删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

K2 for a kind of special finite group rings

本站小编 Free考研考试/2021-12-25

张亚坤, 唐国平
中国科学院大学数学科学学院, 北京 100049
摘要: G为阶数小于6的非平凡群,p为整除群G的阶数的素数,确定k≥2时K2($\mathbb{Z}$G/pk$\mathbb{Z}$G)的结构。
关键词: K2-群Dennis-Stein符号群环
Let G be a finite abelian p-group, and Γ the maximal $\mathbb{Z}$-order of $\mathbb{Z}$G in $\mathbb{Q}$G. By Propo sition 2.2 in Ref.[1], Γ is the integral clo sure of $\mathbb{Z}$G in $\mathbb{Q}$G, and |G$\subseteq $$\mathbb{Z}$G$\subseteq $Γ. When 1 < |G| < 6, we find that calculation of K2($\mathbb{Z}$G/pk$\mathbb{Z}$G)(k≥2) is equivalent to calcula tion of K2 of K2($\mathbb{Z}$G) and K2(Γ), which are listed in Table 1. A brief in troduction to the explicit structures of K2($\mathbb{Z}$G) and K2(Γ) can be found in Ref.[2].
Table 1
Table 1 Structures of K2($\mathbb{Z}$G) and K2(Γ)
G Γ K2($\mathbb{Z}$G) K2(Γ)
C2 $\mathbb{Z}$2 (C2)2 (C2)2
C3 $\mathbb{Z}$$\mathbb{Z}$[ζ3] C2 C2
C4 $\mathbb{Z}$2$\mathbb{Z}$[i] (C2)2 (C2)2
C5 $\mathbb{Z}$$\mathbb{Z}$[ζ5] C2 C2
(C2)2 $\mathbb{Z}$4 (C2)6 (C2)4

Table 1 Structures of K2($\mathbb{Z}$G) and K2(Γ)

For simplicity, for any positive integer k≥2, we define
$\mu \left(k \right)=\left\{ \begin{align} & {{\left({{C}_{2}} \right)}^{2}}, \ \ \ \ \ \ \ \ \ \ \ \ k=2, \\ & {{\left({{C}_{2}} \right)}^{2}}\oplus {{C}_{4}}, \ \ \ \ \ k\ge 3. \\ \end{align} \right.$
We summarize our results in Table 2.
Table 2
Table 2 Main results (k≥2)
G K2($\mathbb{Z}$G/pkΓ) K2($\mathbb{Z}$G/pk$\mathbb{Z}$G)
C2 (C2)2 (C2)2
C3 C3 C3
C4 μ(k) μ(k)
C5 C5 C5
(C2)2 * (C2)6

Table 2 Main results (k≥2)

1 PreliminariesLemma 1.1??Let $\mathscr{O}$ be a totally imaginary Dedekind domain of arithmetic type with field of function $\mathbb{F}$. Let ps=|μp($\mathbb{F}$)|, where μp($\mathbb{F}$) is the p-th power roots unity in the field $\mathbb{F}$. Then for any integer m > 1, SK1($\mathscr{O}$, m$\mathscr{O}$) is a cyclic subgroup of μ($\mathbb{F}$) of order l, where
$\text{or}{{\text{d}}_{p}}\left( l \right)={{\left[ \text{or}{{\text{d}}_{p}}\left( m \right)-\frac{1}{p-1} \right]}_{\left[ 0, s \right]}}, $
i.e., ordp(l) is in the interval [0, s], and is the greatest integer≤$\left( \text{or}{{\text{d}}_{p}}\left( m \right)-\frac{1}{p-1} \right)$.
Proof??This follows directly form Corollary 4.3 in Ref.[3].
Lemma 1.2??Let 1 < |Cpr| < 6. Then for any integer kr≥1.
${{K}_{2}}\left( \mathbb{Z}{{C}_{{{p}^{r}}}}/{{p}^{k}}\Gamma \right)\cong \underset{i=0}{\overset{r}{\mathop{\oplus }}}\, {{K}_{2}}\left( \mathbb{Z}\left[ {{\zeta }_{{{p}^{i}}}} \right]/\left( {{p}^{k}} \right) \right).$
Proof??Let R=$\mathbb{Z}$Cpr, I=pkΓ such that kr. By Proposition 2.2.(b) in Ref.[1], we have I$\subseteq $R. Then the Cartesian square
$\begin{matrix} R & \to & R\text{/}I \\ \downarrow & {} & \downarrow \\ \Gamma & \to & \Gamma /I \\\end{matrix}$
gives rise to a nature commuative diagram with exact rows
By Corrollary 1.6 in Ref.[4], K2(R) maps onto K2(Γ). Hence, it is indicated in Table 1 that φ2 is an isomorphism induced by inclusion. According to Theorem 1.3 in Ref.[1], φ1 is a surjection and φ4 is an isomorphism. Since both of SK1(R) and SK1(Γ) are trivial, φ5 is an isomorphism. A diagram chasing shows that φ3 is an isomorphism. Hence,
${{K}_{2}}\left( \mathbb{Z}{{C}_{{{p}^{r}}}}\text{/}{{p}^{k}}\Gamma \right)\cong {{K}_{2}}\left( \Gamma \text{/}{{p}^{k}}\Gamma \right).$
According to Corollary 2.10 in Ref.[5], $\mathbb{Q}$Cpr is isomorphic to a direct sum of cyclotomic field
$\mathbb{Q}{{C}_{p^r}}\cong \underset{i=0}{\overset{r}{\mathop{\oplus }}}\, \mathbb{Q}\left( {{\zeta }_{{{p}^{i}}}} \right).$
By Proposition 2.2 in Ref.[1], $\Gamma \cong \underset{i=0}{\overset{r}{\mathop{\oplus }}}\, \mathbb{Z}\left( {{\zeta }_{{{p}^{i}}}} \right)$. Thus the result follows.
2 Main resultsIt is well known that K2($\mathbb{Z}$/(2k))=C2(k≥2). If $\mathbb{Z}$[ζpi] is totally imaginary, by Lemma 3.4, Theorem 3.8 and 5.1 in Ref.[6], and Corollary 4.3 in Ref.[3],
${{K}_{2}}\left( \mathbb{Z}\left[ {{\zeta }_{{{p}^{i}}}} \right]/\left( {{p}^{k}} \right) \right)\cong S{{K}_{1}}\left( \mathbb{Z}\left[ {{\zeta }_{{{p}^{i}}}} \right], \left( {{p}^{k}} \right) \right).$
$\mathbb{F}$or k≥2, using Lemma 1.1 and Lemma 1.2, we deduce that K2($\mathbb{Z}$C2/2kΓ)=(C2)2, K2($\mathbb{Z}$C3/3kΓ)=C3, K2($\mathbb{Z}$C5/5kΓ)=C5, K2($\mathbb{Z}$C4/2kΓ)=(C2)2C4(k≥3), and K2($\mathbb{Z}$C4/4Γ)=(C2)3.
Note that, for any integer sr, pr+sΓ$\subseteq $ps$\mathbb{Z}$Cpr$\subseteq $psΓ. Hence, according to Proposition 1.1 in Ref.[7], K2($\mathbb{Z}$Cpr/pr+sΓ) maps onto K2($\mathbb{Z}$Cpr/ps$\mathbb{Z}$Cpr) and K2($\mathbb{Z}$Cpr/ps$\mathbb{Z}$Cpr) maps onto K2($\mathbb{Z}$Cpr/psΓ). Therefore, we deduce that for k≥2, K2($\mathbb{Z}$C2/(2k))=(C2)2, K2($\mathbb{Z}$C3/(3k))=C3, K2($\mathbb{Z}$C5/(5k))=C5, K2($\mathbb{Z}$C4/(2k))=(C2)2C4(k≥3), and K2($\mathbb{Z}$C4/(4))=(C2)3 since, by Lemma 4.1.(a) in Ref.[7], K2($\mathbb{Z}$C4/(4)) has an exponent of 2.Summarizing, we have proven the theorems as follows.
Theorem 2.1??K2($\mathbb{Z}$C2/(2k))(k≥2) is an elementary abelian 2-group of rank 2.
Theorem 2.2??$\mathbb{F}$or any integer k≥2,
${{K}_{2}}\left( \mathbb{Z}{{C}_{4}}/\left( {{2}^{k}} \right) \right)=\left\{ \begin{align} & {{\left( {{C}_{2}} \right)}^{3}}, \ \ \ \ \ \ \ \ \ \ \ k=2, \\ & {{\left( {{C}_{2}} \right)}^{2}}\oplus {{C}_{4}}, \ \ \ \ k\ge 3. \\ \end{align} \right.$
Theorem 2.3??$\mathbb{F}$or any integer k≥2 and p=3, 5, K2($\mathbb{Z}$Cp/(pk)) is a cyclic group of order p.
The method mentioned above is not suitable for the case when G=(C2)2. However, we have the result as follows.
Theorem 2.4??Let (C2)2=〈σ〉×〈τ〉 be an elementary abelian 2-group of rank 2. Then K2($\mathbb{Z}$(C2)2/(2k))(k≥2) is an elementary abelian 2-group of rank 6 with generators
$\begin{align} & \left\{ -1, -1 \right\}, \left\{ \sigma , -1 \right\}, \left\{ \tau , -1 \right\}, \left\{ \sigma , \tau \right\}, \\ & \left\langle \sigma -1, \tau \left( \sigma +1 \right) \right\rangle \ \text{and}\ \left\langle \tau \text{-}1, \sigma \left( \tau +1 \right) \right\rangle . \\ \end{align}$
Proof??According to Theorem 1.10 in Ref.[7], SK1($\mathbb{Z}$(C2)2, (2k)) is trivial. $\mathbb{F}$rom the relative K-theory exact sequence associated to the pair ($\mathbb{Z}$(C2)2, (2k)), K2($\mathbb{Z}$(C2)2) maps onto K2($\mathbb{Z}$(C2)2/(2k)). We deduce from the result of Ref.[2] that K2($\mathbb{Z}$(C2)2/(2k)) is an elementary abelian 2-group of rank at most 6.
Besides, from Proposition 1.1 in Ref.[1], K2($\mathbb{Z}$(C2)2/(2k)) maps onto K2($\mathbb{F}$2(C2)2). Obviously, the kernel contains {-1, -1}, {σ, -1}, and {τ, -1}, while by the result on page 272 in Ref.[7], they are nontrivial and linearly independent. Based on Theorem 4 and Example 3 in Ref.[8], K2($\mathbb{F}$2(C2)2) is an elementary abelian 2-group of rank 3 with generators {1+σ+τ, σ}, {1+σ+τ, τ}, and {σ, τ}. Therefore, the 2-rank of K2($\mathbb{F}$2(C2)2) is at least 6.
Hence, K2($\mathbb{Z}$(C2)2/(2k)) is isomorphic to K2($\mathbb{Z}$(C2)2). In Ref.[2], the explicit structure of K2($\mathbb{Z}$(C2)2) is given. The result follows.
References
[1] Alperin R C, Dennis R K, Stein M R. SK1 of finite abelian groups.[J]. Invent Math, 1985, 82(1): 1-18.
[2] Yang Z G, Tang G P, Liu H. On the structure of K2($\mathbb{Z}$[C2×C2])[J]. J Pure Appl Algebra, 2017, 221(4): 773-779. DOI:10.1016/j.jpaa.2016.08.001
[3] Bass H, Milnor J, Serre J P. Solution of the congruence subgroup problem for SLn(n≥3) and Sp2n(n≥2)[J]. Publications Mathématiques de I'IHéS, 1967, 33: 59-137. DOI:10.1007/BF02684586
[4] Stein M R. Excision and K2 of group rings[J]. J Pure Appl Algebra, 1980, 18(2): 213-224. DOI:10.1016/0022-4049(80)90130-9
[5] Karpilovsky G. Commutative group algebras[M]. New York: Marcel Dekker Inc, 1983.
[6] Dennis R K, Stein M R. K2 of discrete valuation rings[J]. Adv Math, 1975, 18(2): 182-238. DOI:10.1016/0001-8708(75)90157-7
[7] Alperin R C, Dennis R K, Oliver R, et al. SK1 of finite abelian groups.Ⅱ[J]. Invent Math, 1987, 87(2): 253-302. DOI:10.1007/BF01389416
[8] Magurn B A. Explicit K2 of some finite group rings[J]. J Pure Appl Algebra, 2007, 209(3): 801-811. DOI:10.1016/j.jpaa.2006.08.001


相关话题/结构 北京 科学学院 数学 中国科学院大学

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 民国时期乌鲁木齐城市的社会空间结构
    贾晓婷1,2,雷军1,张小雷11.中国科学院新疆生态与地理研究所,乌鲁木齐830011;2.中国科学院大学,北京1000492017年8月4日收稿;2017年11月13日收修改稿基金项目:国家自然科学基金(41671168)资助通信作者:雷军,E-mail:leijun@ms.xjb.ac.cn摘要 ...
    本站小编 Free考研考试 2021-12-25
  • 武汉东湖新技术开发区产业创新与产业结构优化升级的耦合研究
    陈妤凡1,2,王开泳11.中国科学院地理科学与资源研究所/中国科学院区域可持续发展分析与模拟重点实验室,北京100101;2.中国科学院大学,北京1000492017年5月31日收稿;2017年10月24日收修改稿基金项目:国家自然科学基金(41471126,41371178)资助通信作者:王开泳, ...
    本站小编 Free考研考试 2021-12-25
  • 滑溜水压裂液与页岩储层化学反应及其对孔隙结构的影响
    孙则朋1,2,王永莉1,吴保祥1,卓胜广3,魏志福1,汪亘1,徐亮1,21.甘肃省油气资源研究重点实验室/中国科学院油气资源研究重点实验室,兰州730000;2.中国科学院大学,北京100049;3.东北大学秦皇岛分校,河北秦皇岛0660042017年6月22日收稿;2017年10月25日收修改稿基 ...
    本站小编 Free考研考试 2021-12-25
  • 厚胶层复合材料黏接结构中超声反射/透射特性的有限元仿真*
    在航空航天、新型汽车、大型风机叶片等应用领域中,具有厚胶层(数毫米厚)特点的复合材料黏接结构屡见不鲜[1-2]。例如,在大型风机叶片中,由玻璃纤维增强复合材料(GFRP)或碳纤维增强复合材料(CFRP)组成的厚胶层黏接结构几乎遍布叶片全身。针对厚胶层复合材料黏接结构,基于声学性能参数(如超声反射/透 ...
    本站小编 Free考研考试 2021-12-25
  • 环氧树脂基复合材料加筋板结构吸湿行为研究*
    纤维增强聚合物基复合材料具有比强度高、比模量高、质量轻、耐腐蚀性强及一体化成型等特点,被广泛应用到现代飞机结构部件上[1-2]。尽管相比金属材料,复合材料具有良好的耐腐蚀性,但研究发现,在总体或局部环境中由于温度、湿度等影响作用,聚合物基复合材料会发生湿热老化效应导致力学性能退化,进而甚至威胁到飞机 ...
    本站小编 Free考研考试 2021-12-25
  • 基于改进加权响应面的结构可靠度计算方法*
    在现有的结构可靠度分析方法中,一次二阶矩法[1]、二次二阶矩法[2-3]的精度较低,并且在非线性程度较高的情况下还会遇到无法收敛的问题。蒙特卡罗法[4-5]虽然能够得到精确解,但需要大量的抽样和计算时间,限制了其实际应用。响应面法[6]采用多项式函数来近似极限状态函数,原理简单、易于操作且计算效率较 ...
    本站小编 Free考研考试 2021-12-25
  • 基于导重法的自重载荷下悬臂梁结构拓扑优化*
    结构拓扑优化是指在一定的设计区域内,在满足特定的约束条件和边界条件情况下,寻求材料最优分配的过程。拓扑优化的问题自其被提出以来就受到了广泛的关注和研究,包括载荷不确定问题[1-2]、传热学问题[3-4]、非线性问题[5]及工程应用问题[6-7]等。重力作为工程应用中无法避免的载荷,在很多结构设计中是 ...
    本站小编 Free考研考试 2021-12-25
  • 空域扇区网络结构特性分析及韧性评估*
    近十年来,中国国内航空运输量连续保持高速增长态势,主要运输指标实现逐年快速增长。与此带来的航班延误、空域拥挤等问题也日益严重,加重了管制员的工作负荷,增加了安全隐患。而扇区是依据空域内的航路结构及通信导航监视能力,为减轻管制员工作负荷、提高运行安全和效率而划设的空域单元。因此,研究扇区网络特性及在外 ...
    本站小编 Free考研考试 2021-12-25
  • 基于结构分区与应变电桥解耦的支柱式主起落架载荷测量*
    飞机在起降和地面运行过程中,飞行员需适时实施滑行、转弯、回转、刹车、滑跑起飞、着陆等各种操作和动作,加上跑道不平度、道面突风及飞机离地或接地姿态变化等因素,综合导致飞机起落架的受载和传载复杂多变,对飞机起落架的实际受载进行测量具有极其重要的工程意义。应变电测法是国内外飞行实测飞机载荷的常用方法[1- ...
    本站小编 Free考研考试 2021-12-25
  • 函数调用网络的结构属性及其静态鲁棒性*
    自然界有许多复杂系统都可以用复杂网络来描述[1],如蛋白质网[2]、铁路网[3]、航空网[4]等。复杂网络为研究软件系统的结构提供了一种有力的工具[5]。2002年,Valverde等[6]首次将复杂网络理论应用到软件系统的拓扑结构中。Valverde[7]和Myers[8]等分析了开源软件,用有向 ...
    本站小编 Free考研考试 2021-12-25