删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Convolution integral restricted on closed hypersurfaces

本站小编 Free考研考试/2021-12-25

杜文奎, 燕敦验
中国科学院大学数学科学学院, 北京 100049
摘要: 经典的欧氏空间中的卷积如下给出。对$f\in {{L}^{1}}\left( {{\mathbb{R}}^{n}} \right)$$g\in {{L}^{p}}\left( {{\mathbb{R}}^{n}} \right)$, ${{T}_{f}}\left( g \right)\left( x \right):=f*g\left( x \right)=\int_{{{\mathbb{R}}^{n}}}{f\left( x-y \right)g\left( y \right)\text{d}}y.$ 这样的卷积在分析、物理和工程上都有广泛的应用。经典的Young不等式表明,对1≤p≤∞,\[{{T}_{f}}:{{L}^{p}}\left({{\mathbb{R}}^{n}} \right)\to {{L}^{p}}\left({{\mathbb{R}}^{n}} \right)\]是有界线性算子。得到限制在一个闭超曲面(欧氏空间中的余维数为1的紧致无边连通正则子流形)上的卷积的Lp模估计的大小。更精确地说,把Young不等式推广到了闭超曲面上。
关键词: 卷积闭超曲面有界性
The classical concept of convolution operator has been generalized in many new cases. The reason is that convolution operator has many applications in harmonic analysis and engineering. For example, it can be used to characterize the bounded operators which commutate with transition actions.
Many researchers have made explorations in these topics. For instance, Oinarov[1] explored the boundedness and compactness of convolution operators of fractional integration type. Avsyankin[2] and Guliyeva and Sadigova[3] explored the properties of convolution operators on Morrey spaces.
Harmonic analysis on Euclidean space has developed very fast. It is also meaningful to generalize the theories on manifolds. For example, the progress of restriction conjecture about Fourier transformation has been introduced in Refs. [4-7]. Similarly, we consider the restriction properties of convolution integral on manifolds in this study.
1 Some definitionsBefore we put forward our main results, some useful definitions are given as follows.
Definition 1.1??Sobolev space $W_{1}^{k}\left( {{\mathbb{R}}^{n}} \right)$ is defined as
$W_1^k\left( {{\mathbb{R}^n}} \right) = \left\{ {f \in {L^1}\left( {{\mathbb{R}^n}} \right):{\partial ^\alpha }f \in {L^1}\left( {{\mathbb{R}^n}} \right);|\alpha | \leqslant k} \right\}.$
For $f\in W_{1}^{k}\left( {{\mathbb{R}}^{n}} \right)$, the norm of f is defined as
${\left\| f \right\|_{W_1^k}} = {\left\| f \right\|_1} + \sum\limits_{\left| {{\alpha _\alpha }} \right| \le k} {{{\left\| {{\partial ^\alpha }f} \right\|}_1}} $
Definition 1.2??Suppose M is an (n-1) dimensional hypersurface in ${{\mathbb{R}}^{n}}$.For $f\in W_{1}^{1}\left( {{\mathbb{R}}^{n}} \right)\cap C\left( {{\mathbb{R}}^{n}} \right)$ and $g\in {{L}^{p}}\left( {{\mathbb{R}}^{n}} \right)$, we define
$\left\| {{T_f}(g)} \right\|_{p,M}^p: = \int_M {{{\left| {{T_f}(g)(x)} \right|}^p}} {\rm{d}}\sigma (x),$ (1)
where, p≥1 and is the surface measure of M in ${{\mathbb{R}}^{n}}$.
2 Main resultWe state our main theorem as follows.
Theorem 2.1??Let M be a closed (connected compact without boundary) (n-1) dimensional hypersurface in ${{\mathbb{R}}^{n}}$. Then, for 1≤p≤∞, $f\in W_{1}^{1}\left( {{\mathbb{R}}^{n}} \right)\cap C\left( {{\mathbb{R}}^{n}} \right)$, and $g\in {{L}^{p}}\left( {{\mathbb{R}}^{n}} \right)$, the inequality
${\left\| {{T_f}(g)} \right\|_{p,M}} \le {C^\prime }(M){\left\| f \right\|_{w_1^1}}{\left\| g \right\|_p}$
holds. Here, C′(M) is a constant relying on M.
3 Proof of the main resultAccording to Lemma 3.1(see below), we only need to prove Theorem 2.1 for all $f\in W_{1}^{1}\left( {{\mathbb{R}}^{n}} \right)\cap {{C}^{\infty }}\left( {{\mathbb{R}}^{n}} \right)$ and $g\in {{L}^{p}}\left( {{\mathbb{R}}^{n}} \right)\cap {{C}^{\infty }}\left( {{\mathbb{R}}^{n}} \right)$.
Lemma 3.1??Let M be a closed (n-1) dimensional hypersurface in ${{\mathbb{R}}^{n}}$. If the following inequality holds for all $f\in W_{1}^{1}\left( {{\mathbb{R}}^{n}} \right)\cap {{C}^{\infty }}\left( {{\mathbb{R}}^{n}} \right)$ and $g\in {{L}^{p}}\left( {{\mathbb{R}}^{n}} \right)\cap {{C}^{\infty }}\left( {{\mathbb{R}}^{n}} \right)$,
${\left\| {{T_f}(g)} \right\|_{p,M}} \le C(M){\left\| f \right\|_{W_1^1}}{\left\| g \right\|_p}$ (2)
also holds for all $f\in W_{1}^{1}\left( {{\mathbb{R}}^{n}} \right)\cap C\left( {{\mathbb{R}}^{n}} \right)$ and $g\in {{L}^{p}}\left( {{\mathbb{R}}^{n}} \right)$.
Proof:
In fact, under the hypothesis in the lemma, given any $f\in W_{1}^{1}\left( {{\mathbb{R}}^{n}} \right)\cap C\left( {{\mathbb{R}}^{n}} \right)$ and $g\in {{L}^{p}}\left( {{\mathbb{R}}^{n}} \right)$, we can assume ${{f}_{k}}\in W_{1}^{1}\left( {{\mathbb{R}}^{n}} \right)\cap {{C}^{\infty }}\left( {{\mathbb{R}}^{n}} \right)$ and ${{g}_{k}}\in {{L}^{p}}\left( {{\mathbb{R}}^{n}} \right)\cap {{C}^{\infty }}\left( {{\mathbb{R}}^{n}} \right)$ such that
${\left\| {{f_k} - f} \right\|_{W_1^1}} \to 0,$ (3)
and
${\left\| {{g_k} - g} \right\|_p} \to 0.$ (4)
Without loss of generality, we are able to assume that the sequence fk converges to f almost everywhere and gk converges to g almost everywhere.
Thus, applying Fatou's lemma and using (2), (3), and (4), we have
$\begin{gathered} {\left\| {{T_f}(g)} \right\|_{p,M}} = {\left\| {f * g} \right\|_{p,M}} \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \leqslant {\left\| {|f|*|g|} \right\|_{p,M}} \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = {\left\| {\int_{{\mathbb{R}^n}} {\mathop {\lim }\limits_{k \to \infty } {{\left| f \right|}_k}\left( {x - y} \right){{\left| g \right|}_k}\left( y \right){\text{d}}y} } \right\|_{p,M}} \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \leqslant \mathop {\lim \inf }\limits_{k \to \infty } {\left\| {\left| {{f_k}} \right|*\left| {{g_k}} \right|} \right\|_{p,M}} \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \leqslant \mathop {\lim \inf }\limits_{k \to \infty } C\left( M \right){\left\| {{f_k}} \right\|_{W_1^1}}{\left\| {{g_k}} \right\|_p} \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = C\left( M \right){\left\| f \right\|_{W_1^1}}{\left\| g \right\|_p}. \hfill \\ \end{gathered} $
This completes the proof of Lemma 3.1.
Then, we state the following tubular neighborhood lemma[8].
Lemma 3.2??Let S be a closed hypersurface in Euclidean space. (N, S, π, $\mathbb{R}$) is the normal bundle of S. Then, there exists a δ>0 and a tubular neighborhood Δδ={(p, η)∈N:‖η‖ < δ}, such that Δδ is diffeomorphic to ${{N}_{\delta }}=\left\{ x\in {{N}_{p}}\subset {{\mathbb{R}}^{n+1}}:p\in S;d\left( x, S \right)<\delta \right\}$ under the mapping ?(p, η)=p+η. Thus, for each two points p and q on S, the corresponding normal lines passing through these two points and having these two points as the lines' centers do not intersect, and these normal lines have length of 2δ.
Then, because M is a closed hypersurface in ${{\mathbb{R}}^{n}}$, according to generalized Jordan separation theorem[8] we can assume that D is a bounded open domain in ${{\mathbb{R}}^{n}}$, whose boundary is M, i.e., $\partial D=M$. Now, we have the following lemma.
Lemma 3.3??Let M be a (n-1) dimensional closed hypersurface in ${{\mathbb{R}}^{n}}$. Then, for 1≤p≤∞, the inequality
${\left\| {{T_f}(g)} \right\|_{p,M}} \le C(M){\left\| f \right\|_{W_1^1}}{\left\| g \right\|_p}$
holds for all $f\in W_{1}^{1}\left( {{\mathbb{R}}^{n}} \right)\cap {{C}^{\infty }}\left( {{\mathbb{R}}^{n}} \right)$ and $g\in {{L}^{p}}\left( {{\mathbb{R}}^{n}} \right)$.
Proof of Lemma 3.3 and Theorem 2.1:
We first prove that the inequality holds for 1 < p < ∞. Since f(x-y)g(y)=(f1(x-y)+if2(x-y))(g1(y)+ig2(y)), we are able to suppose f and g are real valued functions.
Let Ω be the volume form on M, and let i:$M\hookrightarrow {{\mathbb{R}}^{n}}$ be the standard embedding. Δδ is the tubular neighborhood of M. According to Lemma 3.2, there exists a smooth unit vector field n on Δδ. We fix a smooth function ? valuing 1 in the closure ${{\Delta }_{\frac{\delta }{2}}}$ and valuing 0 outside Δδ. Let η=?n be the smooth vector field on ${{\mathbb{R}}^{n}}$. Then, the volume form Ω in Ref. [9] can be represented as
$\begin{array}{*{20}{c}}{\mathit{\Omega } = {i^*}\sum\limits_{\alpha = 1}^n {{{\left( { - 1} \right)}^{\alpha - 1}}} {\eta ^\alpha }(x){\rm{d}}{x^1} \wedge \cdots }\\{ \wedge \widehat {{\rm{d}}{x^\alpha }} \wedge \cdots \wedge {\rm{d}}{x^n},}\end{array}$ (5)
where ηα is the αth component of η.
Therefore, substituting surface measure dσ in (1) by volume form Ω in (5), we obtain
$\begin{array}{l}\left\| {{T_f}(g)} \right\|_{p,M}^p = \int_M {{{\left| {{T_f}(g)(x)} \right|}^p}} {\rm{d}}\sigma (x)\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \int_M {{{\left| {{T_f}(g)(x)} \right|}^p}} \Omega = \\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\sum\limits_{\alpha = 1}^n {\int_M {{i^*}} } {h_0}{( - 1)^{\alpha - 1}}{\eta ^\alpha }{\rm{d}}{x^1} \wedge \cdots \\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\widehat {{\rm{d}}{x^\alpha }} \cdots \wedge {\rm{d}}{x^n},\end{array}$ (6)
where h0(x)=|Tf(g)(x)|p.
Since, for p>1, h0(x) is smooth for ε>0 by Sard theorem[9], there exists a $c\in \mathbb{R}$ such that |c| < ε and 0 is the regular value of Tf(g)(x)-c. This means that the gradient of Tf(g)(x)-c at the zeros of this function does not vanish. Let h(x) be |Tf(g)(x)-c|p, we have
$\begin{array}{l}\left\| {{T_f}(g)} \right\|_{p,M}^p = \int_M {{{\left| {{T_f}(g)(x) - c + c} \right|}^p}} {\rm{d}}\sigma (x)\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \le {2^{p - 1}}{\varepsilon ^p}|M| + {2^{p - 1}}\int_M h (x){\rm{d}}\sigma (x).\end{array}$ (7)
Here, we have used inequality (8).
${(a + b)^p} \le {2^{p - 1}}\left( {{a^p} + {b^p}} \right).$ (8)
According to the regular value preimage theorem[10], Γ={h(x)=0} is a (n-1) dimensional regular submanifold in ${{\mathbb{R}}^{n}}$, whose Lebesgue measure is zero. Take Γε be the ε tubular neighborhood of Γ such that
$\int_{{\Gamma _\varepsilon }} {\left| {\frac{{\partial h}}{{\partial {x^\alpha }}}} \right|} {\rm{d}}x < \varepsilon \cdot (\alpha \in \{ 1, \cdots ,n\} ).$ (9)
Then, we use (6) and apply Stokes formula. Because ηα(x) and $\frac{\partial {{\eta }^{\alpha }}\left( x \right)}{\partial {{x}^{\alpha }}}$ are bounded over D, we obtain
$\begin{array}{l}\left| {\int_M h (x){\rm{d}}\sigma (x)} \right|\\ = \left| {\int_M {{i^*}} h{{( - 1)}^{\alpha - 1}}{\eta ^\alpha }{\rm{d}}{x^1} \wedge \cdots \wedge \widehat {{\rm{d}}{x^\alpha }} \wedge \cdots \wedge {\rm{d}}{x^n}} \right|\\ = \left| {\int_D {\frac{{\partial h}}{{\partial {x^\alpha }}}} {\eta ^\alpha }{\rm{d}}x + \int_D h \frac{{\partial {\eta ^\alpha }}}{{\partial {x^\alpha }}}{\rm{d}}x} \right|\\ \le C(M)\left( {\int_D {\left| {\frac{{\partial h}}{{\partial {x^\alpha }}}} \right|{\rm{d}}x} + \int_D {\left| h \right|{\rm{d}}x} } \right),\end{array}$ (10)
where $C\left( M \right)=\max \left( {{\eta }^{\alpha }}\left( x \right), \frac{\partial {{\eta }^{\alpha }}\left( x \right)}{\partial {{x}^{\alpha }}}:x\in D, \alpha =1, \ldots , n \right)$.
Next, we estimate the two parts in (10) separately. Using (9), we first have
$\begin{array}{l}\int_D {\left| {\frac{{\partial h}}{{\partial {x^\alpha }}}} \right|} {\rm{d}}x = \left( {\int_{D - {\Gamma _\varepsilon }} {} + \int_{{\Gamma _\varepsilon }} {} } \right)\left| {\frac{{\partial h}}{{\partial {x^\alpha }}}} \right|{\rm{d}}x\\ \le \varepsilon + \int_{D - {\Gamma _\varepsilon }} {\left| {\frac{{\partial h}}{{\partial {x^\alpha }}}} \right|} {\rm{d}}x\\ = \varepsilon + \int_{D - {\Gamma _\varepsilon }} {\left| {\frac{\partial }{{\partial {x^\alpha }}}} \right|} {T_f}(g) - c\left| {^p} \right|{\rm{d}}x\\ = \int_{D - {\Gamma _\varepsilon }} p {\left| {{T_f}(g) - c} \right|^{p - 1}}\left| {\frac{{\partial \left| {{T_f}(g) - c} \right|}}{{\partial {x^\alpha }}}} \right|{\rm{d}}x + \varepsilon .\end{array}$ (11)
Since $\left| T\frac{\partial \text{f}}{\partial {{x}^{\alpha }}}\left( g \right) \right|=\left| \frac{\partial }{\partial {{x}^{\alpha }}} \right|\left. {{T}_{f}}\left( g \right)-c \right\|$ on Dε, applying H?lder inequality and (8) in (11), we obtain
$\begin{array}{l}\int_D {\left| {\frac{{\partial h}}{{\partial {x^\alpha }}}} \right|} {\rm{d}}x \le \varepsilon + \int_{D - {\Gamma _\varepsilon }} p {\left| {{T_f}(g) - c} \right|^{p - 1}}\left| {{T_{\frac{{\partial {\rm{f}}}}{{\partial {x^\alpha }}}}}(g)} \right|{\rm{d}}x\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \le \varepsilon + \int_D p {\left| {{T_f}(g) - c} \right|^{p - 1}}\left| {{T_{\frac{{\partial f}}{{\partial {x^\alpha }}}}}(g)} \right|{\rm{d}}x\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \le \varepsilon + p\left\| {{T_f}(g) - c} \right\|_{p,D}^{p - 1}{\left\| {{T_{\frac{{\partial f}}{{\partial {x^\alpha }}}}}(g)} \right\|_{p,D}}\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \le \varepsilon + {2^{{{(p - 1)}^2}}}p|D{|^{\frac{{p - 1}}{p}}}{\varepsilon ^{p - 1}}{\left\| {{T_{\frac{{\partial f}}{{\partial {x^\alpha }}}}}(g)} \right\|_p} + \\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{2^{{{(p - 1)}^2}}}p\left\| {{T_f}(g)} \right\|_p^{p - 1}{\left\| {{T_{\frac{{\partial f}}{{\partial {x^\alpha }}}}}(g)} \right\|_p}.\end{array}$ (12)
Meanwhile, applying the following Young's inequalities
$\begin{array}{*{20}{c}}{{{\left\| {{T_f}(g)} \right\|}_p} \le {{\left\| f \right\|}_1}{{\left\| g \right\|}_p},}\\{{{\left\| {{T_{\frac{{\partial f}}{{\partial {x^\alpha }}}}}(g)} \right\|}_p} \le {{\left\| {\frac{{\partial f}}{{\partial {x^\alpha }}}} \right\|}_1}{{\left\| g \right\|}_p},}\end{array}$
we have
$\begin{array}{l}\int_D {\left| h \right|{\rm{d}}x} \le {2^{p - 1}}\left( {\int_D {{{\left| {{T_f}\left( g \right)\left( x \right)} \right|}^p}{\rm{d}}x} + {\varepsilon ^p}\left| D \right|} \right)\\\;\;\;\;\;\;\;\;\;\;\; \le {2^{p - 1}}{\varepsilon ^p}\left| D \right| + {2^{p - 1}}\left\| f \right\|_1^p\left\| f \right\|_p^p,\end{array}$ (13)
and
$\begin{array}{l}\int_D {\left| {\frac{{\partial h}}{{\partial {x^\alpha }}}} \right|} {\rm{d}}x \le \varepsilon + {2^{(p - 1)2}}p|D{|^{\frac{{p - 1}}{p}}}{\varepsilon ^{p - 1}}{\left\| {{T_{\frac{{\partial f}}{{\partial {x^\alpha }}}}}(g)} \right\|_p} + \\\;\;\;\;\;\;\;\;\;\;\;\;\;\;{2^{{{(p - 1)}^2}}}p\left\| g \right\|_p^p\left\| f \right\|_1^{p - 1}{\left\| {\frac{{\partial f}}{{\partial {x^\alpha }}}} \right\|_1}.\end{array}$ (14)
Combining (7), (10), (13), and (14), we have
$\begin{array}{l}\left\| {{T_f}(g)} \right\|_{p,M}^p \le {2^{p - 1}}{\varepsilon ^p}|M| + {2^{p - 1}}\int_M h (x){\rm{d}}\sigma (x)\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \le {2^{p - 1}}{\varepsilon ^p}|M| + {2^{p - 1}}C(M)\left( {{2^{p - 1}}{\varepsilon ^p}|D| + \varepsilon + } \right.\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left. {\left( {{2^{p - 1}} + {2^{{{(p - 1)}^2}}}p} \right)\left\| f \right\|_1^{p - 1}{{\left\| f \right\|}_{W_1^1}}\left\| g \right\|_p^p} \right)\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \le {2^{p - 1}}{\varepsilon ^p}|M| + {2^{p - 1}}C(M)\left( {{2^{p - 1}}{\varepsilon ^p}|D| + \varepsilon + } \right.\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\begin{array}{*{20}{l}}{\left. {{2^{{{(p - 1)}^2}}}p|D{|^{\frac{{p - 1}}{p}}}{\varepsilon ^{p - 1}}{{\left\| {{T_{\frac{{\partial f}}{{\partial {x^\alpha }}}}}(g)} \right\|}_p}} \right) + }\\{{2^{p - 1}}\left( {{2^{p - 1}} + {2^{{{(p - 1)}^2}}}p} \right)C(M)\left\| f \right\|_{W_1^1}^{{p_1}}\left\| g \right\|_p^p.}\end{array}\end{array}$ (15)
For arbitrary ε and p>1, let ε→0 in (15). We obtain
$\left\| {{T_f}(g)} \right\|_{p,M}^p \le C(p,M)\left\| f \right\|_{W_1^1}^p\left\| g \right\|_p^p.$ (16)
Now, we have finished the proof in the case where 1 < p < ∞.
For p=1, we choose $g\in C_{c}^{\infty }\left( {{\mathbb{R}}^{n}} \right)$. Let p→1 in (16), by Fatou's lemma, we obtain
${\left\| {{T_f}(g)} \right\|_{1,M}} \le 2C(M){\left\| f \right\|_{W_1^1}}{\left\| g \right\|_1}.$ (17)
Because $C_{c}^{\infty }\left( {{\mathbb{R}}^{n}} \right)$ is dense in ${{L}^{p}}\left( {{\mathbb{R}}^{n}} \right)$, by Fatou's lemma, we finish the proof for p=1.
Meanwhile, it is obvious that
${\left\| {{T_f}(g)} \right\|_{\infty ,M}} \le {\left\| f \right\|_1}{\left\| g \right\|_\infty }$ (18)
holds.
Finally, using (17), (18), and Riesz-Th?rin interpolation theorem[11], we can choose a constant C′(M)=max{2C(M), 1} which is independent of p such that the following is true.
${\left\| {{T_f}(g)} \right\|_{p,M}} \le C'(M){\left\| f \right\|_{W_1^1}}{\left\| g \right\|_p}.$
This completes the proof of Lemma 3.3. Due to Lemma 3.1, we finish the proof of Theorem 2.1.
References
[1] Oinarov R. Boundedness and compactness of a class of convolution integral operators of fractional integration type[J]. Proceedings of the Steklov Institute of Mathematics, 2016, 293(1): 255-271. DOI:10.1134/S0081543816040180
[2] Avsyankin O G. On the compactness of convolution-type operators in Morrey spaces[J]. Mathematical Notes, 2017, 102(3/4): 437-443.
[3] Guliyeva F A, Sadigova S R. On some properties of convolution in morrey type spaces[J]. Azerbaijan Journal of Mathematics, 2017, 8(1): 140-150.
[4] Tomas P A. A restriction theorem for the Fourier transform[J]. Bulletin of the American Mathematical Society, 1975, 81(1991): 31-36.
[5] Wolff T H. Lectures on harmonic analysis[M]. Rhode Island: American Mathematical Society, 2002.
[6] Stein E M. Harmonic analysis, real variable methods, orthogonality, and osciallatory integrals[M]. New Jersey: Princeton University Press, 1993.
[7] Tao T. Recent progress on the restriction conjecture[J]. Mathematics, 2003, 217-243.
[8] Zhang Z S. Lecture notes on differential topology[M]. Beijing: Peking University Press, 2002.
[9] Spivak M. A comprehensive introduction to differential geometry volume Ⅰ[M]. 3rd ed. Houston: Publish or Perish, 1999.
[10] Spivak M. A comprehensive introduction to differential geometry volume Ⅱ[M]. 3rd ed. Houston: Publish or Perish, 1999.
[11] Stein E M. Singular integerals and differentiability properrities of functions[M]. New Jersey: Princeton University Press, 1970.


相关话题/空间 物理 工程 中国科学院大学 数学

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 增强型地热系统的多区域多物理场耦合三维数值模拟
    丁军锋,王世民中国科学院大学地球与行星科学学院,北京100049;中国科学院计算地球动力学重点实验室,北京1000492018年4月13日收稿;2018年4月27日收修改稿基金项目:国家自然科学基金(41374090,41674086)和中国科学院“****”项目资助通信作者:王世民,E-mail: ...
    本站小编 Free考研考试 2021-12-25
  • 一种适用于气温空间插值的改进梯度距离平方反比法
    李框宇1,2,周梅1,陈玖英1,潘苗苗1,李传荣1,唐伶俐11.中国科学院光电研究院中国科学院定量遥感信息技术重点实验室,北京100094;2.中国科学院大学,北京1000492018年3月23日收稿;2018年5月11日收修改稿基金项目:国家高分专项(Y14207A14N)资助通信作者:周梅,E- ...
    本站小编 Free考研考试 2021-12-25
  • 序贯最大最小距离设计的空间填充性
    滕一阳1,武赟2,熊世峰2,杨建奎11.北京邮电大学理学院,北京100876;2.中国科学院数学与系统科学研究院,北京1001902017年9月29日收稿;2017年11月16日收修改稿基金项目:国家自然科学基金(11471172,11671386)资助通信作者:熊世峰,E-mail:xiong@a ...
    本站小编 Free考研考试 2021-12-25
  • 基于地表温度日较差-植被覆盖度特征空间的土壤含水量反演方法
    茹晨1,2,段四波2,姜小光1,冷佩2,高懋芳2,霍红元2,李召良21.中国科学院大学资源与环境学院,北京100049;2.中国农业科学院农业资源与农业区划研究所,北京1000812017年7月31日收稿;2017年10月31日收修改稿基金项目:国家自然科学基金(41571352,41231170, ...
    本站小编 Free考研考试 2021-12-25
  • 民国时期乌鲁木齐城市的社会空间结构
    贾晓婷1,2,雷军1,张小雷11.中国科学院新疆生态与地理研究所,乌鲁木齐830011;2.中国科学院大学,北京1000492017年8月4日收稿;2017年11月13日收修改稿基金项目:国家自然科学基金(41671168)资助通信作者:雷军,E-mail:leijun@ms.xjb.ac.cn摘要 ...
    本站小编 Free考研考试 2021-12-25
  • 一种适用于高轨空间的GNSS矢量跟踪方案设计*
    基于全球卫星导航系统(GNSS)的高轨航天器自主导航技术具有重要的应用价值[1]。然而,不同于地面及中、低轨用户,高轨航天器的轨道高度要高于GNSS星座,因此高轨空间GNSS信号传播不仅会受到地球遮挡影响,而且信号传播距离及相应的传播损耗还会显著增加,使得信号可见性和信号品质变差[2-3]。因此,高 ...
    本站小编 Free考研考试 2021-12-25
  • 地气光辐射对空间目标成像特性影响分析*
    天基光电测量技术在航天器捕获追踪、交汇测量等方面有着广泛的应用。空间目标探测过程中,光电探测系统除了接收源自于太阳辐照的目标辐射能量外,还会接收地气光辐射。地气光辐射是指以地球表面为下限、大气上界为上限的地球-大气系统向宇宙空间释放的各类辐射的总称,主要以反射的太阳光为主[1]。以地气光辐射为背景的 ...
    本站小编 Free考研考试 2021-12-25
  • 临近空间大气密度扰动对高超声速飞行器气动热环境的影响*
    20~100km高度范围的临近空间,包含平流层、中间层和低热层区域。该区域不仅受到空间环境的影响,还受到对流层大气活动的影响[1-2]。临近空间大气受大气动力学、辐射和光化学过程等控制,这些因素的综合影响,使得临近空间大气参量具有复杂的时间和空间尺度变化。临近空间大气参量的变化不仅存在季节变化、半年 ...
    本站小编 Free考研考试 2021-12-25
  • 带空间结构的人工神经网络建模方法*
    空间自回归模型自20世纪70年代由Anselin和Cliff等提出并推广以来[1-2],日益受到重视。通过引入空间权重矩阵将空间效应引入传统回归模型,空间自回归模型能够更加全面地分析各种变量之间的变化规律,增强模型的解释能力[3]。目前,空间自回归模型已广泛应用于环境问题[4]、区域经济增长[5]等 ...
    本站小编 Free考研考试 2021-12-25
  • 一种全球临近空间大气密度建模方法及应用*
    临近空间大气变化非常复杂,真实大气中包含复杂的大气波动信息,这也是真实大气偏离气候平均状态的主要原因。往往大气模型不能很好地表征这部分波动信息。为了避免模型不准确对实际飞行的影响,在工程上通过增加设计裕度的方式来避免。但是,设计裕度的增大是以牺牲其他方面的设计为代价的,如有效载荷质量和尺寸的减小。因 ...
    本站小编 Free考研考试 2021-12-25