{R}}^{n}}}$, 令$\mathit{\boldsymbol{x}} = {\rm{ }}{\mathit{\boldsymbol{Q}}^{\rm{T}}}\mathit{\boldsymbol{\xi }}, \mathit{\boldsymbol{y}} = \mathit{\boldsymbol{ }}{\mathit{\boldsymbol{Q}}^{\rm{T}}}\mathit{\boldsymbol{\eta }} $, 则$\mathit{\boldsymbol{M\xi }}\cdot\mathit{\boldsymbol{\eta }} = {\rm{ }}\mathit{\boldsymbol{x}}{\mathit{\boldsymbol{Q}}^{\rm{T}}}\mathit{\boldsymbol{MQy}} = {\lambda _1}{x_1}{y_1} + {\lambda _2}{x_2}{y_2} + \ldots + {\lambda _n}{x_n}{y_n}$, 故
$\begin{array}{l}\left| {\mathit{\boldsymbol{M\xi }} \cdot \mathit{\boldsymbol{\eta }}} \right| = \left| {\sum\limits_{i = 1}^n {{\lambda _i}{x_i}{y_i}} } \right|\\ = \left| {\left( {\prod\limits_{i = 1}^n {{\lambda _i}} } \right)\left( {\frac{{{\lambda _1}}}{{\Pi {\lambda _i}}}{x_1}{y_1} + \frac{{{\lambda _2}}}{{\Pi {\lambda _i}}}{x_2}{y_2} + \cdots + \frac{{{\lambda _n}}}{{\Pi {\lambda _i}}}{x_n}{y_n}} \right)} \right|\\ = |\det \mathit{\boldsymbol{M}}(x)|\left| {\left( {\frac{{{\lambda _1}}}{{\Pi {\lambda _i}}}{x_1}{y_1} + \frac{{{\lambda _2}}}{{\Pi {\lambda _i}}}{x_2}{y_2} + \cdots + \frac{{{\lambda _n}}}{{\Pi {\lambda _i}}}{x_n}{y_n}} \right)} \right|\\ \le \frac{\beta }{{{\alpha ^{n - 1}}}}\left| \mathit{\boldsymbol{x}} \right|\left| \mathit{\boldsymbol{y}} \right| = \frac{\beta }{{{\alpha ^{n - 1}}}}|\mathit{\boldsymbol{\xi }}||\mathit{\boldsymbol{\eta }}|,\end{array}$
因为$ {\left| \mathit{\boldsymbol{x}} \right|^2} = {\mathit{\boldsymbol{x}}^{\rm{T}}}\mathit{\boldsymbol{x}} = {({\mathit{\boldsymbol{Q}}^{\rm{T}}}\mathit{\boldsymbol{\xi }})^{\rm{T}}}{\mathit{\boldsymbol{Q}}^{\rm{T}}}\mathit{\boldsymbol{\xi }} = {\rm{ }}{\mathit{\boldsymbol{\xi }}^{\rm{T}}}\mathit{\boldsymbol{Q }}{\mathit{\boldsymbol{Q}}^{\rm{T}}}\mathit{\boldsymbol{\xi }} = {\rm{ }}{\mathit{\boldsymbol{\xi }}^{\rm{T}}}\mathit{\boldsymbol{\xi }} = {\rm{ }}{\left| \mathit{\boldsymbol{\xi }} \right|^2}$, 同理|y|2=|η|2
引理2.2??在$H_0^1(\Omega ) $上定义$ \parallel u{\parallel _1} = {\left( {{\smallint _\Omega }\mathit{\boldsymbol{M}}\left( x \right)\nabla u\cdot\nabla u} \right)^{\frac{1}{2}}}$, 可证‖·‖1$H_0^1(\Omega ) $的范数且与‖·‖范数等价, 从而对偶空间相同, 即
$\left(H_{0}^{1}(\Omega),\|\cdot\|_{1}\right)^{*}=\left(H_{0}^{1}(\Omega),\|\cdot\|\right)^{*}。$
证明??根据M(x)的性质和引理2.1, 可以得到
$\begin{array}{l}0 \le \alpha \int_\Omega | \nabla u{|^2} \le \int_\Omega \mathit{\boldsymbol{M}} (x)\nabla u \cdot \nabla u\\\;\; \le \int_\Omega {\left| {\mathit{\boldsymbol{M}}(x)\nabla u \cdot \nabla u} \right|} \le \frac{\beta }{{{\alpha ^{n - 1}}}}\int_\Omega | \nabla u{|^2} < + \infty .\end{array}$
从而‖·‖1:$H_0^1(\Omega ) $→[0, +∞)是非负泛函, 而且知道如果‖·‖1是范数, 则必与范数‖·‖等价。下面证明‖·‖1$H_0^1(\Omega ) $上的范数, 只需验证三角不等式, 其他显然。
$\begin{array}{l}\left\| {u + v} \right\|_1^2 = \int_\Omega \mathit{\boldsymbol{M}} (x)\nabla (u + v) \cdot \nabla (u + v)\\\;\;\;\;\;\;\;\;\;\;\;\; = \int_\Omega \mathit{\boldsymbol{M}} \nabla u \cdot \nabla u + 2\int_\Omega \mathit{\boldsymbol{M}} \nabla u \cdot \nabla v + \\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\int_\Omega \mathit{\boldsymbol{M}} \nabla v \cdot \nabla v,\end{array}$ (7)
$\begin{array}{*{20}{r}}{{{\left( {{{\left\| u \right\|}_1} + {{\left\| v \right\|}_1}} \right)}^2} = \int_\Omega \mathit{\boldsymbol{M}} \nabla u \cdot \nabla u + \int_\Omega \mathit{\boldsymbol{M}} \nabla v \cdot \nabla v + }\\{2{{\left( {\int_\Omega \mathit{\boldsymbol{M}} \nabla u \cdot \nabla u} \right)}^{\frac{1}{2}}}{{\left( {\int_\Omega \mathit{\boldsymbol{M}} \nabla v \cdot \nabla v} \right)}^{\frac{1}{2}}}.}\end{array}$
由于M(x)是正定矩阵, 从而存在实可逆矩阵M1(x)使得$\mathit{\boldsymbol{M}} = \mathit{\boldsymbol{M}}_1^{\rm{T}}{\mathit{\boldsymbol{M}}_1} $, 从而
$\begin{array}{l}\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla u \cdot \nabla v \le \int_\Omega {\left| {{\mathit{\boldsymbol{M}}_1}(x)\nabla u \cdot {\mathit{\boldsymbol{M}}_1}(x)\nabla v} \right|} \\\;\;\;\; \le \int_\Omega {\left| {{\mathit{\boldsymbol{M}}_1}(x)\nabla u} \right|} \cdot \left| {{\mathit{\boldsymbol{M}}_1}(x)\nabla v} \right|\\\;\;\;\; \le {\left( {\int_\Omega {{{\left| {{\mathit{\boldsymbol{M}}_1}(x)\nabla u} \right|}^2}} } \right)^{\frac{1}{2}}}{\left( {\int_\Omega {{{\left| {{\mathit{\boldsymbol{M}}_1}(x)\nabla v} \right|}^2}} } \right)^{\frac{1}{2}}}\\\;\;\;\; = {\left( {\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla u \cdot \nabla u} \right)^{\frac{1}{2}}}{\left( {\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla v \cdot \nabla v} \right)^{\frac{1}{2}}}.\end{array}$ (8)
结合式(7), 可推得
$\|u+v\|_{1} \leqslant\|u\|_{1}+\|v\|_{1} .$
故‖·‖1$H_0^1(\Omega ) $的范数, 与范数‖·‖等价。所以有
$\left(H_{0}^{1}(\Omega),\|\cdot\|_{1}\right)^{*}=\left(H_{0}^{1}(\Omega),\|\cdot\|\right)^{*}.$
引理2.3 ??N1是闭集。
证明??设$ {u_i} \to u(H_0^1(\Omega ))$${u_i} \in {N_1} $, 则存在ui的子列(仍记为ui), 满足$ {u_i}\left( x \right) \to u\left( x \right)\;\;{\rm{ a}}{\rm{.e}}{\rm{. }}\;\;{\rm{ in}}\;\;{\rm{ }}\Omega .$由于${u_i} > 0\;\;{\rm{ a}}{\rm{.e}}{\rm{. }}\;\;{\rm{ in}}\;\;{\rm{ }}\Omega $, 所以$u \ge 0\;\;{\rm{ a}}{\rm{.e}}{\rm{. }}\;\;{\rm{ in}}\;\;\Omega $。由于$ {u_i} \in {N_1}, {\rm{ }}f\left( x \right) > 0\;\;{\rm{ a}}{\rm{.e}}{\rm{. }}\;\;{\rm{ in}}\;\Omega , \lambda > 0$以及引理2.1, 可知
$\begin{array}{l}\int_\Omega f (x)u_i^{1 - p}{\rm{d}}x \le \int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla u\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \le \frac{\beta }{{{\alpha ^{n - 1}}}}\int_\Omega {{{\left| {\nabla {u_i}} \right|}^2}} {\rm{d}}x,\end{array}$
从而
$\begin{array}{l}\mathop {\lim \inf }\limits_{i \to \infty } \int_\Omega f (x)u_i^{1 - p}{\rm{d}}x \le \mathop {\lim \inf }\limits_{i \to \infty } \frac{\beta }{{{\alpha ^{n - 1}}}}\int_\Omega {{{\left| {\nabla {u_i}} \right|}^2}} {\rm{d}}x\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \frac{\beta }{{{\alpha ^{n - 1}}}}\int_\Omega {{{\left| {\nabla u} \right|}^2}{\rm{d}}x} < + \infty .\end{array}$
根据Fatou引理知$f\left( x \right){u^{1 - p}} = \mathop {{\rm{lim }}\;{\rm{inf}}}\limits_{i \to \infty } {\rm{ }}f\left( x \right)u_i^{1 - p} $是Ω内可积函数$ (u > 0\;\;{\rm{ a}}{\rm{.e}}{\rm{. }}\;\;{\rm{ in}}\;{\rm{ }}\Omega )$, 而且
$\begin{array}{l}\int_\Omega f (x){u^{1 - p}}{\rm{d}}x \le \mathop {\lim \inf }\limits_{i \to \infty } \int_\Omega f (x)u_i^{1 - p}{\rm{d}}x\\ \le \mathop {\lim \inf }\limits_{i \to \infty } \left[ {\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla {u_i}{\rm{d}}x - \frac{\lambda }{{1 + q}}\int_\Omega {u_i^{1 + q}} {\rm{d}}x} \right].\end{array}$ (9)
因为$H_0^1(\Omega ) \to {L^{1 + q}}(\Omega )$是紧嵌入, 所以${\smallint _\Omega }u_i^{1 + q}{\rm{d}}x \to {\rm{ }}{\smallint _\Omega }{u^{1 + q}}{\rm{d}}x $。根据引理2.2可知$ {\smallint _\Omega }\mathit{\boldsymbol{M}}\left( x \right)\nabla {u_i}\cdot\nabla {u_i}{\rm{d}}x \to {\rm{ }}{\smallint _\Omega }\mathit{\boldsymbol{M}}\left( x \right)\nabla u\cdot\nabla u{\rm{d}}x$。再由式(9), 可得
$\begin{array}{l}\int_\Omega f (x){u^{1 - p}}{\rm{d}}x \le \int_\Omega \mathit{\boldsymbol{M}} (x)\nabla u \cdot \nabla u{\rm{d}}x - \\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\frac{\lambda }{{1 + q}}\int_\Omega {{u^{1 + q}}} {\rm{d}}x,\end{array}$
所以uN1。因此N1是闭集。
引理2.4 ??设u0$H_0^1(\Omega ) $, 满足
$\int_\Omega f (x){\left| {{u_0}} \right|^{1 - p}}{\rm{d}}x < + \infty ,$
则存在唯一的${t_0} = t({u_0}) > 0 $, 使得
1) $ I(t({u_0}){u_0}) \le I(t{u_0})\;\;{\rm{ }}\forall t > 0$, 即在t(u0)点达到最小值;
2) t(u0)u0N2
证明 ??因为${\smallint _\Omega }f\left( x \right)|{u_0}{|^{1 - p}}{\rm{d}}x < + \infty , {\rm{ }} - p < - 1 $, 所以$ {u_0} \ne 0$, 从而有${\smallint _\Omega }\mathit{\boldsymbol{M}}\left( x \right)\nabla {u_0}\cdot\nabla {u_0} \ge \alpha {\smallint _\Omega }|\nabla {u_0}{|^2} > 0 $。又由于f(x)>0, 可知$ {\smallint _\Omega }f\left( x \right)|{u_0}{|^{1 - p}} > 0$
$\begin{array}{l}\frac{{{\rm{d}}I\left( {t{u_0}} \right)}}{{{\rm{d}}t}} = t\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_0} \cdot \nabla {u_0} - {t^{ - p}}\int_\Omega f (x){\left| {{u_0}} \right|^{1 - p}} - \\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\lambda {t^q}\int_\Omega {{{\left| {{u_0}} \right|}^{1 + q}}} ,\end{array}$ (10)
容易看出dI(tu0)/dt在(0, +∞)内有唯一零点, 记为t(u0)=t0, 而且在区间(0, t0)内dI(tu0)/dt < 0, 在区间(t0, +∞)内dI(tu0)/dt>0, 说明I(tu0), $ \forall $t>0在(0, t0]单调递减, 在[t0, +∞)单调递增, 所以I(tu0), t >0在t0处取得最小值, 从而式(1)成立。另外还可得到
$\begin{array}{l}t_0^2\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_0} \cdot \nabla {u_0}{\rm{d}}x - t_0^{1 - p}\int_\Omega f (x){\left| {{u_0}} \right|^{1 - p}}{\rm{d}}x - \\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\lambda t_0^{1 + q}\int_\Omega {{{\left| {{u_0}} \right|}^{1 + q}}} {\rm{d}}x = 0,\end{array}$ (11)
所以t(u0)u0N2
引理2.5??泛函IN1中下半连续。
证明??设uiu ($H_0^1(\Omega ) $)且uiN1, 要证
$I(u) \le \mathop {\lim }\limits_{i \to \infty } \inf I\left( {{u_i}} \right).$ (12)
同引理2.3中的证明,由Fatou引理可知对ui的一个子列成立(仍记为ui)
$\frac{1}{{p - 1}}\int_\Omega f (x){u^{1 - p}}{\rm{d}}x \le \mathop {\lim \inf }\limits_{i \to \infty } \frac{1}{{p - 1}}\int_\Omega f (x)u_i^{1 - p}{\rm{d}}x.$
通过$ H_0^1(\Omega )\hookrightarrow {\rm{ }}{L^{1 + q}}(\Omega ) $是紧嵌入以及引理2.2即得式(12).
引理2.6??存在常数C0>0,使得$ \forall u \in {N_1}, \parallel u\parallel \ge {C_0}$
证明 ??设uN1, 则
$\frac{\beta }{{{\alpha ^{n - 1}}}}{\left\| u \right\|^2} \ge \int_\Omega {\left| {\mathit{\boldsymbol{M}}(x)\nabla u \cdot \nabla u} \right|} \ge \int_\Omega f (x){u^{1 - p}}.$
由反向H?lder不等式和Poincaré不等式可以得到
$\begin{array}{*{20}{c}}{\int_\Omega f (x){u^{1 - p}}{\rm{d}}x \ge {{\left( {\int_\Omega f {{(x)}^{\frac{1}{p}}}} \right)}^p}{{\left( {\int_\Omega u } \right)}^{1 - p}},}\\{\int_\Omega u {\rm{d}}x \le {{\left( {\int_\Omega {{u^2}} {\rm{d}}x} \right)}^{\frac{1}{2}}}|\Omega {|^{\frac{1}{2}}},}\\{{{\left( {\int_\Omega u {\rm{d}}x} \right)}^{1 - p}} \ge C{{\left\| u \right\|}^{1 - p}}.}\end{array}$
从而可以得到
$\|u\| \geqslant C_{0}.$
(这里C0与Ω, β, α, p, f(x)有关。)
引理2.7??定义$J\left( u \right) = {\smallint _\Omega }\mathit{\boldsymbol{M}}\left( x \right)\nabla u\cdot\nabla \varphi {\rm{d}}x $, 则$J\left( u \right), \forall u \in H_0^1(\Omega )$是有界线性泛函。
证明??根据引理2.1和H?lder不等式, 可得$\mathit{\boldsymbol{M}}\left( x \right)\nabla u\cdot\nabla \varphi $可积。J(u)显然是线性的, 下面只需证明有界性。
由于M(x)是正定矩阵, 所以存在可逆矩阵M1(x), 使得$\mathit{\boldsymbol{M}} = \mathit{\boldsymbol{M}}_1^{\rm{T}}{\mathit{\boldsymbol{M}}_1} $成立, 从而有
$\begin{array}{l}\left| {J(u)} \right| = \left| {\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla u \cdot \nabla \varphi } \right|\\\;\;\;\;\;\;\;\;\; \le \int_\Omega {\left| {{\mathit{\boldsymbol{M}}_1}(x)\nabla u \cdot {\mathit{\boldsymbol{M}}_1}(x)\nabla \varphi } \right|} \\\;\;\;\;\;\;\;\;\; \le \int_\Omega {\left| {{\mathit{\boldsymbol{M}}_1}(x)\nabla u} \right|} \cdot \left| {{\mathit{\boldsymbol{M}}_1}(x)\nabla \varphi } \right|\\\;\;\;\;\;\;\;\;\; \le {\left( {\int_\Omega {{{\left| {{\mathit{\boldsymbol{M}}_1}(x)\nabla u} \right|}^2}} } \right)^{\frac{1}{2}}}{\left( {\int_\Omega {{{\left| {{\mathit{\boldsymbol{M}}_1}(x)\nabla \varphi } \right|}^2}} } \right)^{\frac{1}{2}}}\\\;\;\;\;\;\;\;\;\; = {\left( {\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla u \cdot \nabla u} \right)^{\frac{1}{2}}}{\left( {\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla \varphi \cdot \nabla \varphi } \right)^{\frac{1}{2}}}\\\;\;\;\;\;\;\;\;\; \le \frac{\beta }{{{\alpha ^{n - 1}}}}\left\| u \right\|\left\| \varphi \right\|.\end{array}$
接下来开始定理1.1的证明。
定理1.1的证明??由引理2.3, 2.4和2.5, 可知N1是闭集, N1非空, IN1上有定义而且下半连续。因为$\forall u \in {N_1} $
$\begin{array}{l}I(u) \ge \frac{1}{2}\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla u \cdot \nabla u{\rm{d}}x - \frac{\lambda }{{1 + q}}\int_\Omega {{u^{1 + q}}} {\rm{d}}x\\\;\;\;\;\;\; \ge \frac{\alpha }{2}{\left\| u \right\|^2} - C{\left\| u \right\|^{1 + q}},\end{array}$ (13)
所以IN1上有下界。从而根据Ekeland变分原理, 可取最优化极小值序列, 即存在序列$\{ {u_i}\} \subset {N_1} $, 使得
$\begin{array}{l}\left. 1 \right)I\left( {{u_i}} \right) < \mathop {\inf }\limits_{{N_1}} I + \frac{1}{i};\\\left. 2 \right)I\left( w \right) \ge I\left( {{u_i}} \right) - \frac{1}{i}\left\| {w - {u_i}} \right\|,\forall w \in {N_1}.\end{array}$ (14)
由于IN1上强制, 可知{ui}有界, 即存在M>0, 使得‖ui‖≤M, 从而存在ui的一个子列(仍记为ui), 存在u*$H_0^1(\Omega ) $, 成立
$u_{i} \rightarrow u^{*} \quad \text { in } \quad H_{0}^{1}(\Omega),$ (15)
$u_{i} \rightarrow u^{*} \quad \text { in } \quad L^{r}(\Omega), \forall r \in\left[1, \frac{2 n}{n-2}\right),$ (16)
$u_{i}(x) \rightarrow u^{*}(x) \quad \text { a.e.in } \Omega.$ (17)
下面证明$\mathop {{\rm{inf}}}\limits_{{N_1}} I = \mathop {{\rm{inf}}}\limits_{{N_2}} I $。根据引理2.1可知, $\forall u \in {N_1} $
$\begin{array}{l}\int_\Omega f (x)|u{|^{1 - p}} \le \int_\Omega {\left| {\mathit{\boldsymbol{M}}(x)\nabla u \cdot \nabla u} \right|} \\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \le \frac{\beta }{{{\alpha ^{n - 1}}}}{\left\| u \right\|^2} < + \infty .\end{array}$
从而由引理2.4可知, 存在唯一的正实数t(u), 使得t(u)uN2而且I(t(u)u)≤I(u), 进而$ I\left( u \right) \ge \mathop {{\rm{inf}}}\limits_{{N_2}} I$。所以$ \mathop {{\rm{inf}}}\limits_{{N_1}} I \ge \mathop {{\rm{inf}}}\limits_{{N_2}} I$。又因为$ {N_2} \subset {N_1}$, 故$\mathop {{\rm{inf}}}\limits_{{N_2}} I \ge \mathop {{\rm{inf}}}\limits_{{N_1}} I $, 从而知
$\mathop {\inf }\limits_{{N_1}} I = \mathop {\inf }\limits_{{N_2}} I.$
下面需要分两种情况讨论。
情况1 ??{ui}中有一个子列位于N2内(下面仍把这个子列记为ui)。
固定$\varphi \in H_0^1(\Omega ), \varphi \ge 0 $。设t≥0, 因为
$\int_\Omega f (x){\left( {{u_i} + t\varphi } \right)^{1 - p}}\int_\Omega f (x)u_i^{1 - p} < + \infty $
根据引理2.4,可知存在唯一的正实数, 记为${f_{i, \varphi }}\left( t \right) $, 满足
$\left\{ {\begin{array}{*{20}{l}}{I\left[ {{f_{i,\varphi }}(t)\left( {{u_i} + t\varphi } \right)} \right] \le I\left[ {\theta \left( {{u_i} + t\varphi } \right)} \right],\forall \theta > 0,}\\{{f_{i,\varphi }}(t)\left( {{u_i} + t\varphi } \right) \in {N_2}.}\end{array}} \right.$
下面证明${f_{i, \varphi }}\left( t \right) $t≥0上连续。记
$g(t): = \int_\Omega \mathit{\boldsymbol{M}} (x)\nabla \left( {{u_i} + t\varphi } \right) \cdot \nabla \left( {{u_i} + t\varphi } \right){\rm{d}}x,\forall t \ge 0,$
$h(t): = \int_\Omega f (x){\left| {{u_i} + t\varphi } \right|^{1 - p}}{\rm{d}}x,\forall t \ge 0,$
$k(t): = \int_\Omega {{{\left| {{u_i} + t\varphi } \right|}^{1 + q}}} {\rm{d}}x,\forall t \ge 0.$
根据引理2.2, 控制收敛定理以及$H_0^1(\Omega ) $ $ \hookrightarrow$ L1+q(Ω), 可以证明$ g\left( t \right), h\left( t \right), k\left( t \right)$都是连续的。由${f_{i, \varphi }}\left( t \right)({u_i} + t\varphi ) \in {N_2} $, 可得
$f_{i, \varphi}^{1-q}(t) g(t)=f_{i, \varphi}^{-p-q}(t) h(t)+\lambda k(t),$ (18)
任取t0∈[0, +∞), 考虑函数
$f(x): = {x^{1 - q}}g\left( {{t_0}} \right) - \frac{1}{{{x^{p + q}}}}h\left( {{t_0}} \right) + \lambda k\left( {{t_0}} \right).$
能够得到f(x)在(0, +∞)内严格递增且在(0, +∞)内有唯一零点, 即$ {f_{i, \varphi }}\left( {{t_0}} \right)$。从而${f_{i, \varphi }}\left( t \right) $t≥0上连续。
因为从引理2.4的证明中可以看出${f_{i, \varphi }}\left( 0 \right) $$\frac{{{\rm{d}}I(t{u_i})}}{{{\rm{d}}t}} $的唯一零点, 又由于uiN2, 所以得到${f_{i, \varphi }}\left( 0 \right) $=1。
定义
$f_{i,\varphi }^\prime (0): = \mathop {\lim }\limits_{t \to {0^ + }} \frac{{{f_{i,\varphi }}(t) - 1}}{t} \in [ - \infty , + \infty ]$
如果极限不存在, 可取tk→0+, 记$ {{f'}_{i, \varphi }}\left( 0 \right): = \mathop {{\rm{lim}}}\limits_{k \to \infty } \frac{{{f_{i, \varphi }}({t_k}) - 1}}{{{t_k}}}$, 在[-∞, +∞]内取值。
下面证明$ {{f'}_{i, \varphi }}\left( 0 \right)$有界。由于${f_{i, \varphi }}\left( t \right)({u_i} + t\varphi ) \in {N_2} $uiN2, 可得
$\begin{array}{l}0 = f_{i,\varphi }^2\left( t \right)\int_\Omega {\mathit{\boldsymbol{M}}\left( x \right)\nabla \left( {{u_i} + t\varphi } \right) \cdot \nabla \left( {{u_i} + t\varphi } \right)} - \\\;\;\;\;\;f_{i,\varphi }^{1 - p}\left( t \right)\int_\Omega {f\left( x \right){{\left( {{u_i} + t\varphi } \right)}^{1 - p}}} - \\\;\;\;\;\;\lambda f_{i,\varphi }^{1 + q}\left( t \right)\int_\Omega {{{\left( {{u_i} + t\varphi } \right)}^{1 + q}}} - \\\;\;\;\;\;\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla {u_i} + \int_\Omega f (x)u_i^{1 - p} + \lambda \int_\Omega {u_i^{1 + q}} \\\;\;\;\;\; = \left( {f_{i,\varphi }^2(t) - 1} \right)\int_0 \mathit{\boldsymbol{M}} (x)\nabla \left( {{u_i} + t\varphi } \right) \cdot \nabla \left( {{u_i} + t\varphi } \right) + \\\;\;\;\;\;2t\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla \varphi + {t^2}\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla \varphi \cdot \nabla \varphi - \\\;\;\;\;\;\left( {f_{i,\varphi }^{1 - p}(t) - 1} \right)\int_\Omega f (x){\left( {{u_i} + t\varphi } \right)^{1 - p}} - \\\;\;\;\;\;\int_\Omega f (x)\left( {{{\left( {{u_i} + t\varphi } \right)}^{1 - p}} - u_i^{1 - p}} \right) - \\\;\;\;\;\;\lambda \left( {f_{i,\varphi }^{1 + q}(t) - 1} \right)\int_\Omega {{{\left( {{u_i} + t\varphi } \right)}^{1 + q}}} - \\\;\;\;\;\;\lambda \int_\Omega {{{\left( {{u_i} + t\varphi } \right)}^{1 + q}}} - u_i^{1 + q}{\rm{d}}x.\end{array}$
从而利用$ - p < - 1, {\rm{ }}{u_i} > 0, {\rm{ }}t > 0, {\rm{ }}\varphi \ge 0, {\rm{ }}f > 0$, 知
$\begin{array}{l}0 \ge \frac{{{f_{i,\varphi }}\left( t \right) - 1}}{t}\\\left\{ {\left( {{f_{i,\varphi }}\left( t \right) + 1} \right)\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla \left( {{u_i} + t\varphi } \right) \cdot \nabla \left( {{u_i} + t\varphi } \right) - } \right.\\(1 - p){(1 + o(1))^{ - p}}\int_\Omega f (x){\left( {{u_i} + t\varphi } \right)^{1 - p}} - \\\left. {\lambda (1 + q){{(1 + o(1))}^q}\int_\Omega {{{\left( {{u_i} + t\varphi } \right)}^{1 + q}}} } \right\} + \\2\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla \varphi + t\int_\Omega {\bf{M}} (x){\nabla _\varphi } \cdot {\nabla _\varphi } - \\\lambda \int_\Omega {\frac{{{{\left( {{u_i} + t\varphi } \right)}^{1 + q}} - u_i^{1 + q}}}{t}} {\rm{d}}x,\end{array}$ (19)
其中o(1)表示当t→0+时的无穷小。利用控制收敛定理可以证明当t→0+时,
$\int_{\Omega} \frac{\left(u_{i}+t \varphi\right)^{1+q}-u_{i}^{1+q}}{t} \mathrm{d} x \rightarrow(1+q) \int_{\Omega} u_{i}^{q} \varphi \mathrm{d} x.$
利用前面4个函数的连续性以及uiN2, 在式(19)两边令t→0+可得到
$\begin{array}{*{20}{l}}{\lambda (1 + q)\int_\Omega {u_i^q} \varphi - 2\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla \varphi \ge f_{i,\varphi }^\prime (0)}\\{\left[ {(1 - q)\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla {u_i} + (p + q)\int_\Omega f (x)u_i^{1 - p}} \right].}\end{array}$ (20)
利用H?lder不等式, 引理2.1, M(x)的性质以及$H_0^1(\Omega ) $ $ \hookrightarrow$L1+q(Ω), 可以得到一系列不等式,
$\left\{ \begin{array}{l}\int_\Omega {u_i^q} \varphi {\rm{d}}x \le \left\| {{u_i}} \right\|_{{L^{1 + q(\Omega )}}}^q{\left\| \varphi \right\|_{{L^{1 + q}}(\Omega )}}\\\;\;\;\; \le C{\left\| {{u_i}} \right\|^q}\left\| \varphi \right\| \le C\left\| \varphi \right\|,\\\left| {\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla \varphi } \right| \le \frac{\beta }{{{\alpha ^{n - 1}}}}\left\| {{u_i}} \right\|\left\| \varphi \right\|\\\;\;\; \le C\left\| \varphi \right\|,\\\left( {1 - q} \right)\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla {u_i} + \left( {p + q} \right)\int_\Omega {f\left( x \right)u_i^{1 - p}} \\\;\;\;\; \le \left( {1 - q} \right)\alpha C_0^2,\end{array} \right.$
其中还用到引理2.6和{ui}是有界的。结合式(20)得到$ {{f'}_{i, \varphi }}\left( 0 \right)$有一致上界, 即存在${{C}_{1}}\in \mathbb{R} $, 使得$ {{f'}_{i, \varphi }}\left( 0 \right)$C1对任意的正整数i成立。
根据式(14)中的第2个结论以及${f_{i, \varphi }}\left( t \right)({u_i} + t\varphi ) \in {N_2}$, 有
$\begin{array}{l}I\left( {{u_i}} \right) \le I\left( {{f_{i,\varphi }}(t)\left( {{u_i} + t\varphi } \right)} \right) + \\\;\;\;\;\;\;\;\;\;\;\;\;\frac{1}{i}\left\| {{u_i} - {f_{i,\varphi }}(t)\left( {{u_i} + t\varphi } \right)} \right\|.\end{array}$
代入计算, 因为uiN2, 得到
$\begin{array}{l}\left( {\frac{1}{2} - \frac{1}{{1 - p}}} \right)\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla {u_i} + \\\lambda \left( {\frac{1}{{1 - p}} - \frac{1}{{1 + q}}} \right)\int_\Omega {u_i^{1 + q}} \le \\\left( {\frac{1}{2} - \frac{1}{{1 - p}}} \right)f_{i,\varphi }^2(t)\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla \left( {{u_i} + t\varphi } \right) \cdot \\\nabla \left( {{u_i} + t\varphi } \right) + \lambda \left( {\frac{1}{{1 - p}} - \frac{1}{{1 + q}}} \right)f_{i,\varphi }^{1 + q}(t) \cdot \\\int_\Omega {{{\left( {{u_i} + t\varphi } \right)}^{1 + q}}} + \frac{1}{i}\left\| {\left( {1 - {f_{i,\varphi }}(t)} \right){u_i} - t{f_{i,\varphi }}(t)\varphi } \right\|.\end{array}$
从而有
$\begin{array}{l}\frac{{{f_{i,\varphi }}(t) - 1}}{t}\left\{ {\left( {\frac{{ - 1}}{2} + \frac{1}{{1 - p}}} \right)\left( {{f_{i,\varphi }}(t) + 1} \right)} \right.\\\;\;\;\;\;\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla \left( {{u_i} + t\varphi } \right) \cdot \nabla \left( {{u_i} + t\varphi } \right) + \\\;\;\;\;\;\left. {\lambda \left( {1 + \frac{{1 + q}}{{p - 1}}} \right){{(1 + o(1))}^q}\int_\Omega {{{\left( {{u_i} + t\varphi } \right)}^{1 + q}}} } \right\} - \\\;\;\;\;\;\frac{1}{i}\left| {\frac{{{f_{i,\varphi }}(t) - 1}}{t}} \right|\left\| {{u_i}} \right\| \le \left( {\frac{1}{2} + \frac{1}{{p - 1}}} \right)\\\;\;\;\;\;\left\{ {2\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla \varphi + t\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla \varphi \cdot \nabla \varphi } \right\} + \\\;\;\;\;\;\frac{1}{i}{f_{i,\varphi }}(t)\left\| \varphi \right\|.\end{array}$
在上式中令t→0+,
$\begin{array}{l}f_{i,\varphi }^\prime (0)\left\{ { - 2\left( {\frac{1}{2} + \frac{1}{{p - 1}}} \right)\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla {u_i} + } \right.\\\;\;\;\;\left. {\lambda \left( {1 + \frac{{1 + q}}{{p - 1}}} \right)\int_\Omega {u_i^{1 + q}} - \frac{1}{i}{\mathop{\rm sgn}} \left[ {f_{i,\varphi }^\prime (0)} \right]\left\| {{u_i}} \right\|} \right\}\\\;\;\;\; \le 2\left( {\frac{1}{2} + \frac{1}{{p - 1}}} \right)\int_\Omega M (x)\nabla {u_i} \cdot \nabla \varphi + \frac{{\left\| \varphi \right\|}}{i}.\end{array}$ (21)
由引理2.6和uiN2可以得到,
$\begin{array}{l} - 2\left( {\frac{1}{2} + \frac{1}{{p - 1}}} \right)\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla {u_i} + \\\;\;\;\;\;\lambda \left( {1 + \frac{{1 + q}}{{p - 1}}} \right)\int_\Omega {u_i^{1 + q}} = \\\;\;\;\;\; - \left( {\frac{{1 - q}}{{p - 1}}\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla {u_i} + \frac{{p + q}}{{p - 1}}\int_\Omega f (x)u_i^{1 - p}} \right)\\\;\;\;\;\; \le - \frac{{1 - q}}{{p - 1}}\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla {u_i}\\\;\;\;\;\; \le - \frac{{1 - q}}{{p - 1}}\alpha {\left\| {{u_i}} \right\|^2} \le - \frac{{1 - q}}{{p - 1}}\alpha C_0^2.\end{array}$
由于{ui}有界, 所以
$\frac{1}{i}{\mathop{\rm sgn}} \left[ {f_{i,\varphi }^\prime (0)} \right]\left\| {{u_i}} \right\| \to 0(i \to \infty ).$
从而可知存在$ N\in {{\mathbb{N}}^{*}}$, 当i>N时有
$\begin{array}{l} - 2\left( {\frac{1}{2} + \frac{1}{{p - 1}}} \right)\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla {u_i} + \\\;\;\;\;\lambda \left( {1 + \frac{{1 + q}}{{p - 1}}} \right)\int_\Omega {u_i^{1 + q}} - \frac{1}{i}{\mathop{\rm sgn}} \left[ {f_{i,\varphi }^\prime (0)} \right]\left\| {{u_i}} \right\|\\\;\;\;\; \le - \frac{{(1 - q)\alpha C_0^2}}{{2(p - 1)}} < 0\end{array}$ (22)
结合式(21)和式(22)以及$ |{\smallint _\Omega }\mathit{\boldsymbol{M}}\left( x \right)\nabla {u_i}\cdot\nabla \varphi | \le C\parallel \varphi \parallel $, 可以得到存在C2${\mathbb{R}} $满足
$C_{2} \leqslant f_{i, \varphi}^{\prime}(0) \leqslant C_{1}, \forall i>N$
根据式(14)中的第2个结论以及${f_{i, \varphi }}\left( t \right)({u_i} + t\varphi ) \in {N_2}$, 有
$\begin{array}{l}\frac{1}{{p - 1}}\int_\Omega {\frac{{f(x)u_i^{1 - p} - f(x){{\left( {{u_i} + t\varphi } \right)}^{1 - p}}}}{t}} {\rm{d}}x + \\\frac{1}{{p - 1}}\frac{{\left( {{f_{i,\varphi }}(t) - 1} \right)(p - 1){{(1 + o(1))}^{ - p}}}}{t}\\\int_\Omega f (x){\left( {{u_i} + t\varphi } \right)^{1 - p}} \le \frac{1}{2}\frac{{{f_{i,\varphi }}(t) - 1}}{t}\left( {{f_{i,\varphi }}(t) + 1} \right)\\\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla \left( {{u_i} + t\varphi } \right) \cdot \nabla \left( {{u_i} + t\varphi } \right) + \\\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla \varphi + \frac{1}{2}t\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla \varphi \cdot \nabla \varphi - \\\frac{\lambda }{{1 + q}}\frac{{{f_{i,\varphi }}\left( t \right) - 1}}{t}\left( {1 + q} \right){\left( {1 + o\left( 1 \right)} \right)^q} \cdot \\\int_\Omega {{{\left( {{u_i} + t\varphi } \right)}^{1 + q}}} - \frac{\lambda }{{1 + q}}\int_\Omega {\frac{{{{\left( {{u_i} + t\varphi } \right)}^{1 + q}} - u_i^{1 + q}}}{t}} + \\\frac{1}{i}\frac{{\left| {{f_{i,\varphi }}\left( t \right) - 1} \right|}}{t}\left\| {{u_i}} \right\| + \frac{1}{i}{f_{i,\varphi }}\left( t \right)\left\| \varphi \right\|,\end{array}$
其中o(1)表示当t→0+时的无穷小。在上式中令t→0+取下极限, 因为uiN2, 可知
$\begin{array}{l}\frac{1}{{p - 1}}\mathop {\lim \inf }\limits_{t \to {0^ + }} \int_\Omega {\frac{{f\left( x \right)u_i^{1 - p} - f\left( x \right){{\left( {{u_i} + t\varphi } \right)}^{1 - p}}}}{t}{\rm{d}}x} \le \\\;\;\;\;\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla \varphi - \lambda \int_\Omega {u_i^q\varphi } + \\\;\;\;\;\frac{{\left| {{{f'}_{i,\varphi }}\left( 0 \right)} \right|\left\| {{u_i}} \right\| + \left\| \varphi \right\|}}{i}.\end{array}$ (23)
另一方面,由Fatou引理可以得到
$\begin{array}{l}(p - 1)\int_\Omega f (x)u_i^{ - p}\varphi \\\;\;\;\;\;\;\; \le \mathop {\lim \inf }\limits_{t \to {0^ + }} \int_\Omega {\frac{{f(x)u_i^{1 - p} - f(x){{\left( {{u_i} + t\varphi } \right)}^{1 - p}}}}{t}} {\rm{d}}x.\end{array}$ (24)
由式(17)用Fatou引理, 并结合式(23)和式(24), 可得
$\begin{array}{*{20}{c}}{\int_\Omega f (x){{\left( {{u^*}} \right)}^{ - p}}\varphi \le \mathop {\lim \inf }\limits_{i \to \infty } \left\{ {\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla \varphi - } \right.}\\{\left. {\lambda \int_\Omega {u_i^q} \varphi + \frac{{\left| {f_{i,\varphi }^\prime (0)} \right|\left\| {{u_i}} \right\| + \left\| \varphi \right\|}}{i}} \right\}.}\end{array}$ (25)
根据已知的一些结论, $ {{f'}_{i, \varphi }}\left( 0 \right)$ui的有界性, 引理2.7和式(15), 并再次运用式(17)和Fatou引理, 由式(25)可知
$\begin{array}{l}\int_\Omega f (x){\left( {{u^*}} \right)^{ - p}}\varphi \le \int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u^*} \cdot {\nabla _\varphi } - \\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\lambda \int_\Omega {{{\left( {{u^*}} \right)}^q}} \varphi .\end{array}$ (26)
注意式(26)是对任意的$\varphi \in H_0^1(\Omega ) $$\varphi \ge 0$成立的, 所以有
$\begin{array}{*{20}{c}}{\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u^*} \cdot \nabla {u^*} - \int_\Omega f (x){{\left( {{u^*}} \right)}^{1 - p}} - }\\{\lambda \int_\Omega {{{\left( {{u^*}} \right)}^{1 + q}}} \ge 0,}\end{array}$ (27)
从而$ {\smallint _\Omega }f\left( x \right){({u^*})^{1 - p}}{\rm{d}}x < + \infty $, 故$ {u^*} > 0\;{\rm{a}}{\rm{.e}}{\rm{.}}\;{\rm{in}}\;{\rm{ }}\Omega $。所以u*N1
由式(14)中第1个结论和式(16)可得
$\begin{array}{l}\mathop {\inf }\limits_{{N_1}} I = \mathop {\lim }\limits_{i \to \infty } I\left( {{u_i}} \right) = \mathop {\lim \;inf}\limits_{i \to \infty } I\left( {{u_i}} \right) \ge \\\;\;\;\;\;\;\;\;\;\;\mathop {\lim \inf }\limits_{i \to \infty } \frac{1}{2}\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla {u_i} + \\\;\;\;\;\;\;\;\;\;\;\mathop {\lim \inf }\limits_{i \to \infty } \frac{1}{{p - 1}}\int_\Omega f (x)u_i^{1 - p} - \frac{\lambda }{{1 + q}}\int_\Omega {{{\left( {{u^*}} \right)}^{1 + q}}} \\\;\;\;\;\;\;\;\;\;\; \ge \frac{1}{2}\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u^ * } \cdot \nabla {u^ * } + \\\;\;\;\;\;\;\;\;\;\;\frac{1}{{p - 1}}\int_\Omega {f\left( x \right){{\left( {{u^ * }} \right)}^{1 - p}}} - \\\;\;\;\;\;\;\;\;\;\;\frac{\lambda }{{1 + q}}\int_\Omega {{{\left( {{u^ * }} \right)}^{1 + q}}} = I\left( {{u^ * }} \right)\\\;\;\;\;\;\;\;\;\;\; \ge I\left( {t\left( {{u^ * }} \right){u^ * }} \right) \ge \mathop {\inf }\limits_{{N_2}} I = \mathop {\inf }\limits_{{N_1}} I.\end{array}$ (28)
式(28)中还用到了引理2.4和下面两个结论。
1) 由式(15)和引理2.2可知
${u_i}\;?\;{u^*}{\rm{ in }}\left( {H_0^1(\Omega ),{{\left\| \cdot \right\|}_1}} \right);$
2) 由式(17)和Fatou引理可知
$\int_\Omega f (x){\left( {{u^*}} \right)^{1 - p}} \le \mathop {\lim \inf }\limits_{i \to \infty } \int_\Omega {f(x)u_i^{1 - p}} .$
由式(28)可以得到$I({u^*}) = I(t({u^*}){u^*}) $, 根据引理2.4中的最小值的性质可知t(u*)=1, 从而u*N2
情况2??对充分大的iuiN1\N2
固定φ$H_0^1(\Omega ) $满足φ≥0。仍然可以定义$g\left( t \right), h\left( t \right), k\left( t \right) $(如同情况1中一样), 它们依然是连续的。式(24)仍然成立。由控制收敛定理还是可以得到当t→0+时,
$\int_\Omega {\frac{{{{\left( {{u_i} + t\varphi } \right)}^{1 + q}} - u_i^{1 + q}}}{t}} {\rm{d}}x \to (1 + q)\int_\Omega {u_i^q} \varphi {\rm{d}}x.$
因为uiN1\N2, 所以
$\begin{array}{l}\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla {u_i} - \int_\Omega f (x)u_i^{1 - p} - \\\;\;\;\;\;\;\;\lambda \int_\Omega {u_i^{1 + q}} > 0.\end{array}$
$ g\left( t \right), h\left( t \right), k\left( t \right)$的连续性可知, 当t充分小时成立
$\begin{array}{*{20}{l}}{\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla \left( {{u_i} + t\varphi } \right) \cdot \nabla \left( {{u_i} + t\varphi } \right) - }\\{\;\;\;\;\int_\Omega f (x){{\left( {{u_i} + t\varphi } \right)}^{1 - p}} - \lambda \int_\Omega {{{\left( {{u_i} + t\varphi } \right)}^{1 + q}}} > 0,}\end{array}$
即得ui+N1\N2.
因为$ I\left( w \right) \ge I({u_i}) - \frac{1}{i}\parallel w - {u_i}\parallel , \forall w \in {N_1}$, 所以
$I\left(u_{i}\right) \leqslant I\left(u_{i}+t \varphi\right)+\frac{1}{i}\left\|u_{i}-\left(u_{i}+t \varphi\right)\right\|.$
代入计算, 两边同除以t
$\begin{array}{l}0 \le \int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla \varphi + \frac{1}{2}t\int_\Omega M (x)\nabla \varphi \cdot \nabla \varphi + \\\;\;\;\;\;\frac{1}{{p - 1}}\int_\Omega {\frac{{f\left( x \right){{\left( {{u_i} + t\varphi } \right)}^{1 - p}} - f\left( x \right)u_i^{1 - p}}}{t}} - \\\;\;\;\;\;\frac{\lambda }{{1 + q}}\int_\Omega {\frac{{{{\left( {{u_i} + t\varphi } \right)}^{1 + q}} - u_i^{1 + q}}}{t}} + \frac{{\left\| \varphi \right\|}}{i}.\end{array}$
t→0+取上极限(通过引理2.7和式(15)), 得到
$\begin{array}{l}0 \le \int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u_i} \cdot \nabla \varphi - \int_\Omega f (x)u_i^{ - p}\varphi - \\\;\;\;\;\;\lambda \int_\Omega {u_i^{ - q}\varphi } + \frac{{\left\| \varphi \right\|}}{i}.\end{array}$ (29)
另外由ui(x)→u*(x) a.e.in Ω, 利用Fatou引理可得
$\int_\Omega f (x){\left( {{u^*}} \right)^{ - p}}\varphi \le \mathop {\lim \inf }\limits_{i \to \infty } \int_\Omega {f(x)u_i^{ - p}\varphi } ,$ (30)
$\int_\Omega {{{\left( {{u^*}} \right)}^q}} \varphi \le \mathop {\lim \inf }\limits_{i \to \infty } \int_\Omega {u_i^q} \varphi .$ (31)
结合式(29), 式(30)和式(31)可知
$\begin{array}{l}\int_\Omega f (x){\left( {{u^*}} \right)^{ - p}}\varphi \le \int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u^ * } \cdot \nabla \varphi - \\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\lambda \int_\Omega {{{\left( {{u^*}} \right)}^q}} \varphi ,\end{array}$
所以
$\begin{array}{*{20}{c}}{\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u^*} \cdot \nabla {u^*} - \int_\Omega f (x){{\left( {{u^*}} \right)}^{1 - p}} - }\\{\lambda \int_\Omega {{{\left( {{u^*}} \right)}^{1 + q}}} \ge 0.}\end{array}$
从而$ {\smallint _\Omega }f\left( x \right){({u^*})^{1 - p}}{\rm{d}}x < + \infty $, 故u*>0 a.e.in Ω, 所以u*N1。重复情况1中的步骤, 此时也成立
$\mathop {\inf }\limits_{{N_1}} I \ge I\left( {{u^*}} \right) \ge I\left( {t\left( {{u^*}} \right){u^*}} \right) \ge \mathop {\inf }\limits_{{N_2}} I = \mathop {\inf }\limits_{{N_1}} I,$
所以u*N2.
无论是情况1还是情况2都得到这样的结果,
$\left\{ {\begin{array}{*{20}{l}}{{u^*} \in {N_2},{u^*} > 0,}\\{I\left( {{u^*}} \right) = \mathop {\inf }\limits_{{N_1}} I,}\\{\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u^ * } \cdot \nabla \varphi - \int_\Omega f (x){{\left( {{u^*}} \right)}^{ - p}}\varphi - }\\{\lambda \int_\Omega {{{\left( {{u^*}} \right)}^q}} \varphi \ge 0,\forall \varphi \ge 0.}\end{array}} \right.$ (32)
下面证明u*是方程(1)的解。固定ψ$H_0^1(\Omega ) $t>0, (u*+)+$H_0^1(\Omega ) $且(u*+)+≥0。由式(32)可知
$\begin{array}{l}0 \le \int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u^ * } \cdot \nabla {\left( {{u^*} + t\psi } \right)^ + } - \\\;\;\;\;\;\int_\Omega f (x){\left( {{u^*}} \right)^{ - p}}{\left( {{u^*} + t\psi } \right)^ + } - \\\;\;\;\;\;\lambda \int_\Omega {{{\left( {{u^*}} \right)}^q}} {\left( {{u^*} + t\psi } \right)^ + }\\\;\;\; = \int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u^ * } \cdot \nabla \left( {{u^*} + t\psi } \right) - \\\;\;\;\;\;\int_\Omega f (x){\left( {{u^*}} \right)^{ - p}}\left( {{u^*} + t\psi } \right) - \\\;\;\;\;\;\lambda \int_\Omega {{{\left( {{u^*}} \right)}^q}} \left( {{u^*} + t\psi } \right) - \\\;\;\;\;\;\int_{\left\{ {{u^*} + t\psi < 0} \right\}} {\mathit{\boldsymbol{M}}(x)} \nabla {u^*} \cdot \nabla \left( {{u^*} + t\psi } \right) + \\\;\;\;\;\;\int_{\left\{ {{u^*} + t\psi < 0} \right\}} f (x){\left( {{u^*}} \right)^{ - p}}\left( {{u^*} + t\psi } \right) + \\\;\;\;\;\;\lambda \int_{\left\{ {{u^*} + t\psi < 0} \right\}} {{{\left( {{u^*}} \right)}^q}} \left( {{u^*} + t\psi } \right)\\\;\;\;\;\; \le t\left\{ {\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u^ * } \cdot \nabla \psi - \int_\Omega f (x){{\left( {{u^*}} \right)}^{ - p}}\psi - } \right.\\\;\;\;\;\;\;\;\left. {\lambda \int_\Omega {{{\left( {{u^*}} \right)}^q}} \psi } \right\} - t\int_{\left\{ {{u^*} + t\psi < 0} \right\}} {\mathit{\boldsymbol{M}}(x)\nabla {u^*} \cdot \nabla \psi } .\end{array}$
两边除以t, 令t→0+, 其中meas{u*+ < 0}→0, 可知
$\begin{array}{*{20}{c}}{\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u^*} \cdot \nabla \psi - \int_\Omega f (x){{\left( {{u^*}} \right)}^{ - p}}\psi - }\\{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\lambda \int_\Omega {{{\left( {{u^*}} \right)}^q}} \psi \ge 0.}\end{array}$ (33)
从而
$\begin{array}{l}\int_\Omega \mathit{\boldsymbol{M}} (x)\nabla {u^*} \cdot \nabla \psi - \int_\Omega f (x){\left( {{u^*}} \right)^{ - p}}\psi - \\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\lambda \int_\Omega {{{\left( {{u^*}} \right)}^q}} \psi = 0,\forall \psi \in H_0^1(\Omega ),\end{array}$ (34)
即说明u*是方程(1)的弱解。
定理1.2是运用定理1.1的结论的一个例子。
定理1.2的证明??设φ1是-Δ在Dirichlet边界条件下的第一特征向量, 即
$\left\{ \begin{array}{l} - \Delta {\varphi _1} = {\lambda _1}{\varphi _1}\;\;\;{\rm{in}}\;\;\Omega \\{\varphi _1} = 0\;\;{\rm{on}}\;\;\partial \Omega \end{array} \right.$
而且在Ω内φ1>0, 其中λ1表示-Δ在Dirichlet边界条件下的第一特征值。
根据Lazer和McKenna(文献[1], Lemma, Theorem 1和2)可知, $ {\smallint _\Omega }\varphi _1^l\left( x \right){\rm{d}}x < + \infty \Leftrightarrow l > - 1$, 且对任意的-3 < -p < -1, 存在相应函数${u_p} \in H_0^1(\Omega ) \cap {C^2}(\Omega ) \cap C(\bar \Omega ) $, 在Ω内up>0, 存在常数d0, d1>0, 使得
${d_0}\varphi _1^{\frac{2}{{1 + p}}}(x) \le {u_p}(x) \le {d_1}\varphi _1^{\frac{2}{{1 + p}}}(x),\forall x \in \Omega .$
u0=up, 下面验证$ {\smallint _\Omega }{\left| x \right|^{ - \mu }}u_0^{1 - p}{\rm{d}}x < + \infty $。因为0∈Ω, 所以可取一个小球${B_r}\left( 0 \right) \subset \Omega $, 从而存在C1, C2>0, 使得$ 0 < {C_1} \le {u_0}\left( x \right) \le {C_2}, \forall x \in {B_r}\left( 0 \right)$
$\begin{array}{*{20}{l}}{{{\int_\Omega {\left| x \right|} }^{ - \mu }}u_0^{1 - p}{\rm{d}}x = {{\int_{{B_r}} {\left| x \right|} }^{ - \mu }}u_0^{1 - p}{\rm{d}}x + }\\{\;\;{\smallint _{\Omega \backslash {B_r}}}|x{|^{ - \mu }}u_0^{1 - p}{\rm{d}}x \le C_1^{1 - p}{{\int_{{B_r}} {\left| x \right|} }^{ - \mu }}{\rm{d}}x + }\\{\;\;\;{r^{ - \mu }}{\smallint _{\Omega \backslash {B_r}}}u_0^{1 - p}{\rm{d}}x \le C_1^{1 - p}\int_{{B_r}} | x{|^{ - \mu }}{\rm{d}}x + }\\{\;\;\;{r^{ - \mu }}d_0^{1 - p}{\smallint _{\Omega \backslash {B_r}}}\varphi _1^{\frac{{2(1 - p)}}{{1 + p}}}(x){\rm{d}}x \le C_1^{1 - p}\int_{{B_r}} | {{\left. x \right|}^{ - \mu }}{\rm{d}}x + }\\{\;\;\;{r^{ - \mu }}d_0^{1 - p}\int_\Omega {\varphi _1^{\frac{{2(1 - p)}}{{1 + p}}}} (x){\rm{d}}x < + \infty ,}\end{array}$ (35)
其中用到, 因为-n < -μ < 0, 所以$ {\smallint _{{B_r}}}{\left| x \right|^{ - \mu }}{\rm{d}}x < + \infty $, 由于$1 < p < 3 $, 所以$ \frac{{2\left( {1 - p} \right)}}{{1 + p}} > - 1$, 故
$\int_\Omega {\varphi _1^{\frac{{2(1 - p)}}{{1 + p}}}} (x){\rm{d}}x < + \infty .$
根据定理1.1即得要证结论。
参考文献
[1] Lazer A C, McKenna P J. On a singular nonlinear elliptic boundaryvalue problem[J]. Proceeding of the American Mathemarical Socirty, 1991, 111(3): 721-730.
[2] Boccardo L, Orsina L. Semilinear elliptic equations with singular nonlinearities[J]. Calculus of Variations and Partial Differential Equations, 2010, 37(3): 363-380.
[3] Arcoya D, Boccardo L. Multiplicity of solutions for a Dirichlet problem with a singular and a supercritical nonlinearities[J]. Differential and Integral Equations, 2013, 26(26): 7121-7128.
[4] Arcoya D, Boccardo L, Leonori T, et al. Some elliptic problems with singular natural growth lower order terms[J]. Journal of Differential Equations, 2010, 249(11): 2771-2795. DOI:10.1016/j.jde.2010.05.009
[5] Boccardo L. Dirichlet problems with singular and gradient quadratic lower order terms[J]. Esaim Control Optimisation & Calculus of Variations, 2008, 14(3): 411-426.
[6] Boccardo L. A Dirichlet problem with singular and supercritical nonlinearities[J]. Nonlinear Analysis Theory Methods & Application, 2012, 75(12): 4436-4440.
[7] Boccardo L, Orsina L. A variational semilinear singular system[J]. Nonlinear Analysis Theory Methods & Applications, 2011, 74(12): 3849-3860.
[8] Sun Y J. Compatible phenomena in singular problems[J]. Proceedings of the Royal Society of Edinburgh, 2013, 143(A): 1321-1330.
[9] Sun Y J, Wu S P. An exact estimate result for a class of singular equations with critical exponents[J]. Journal of Functional Analysis, 2011, 260(5): 1257-1284. DOI:10.1016/j.jfa.2010.11.018
[10] Sun Y J, Wu S P, Long Y M. Combined effects of singular and superlinear nonlinearities in some singular boundary value problems[J]. Journal of Differential Equations, 2001, 176(2): 511-531. DOI:10.1006/jdeq.2000.3973
[11] Sun Y J, Zhang D Z. The role of the power 3 for elliptic equations with negative exponents[J]. Calculus of Variations & Partial Differential Equations, 2014, 49(3/4): 909-922.
[12] Adams A R. Sobolev spaces[M]. New York: Academic Press, 1975: 95-107.


相关话题/文献 控制 序列 计算 矩阵

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 地球椭球模型中太阳位置计算的改进
    李文1,2,3,赵永超1,2,31.中国科学院空间信息处理与应用系统技术重点实验室,北京100190;2.中国科学院电子学研究所,北京100190;3.中国科学院大学,北京1000492018年1月25日收稿;2018年3月29日收修改稿基金项目:国家重大科研仪器研制项目(41427805)资助通信 ...
    本站小编 Free考研考试 2021-12-25
  • 结合质量控制的震后房屋倒塌众包评估模型
    贾莹玉1,2,刘士彬2,段建波2,谢帅21.中国科学院大学,北京100049;2.中国科学院遥感与数字地球研究所,北京1000942018年2月9日收稿;2018年4月20日收修改稿基金项目:中国科学院遥感与数字地球研究所所长基金(ZZCEODE2015HT013)和中国科学院遥感与数字地球研究所数 ...
    本站小编 Free考研考试 2021-12-25
  • 基于时间序列DMSP/OLS夜间灯光数据的GDP预测模型
    顾鹏程1,2,王世新1,周艺1,刘文亮1,尚明1,21.中国科学院遥感与数字地球研究所,北京100101;2.中国科学院大学资源与环境学院,北京1000492017年12月26日收稿;2018年3月29日收修改稿基金项目:国家重点研发计划(2017YFB0503805)和高分辨率对地观测系统重大专项 ...
    本站小编 Free考研考试 2021-12-25
  • 基于事件触发的多机编队目标跟踪控制*
    无人机(UnmannedAerialVehicle,UAV)编队控制[1-2]一直以来都是研究的热点问题之一,将UAV编队与特定任务结合起来进行研究更具有实际工程意义。多UAV目标跟踪[3-4]是指多架UAV保持定高飞行状态下,在目标周围均匀分布跟踪或进行盘旋跟踪的任务,通常被应用在人员搜救与对地面 ...
    本站小编 Free考研考试 2021-12-25
  • 绳系拖曳飞行器高抗扰轨迹跟踪控制*
    绳系拖曳飞行器是被拖曳飞机通过绳系拖曳飞行的一种特殊应用飞行器[1-2],如机载拖曳天线[3-4]、绳系拖曳靶标[5-7]、拖曳诱饵系统[8-10]、拖曳空中发射系统[11-12]、空中加油浮标[13-14]、无人机空基回收对接浮标[15-16]等。在这些应用中,通常需要对柔性绳系拖曳飞行器的轨迹和 ...
    本站小编 Free考研考试 2021-12-25
  • 长周期高精度回归轨道与脉冲轨道控制策略设计*
    回归轨道具有使卫星定期沿着相对于中心天体完全重复的轨段上飞行的特性,由于其相邻星下点轨迹在同一纬度圈上的间距相等,可满足对特定区域和目标的周期性观测要求[1-3]。事实上,回归轨道为中心天体固连坐标系下的周期轨道。该类轨道在对地观测、侦察和科学探测等各类地球遥感任务中已经得到广泛应用,如Landsa ...
    本站小编 Free考研考试 2021-12-25
  • 基于Agent与元胞自动机的无人机集群混合式控制*
    世界的发展总是新事物不断代替旧事物,战争模式始终都在随着武器的发展而不断革新。当前各类飞行武器、防空武器、电磁武器飞速发展,作战环境日趋复杂,信息更多源、态势更复杂、情景更动态、逻辑更多变。单无人机由于自身局限性、低容错性,而难以适应充满未知和不确定性的作战环境。相比之下,无人机集群拥有高机动、强鲁 ...
    本站小编 Free考研考试 2021-12-25
  • 气冷涡轮导叶流热耦合计算及机理*
    涡轮内部的流场与温度场是高度耦合的,一方面涡轮内部流场存在着如激波、二次涡系等复杂流动结构,会影响到部件温度场分布及其换热特性,另一方面,固体域的温度分布及冷却射流与主流的相互作用也将反过来影响流场的流动特征[1]。因此,理解和掌握涡轮内部流场温度场相互作用机制,对于提高冷却效率和准确预测热负荷有着 ...
    本站小编 Free考研考试 2021-12-25
  • 含间隙非线性机翼跨声速颤振时滞反馈控制*
    气动力与柔性结构相互作用会产生气动弹性,颤振是气动弹性领域中最危险的一类动不稳定现象,极易引发灾难性事故。颤振主动控制技术是目前研究最多的颤振抑制方法,一般是通过在机翼上布置多个控制面,控制其偏转改变作用在机翼上的气动力,以达到抑制颤振的目的。主动控制气动弹性系统包含作动器、传感器、控制器和数字滤波 ...
    本站小编 Free考研考试 2021-12-25
  • 环量控制翼型非定常气动力建模*
    在航空技术应用中,使用环量控制技术作为主动流动控制的解决方案越来越引起人们的注意[1-2]。环量控制技术是指在翼型后缘表面开缝以形成沿着物面切向的射流,用以增加沿着翼型表面的环量,进而增加升力[3-4]。风洞试验和数值仿真结果表明,环量控制技术能够大幅度提高翼型升力,并在高升力条件下改善升阻比[5- ...
    本站小编 Free考研考试 2021-12-25