0 引言
【研究意义】小麦是我国第三大粮食作物,其在实现粮食持续稳产增产、保障国家粮食安全中发挥至关重要的作用。然而,当前小麦生产中存在过量施肥、施肥不经济[1],区域间、农户间施肥不均衡、化肥利用率低以及区域间增产效应差异明显[2,3]等诸多问题。过量以及不合理的施氮不仅降低氮肥利用率,而且导致温室气体排放[4,5]、大气污染[6]、水体富营养化[7]以及地下水硝酸盐污染[8]等一系列的环境问题。同时,由于当前我国社会经济变革导致农业劳动力转移,农业劳动力不足,小麦生产也由传统栽培管理向现代简化栽培管理方向转变。进行简化施肥是简化栽培的一个重要方面,研究表明一次性基施控释氮肥能够满足作物生育期内对养分的需求,不仅解决中后期养分不足的问题,而且能简化操作、减少环境污染,具有重要的环境效益和经济效益[9,10],在小麦生产中具有广阔的应用前景。因此,开展一次性施肥对小麦生长和产量影响的研究,对协同实现高产高效、减少环境污染以及节约农业劳动力的小麦轻简化可持续生产具有重大的意义。【前人研究进展】控释氮肥具有养分释放缓慢的特点,能够提高氮肥利用率,已成为国内外新型肥料的研究热点[11]。研究表明,在山东省褐土上施用小麦配方缓释肥较普通复合肥可提高氮肥利用率27.2%,提高产量12.3%;而在潮土上氮肥利用率提高13.1%,产量提高10.3%[12]。河北省衡水市潮土上连续4年定位试验发现,与分次施用全量普通尿素相比,一次性施用减氮30%控释氮肥仍可维持小麦产量不降低[13]。通过15N同位素示踪法研究了山东棕壤小麦-玉米轮作体系中肥料氮的去向及利用率,结果发现控释氮肥较普通尿素相比可使小麦季氮肥利用率提高16.4%,氮素损失率降低25.5%[14]。张务帅[15]在山东棕壤上的研究结果表明,控释氮肥与普通氮肥相比,可使小麦的氮肥利用率增加12.3%—61.2%,产量增加7.8%—16.5%。利用静态箱-气相色谱法对华北平原砂姜黑土麦-玉米轮作体系的土壤N2O排放特征进行了周年观测,结果发现在保证产量的前提下,一次性施用控释氮肥比分次施入普通尿素使N2O年排放总量显著减少22.8%[16]。华北平原褐土上的研究结果表明,连续施用3年控释氮肥虽然增产效果不显著,但可显著减少氨挥发损失,提高肥料利用率,且能长期保持土壤氮素平衡[17]。【本研究切入点】前人关于控释氮肥在小麦上增产、增效以及减少环境影响方面的研究报道较多,然而,由于不同地区的土壤类型、气候条件等各不相同,控释氮肥在不同区域的应用效果也不尽相同。此外,目前市场上的控释肥料种类繁多,养分配比各异,很难因地制宜地发挥其最优的效益。因此,根据区域气候特点和栽培模式,研究和筛选不同生产区域适宜的控释肥料类型对实现小麦轻简化可持续生产十分迫切,而现阶段这方面的研究报道较少。【拟解决的关键问题】通过多年多点的田间试验,研究和筛选不同土壤类型适合的控释氮肥类型,结合地域气候特点,探讨其同步营养机理,为经济高效地施用控释氮肥以及冬小麦简化栽培技术提供科学依据。1 材料与方法
1.1 试验条件概述
田间试验于2013—2016年分别在山东省泰安市现代农业科研基地—肥城良种试验场(简称泰安,下同)、山东省德州市农科院科技园(德州)、河南省驻马店市农科所实验农场(驻马店)、山东省菏泽市定陶县佃户屯办事处后姚庄建设责任田(菏泽)以及河北省石家庄市农科院大河试验站(石家庄)进行,各试验点具体情况见表1。Table 1
表1
表1各试验点具体情况
Table 1The specific situation at different experimental sites
试验地点 Experimental sites | 经纬度 Longitude and latitude | 土壤类型 Soil type | 年均气温 Mean temperature (℃) | 年均降水量 Average rainfall (mm) | 小麦品种 Wheat variety |
---|---|---|---|---|---|
泰安Tai’an (TA) | 117°08′ E, 36°11′ N | 砂姜黑土Shajiang black soil | 13.6 | 903.2 | 鲁麦22 Lumai 22 |
德州Dezhou (DZ) | 116°20′ E, 37°21′ N | 潮土Fluvo-aquic soil | 12.9 | 547.5 | 济麦22 Jimai 22 |
驻马店Zhumadian (ZMD) | 114°05′ E, 33°26′ N | 砂姜黑土Shajiang black soil | 15.5 | 784.8 | 新农979 Xinnong 979 |
菏泽Heze (HZ) | 115°29′ E, 35°09′ N | 潮土Fluvo-aquic soil | 13.7 | 655.7 | 矮抗58 Aikang 58 |
石家庄Shijiazhuang (SJZ) | 114°23′ E, 38°08′ N | 褐土Cinnamon soil | 12.0 | 560.0 | 邢麦6号 Xingmai 6 |
新窗口打开
上述各试验点气候均属于大陆性季风气候,年平均日照时数2 000—3 077 h,年平均气温4—15.5℃,年平均降水量350—903.2 mm。冬小麦-夏玉米是主要的种植体系,冬小麦在夏玉米收获完成后于10月初进行播种,于下一年6月中旬收获。各试验地点供试土壤0—30 cm土层的基础理化性质见表2。
Table 2
表2
表2各试验地点基础土壤理化性质
Table 2Initial test of topsoil (0-30 cm) at different experimental sites
试验地点 Experimental sites | pH | 有机质 Organic carbon (g·kg-1) | 全氮 Total N (g·kg-1) | 无机氮 Nmin (mg·kg-1) | 速效钾 available K (mg·kg-1) | 速效磷 Olsen-P (mg·kg-1) |
---|---|---|---|---|---|---|
泰安TA | 6.99 | 17.0 | 1.6 | — | 175 | 47.5 |
德州DZ | 8.01 | 7.2 | 1.4 | — | 77.2 | 25.9 |
驻马店ZMD | 6.20 | 15.1 | 1.1 | — | 164 | 13.7 |
菏泽HZ | 8.10 | 12.3 | — | 18.3 | 105 | 13.9 |
石家庄SJZ | 8.50 | 17.4 | 1.1 | — | 132 | 44.9 |
新窗口打开
1.2 田间试验设计
所有试验地点均设置相同的试验处理,共计8个,分别为:(1)对照(CON),不施氮肥,只施用磷、钾肥;(2)优化施肥(OPT),所用氮肥为普通尿素(N=46%);(3)控释氮肥A1处理(A1),所用氮肥为项目课题组研发的水性树脂包膜肥料(N=43%);(4)控释氮肥A2处理(A2),所用氮肥为项目课题组研发的水性树脂包膜肥料(N=43%);(5)控释氮肥B处理(B),所用氮肥为环氧树脂包膜(N=43%),市售主流产品;(6)控释氮肥C处理(C),所用氮肥为聚氨脂包膜(N=44.5%),市售主流产品;(7)控释氮肥D处理(D),所用氮肥为水性树脂包膜(N=41.5%),市售主流产品;(8)控释氮肥E处理(E),所用氮肥为聚氨脂包膜(N=44%),市售主流产品。各试验地点的施肥量及施肥方式见表3,所有试验处理的控释氮肥、磷钾肥均是作为基肥一次性施入。施肥时将供试肥料均匀撒施,翻入耕层整平地后进行机械播种。拔节期,OPT处理追施氮肥(尿素)后,立即灌溉以减少肥料的损失,同时所有试验处理均采用大水漫灌的方式统一进行灌溉。Table 3
表3
表3不同试验地点的施肥量及各处理氮肥的基肥与追肥用量
Table 3The N, P2O5 and K2O application rate at different experimental sites and the N application rate of the different treatments applied before sowing (BS) and at jointing stage (JS)
试验地点 Experimental sites | N (kg·hm-2) | P2O5 (kg·hm-2) | K2O (kg·hm-2) | |||
---|---|---|---|---|---|---|
播前BS | 拔节期JS | 总量Total | ||||
泰安 TA | CON | 0 | 0 | 0 | 105 | 75 |
OPT | 112.5 | 112.5 | 225 | 105 | 75 | |
CRF (A1-E) | 225 | 0 | 225 | 105 | 75 | |
德州 DZ | CON | 0 | 0 | 0 | 105 | 75 |
OPT | 112.5 | 112.5 | 225 | 105 | 75 | |
CRF (A1-E) | 225 | 0 | 225 | 105 | 75 | |
驻马店 ZMD | CON | 0 | 0 | 0 | 90 | 90 |
OPT | 97.5 | 97.5 | 195 | 90 | 90 | |
CRF (A1-E) | 195 | 0 | 195 | 90 | 90 | |
菏泽 HZ | CON | 0 | 0 | 0 | 135 | 67.5 |
OPT | 134.4 | 105.6 | 240 | 135 | 67.5 | |
CRF (A1-E) | 240 | 0 | 240 | 135 | 67.5 | |
石家庄 SJZ | CON | 0 | 0 | 0 | 90 | 80 |
OPT | 100 | 100 | 200 | 90 | 80 | |
CRF (A1-E) | 200 | 0 | 200 | 90 | 80 |
新窗口打开
各试验地点供试土壤的前茬作物均为夏玉米,所有处理在玉米季均是统一施用普通肥料(氮肥为普通尿素),小麦季按照以上试验方案进行。各试验地点不同的试验处理随机排列,为了便于实施,各试验点均为大区试验,试验区四周设置保护行。泰安、德州、驻马店、菏泽以及石家庄试验大区的面积分别为198、165、200、200和200 m2。每个试验地点不同处理之间除氮肥施用不同之外,其他的田间管理措施均相同。
1.3 田间取样及测定
取样时,在每个处理试验大区的采样区内随机进行3次取样。收获期,随机选取3组1 m2的冬小麦地上部,收割后脱粒、烘干,计算产量;随机选定3组取样区,通过计数每个取样小区中间1行的成穗数来计算和确定亩穗数;随机选取3组、每组取30个麦穗以计算穗粒数;通过测定每个试验区收获的3组500粒烘干的籽粒计算千粒重。收获期分成籽粒与秸秆两部分计算生物量,烘干粉碎后测定各部分的氮浓度。在灌浆期和收获期采集土壤样品,采样时选取3个取样区,每个取样区采取5个点混匀成1个土样,取土深度为0—30、30—60和60—90 cm,采集的土样用0.01 mol·L-1 CaCl2溶液浸提,用连续自动流动分析仪(TRAACS 2000, Bran+Luebbe, Germany)测定NH4+-N、NO3--N,两者之和即为无机氮(Nmin)的含量。
氮效率指标及其计算方法:吸氮量(kg·hm-2)=植株干重×氮含量[18];氮肥表观回收率(NRE,%)=(施氮区地上部分吸氮量–不施氮区地上部分吸氮量)/施氮量×100[18]。
1.4 数据统计分析
本研究采用Microsoft Excel 2010进行数据处理和绘图。试验结果采用SAS(ASA-Institute-Inc., 1999)统计软件进行单因素方差分析,显著性检验水平为0.05。2 结果
2.1 产量与产量构成
综合3年结果,不同年份、处理和试验地点(土壤类型)对小麦产量均有影响,土壤类型对产量的影响相对更大(表4)。不同试验地点一次性施用控释氮肥的产量效应不同(图1),泰安砂姜黑土的结果表明,与OPT相比,B处理2013—2014、2015—2016年产量分别显著增加7.1%、12.5%,E处理2015—2016年产量显著增加9.8%,其他各控释氮肥处理在不同年份均能维持小麦高产,平均3年结果,A1—E处理均具有使小麦增产的趋势。驻马店砂姜黑土的结果与泰安相一致,2013—2014年A1、A2、C、E处理较OPT处理产量分别显著增加5.4%、8.3%、11.8%和8.9%,2014—2015年E处理增产8.1%,而2015—2016年A1处理产量较OPT显著降低14.5%。平均3年结果,A2、C、E处理具有增产趋势。不同控释氮肥在褐土(石家庄)上的应用效果稳定,连续3年的结果表明各控释氮肥(A1—E)处理较OPT均能维持小麦高产,且都具有增产的趋势,平均3年结果,D处理的增产幅度最大。德州与菏泽潮土上的结果表明,与OPT相比,一次性施用控释氮肥A2连续3年均能维持小麦高产,但其他控释氮肥处理的结果年际间差异较大;2013—2014年菏泽A1、B、C、D和E以及德州D、E处理均显著降低了小麦产量,降幅为5.7%—19.1%;2014—2015年菏泽A1、D和E处理显著增产6.1%—9.5%,而B、C与德州A1处理显著减产3.7%—24.5%;2015—2016年各控释氮肥(A1—E)处理均能维持小麦产量不降低,菏泽A2、C、E与德州A1、A2、C处理具有增产趋势,而菏泽A1、B、D与德州B、D、E处理的产量则趋于降低。Table 4
表4
表4年份、地点和试验处理对小麦产量、吸氮量和氮肥表观回收率的方差分析结果
Table 4The variance analysis results of year, site and treatment on yield, N uptake and NRE
因素 Factor | 产量Yield | 吸氮量N uptake | 氮肥表观回收率NRE | |||
---|---|---|---|---|---|---|
df | F | df | F | df | F | |
年份Year | 2 | 16.8*** | 2 | 9.18*** | 2 | 94.9*** |
地点Site | 4 | 460*** | 1 | 1320*** | 1 | 1069*** |
处理Treatment | 7 | 294*** | 7 | 296*** | 6 | 5.77*** |
年份×地点 (Year×Site) | 8 | 7.82*** | 2 | 0.07ns | 2 | 143*** |
年份×处理 (Year×Treatment) | 14 | 2.74*** | 14 | 2.78** | 12 | 1.30ns |
地点×处理 (Site×Treatment) | 28 | 20.2*** | 7 | 25.5*** | 6 | 10.3*** |
年份×地点×处理 (Year×Site×Treatment) | 56 | 2.83*** | 14 | 3.78*** | 12 | 1.89* |
新窗口打开
显示原图|下载原图ZIP|生成PPT
图12013—2016年不同试验地点和氮肥处理的小麦产量.
每个数值表示3次重复的平均值(±标准误),不同的小写字母表示不同氮肥处理间达到0.05的显著性水平。下同
-->Fig. 1Wheat grain yields as affected with different N treatments at different experimental sites from 2013 to 2016
Each value is the mean of three replicates (±SE). Different lower case letters denote significant difference (P<0.05) among different N treatments. The same as below
-->
表5可知,泰安砂姜黑土结果表明,与OPT处理相比,2013—2014年控释肥A2、C、D和E处理亩穗数分别显著增加9.6%、9.8%、8.4%和8.9%,A1、B处理趋于增加单位面积穗数;后两年各控释氮肥(A1—E)处理较OPT处理无明显差异。平均3年结果,各控释氮肥(A1—E)处理较OPT处理对穗粒数和千粒重均无显著影响。德州潮土结果发现,与OPT处理相比,A2处理2013—2014、2015—2016年的亩穗数分别显著增加7.5%、7.1%。平均3年结果,A1、B、C、D和E处理较OPT处理亩穗数均无显著差异。控释氮肥对穗粒数的影响年度间呈现不一致的结果,与OPT处理相比,2013—2014年,A1—E处理均显著降低了穗粒数,降幅达13%—20%;而2014—2015、2015—2016年,A1—E处理均趋于增加穗粒数,2014—2015年增幅为0.4%—13%,B、C和E处理达显著水平;2015—2016年增幅为4.3%—7.2%,C、E处理达显著水平。各控释肥(A1—E)处理较OPT处理具有降低千粒重的趋势,3年平均降幅为0.1%—3.2%。驻马店砂姜黑土的结果表明,与OPT处理相比,各控释肥(A1—E)处理亩穗数和穗粒数均无显著差异。控释肥A1、A2、B和E处理较OPT处理显著增加了2014—2015与2015—2016年的千粒重,两年平均增加2.2%—2.4%。从3年平均来看,各控释肥处理较OPT处理趋于增加千粒重。
Table 5
表5
表52013—2016年不同试验地点和氮肥处理的小麦产量构成
Table 5Yield components of wheat across different experimental sites (TA, DZ and ZMD), different years (2013-2016) and all N treatments
处理 Treatment | 穗数(×104) spikes/(666.7 m2) | 穗粒数Grains/spike | 千粒重1000-grain weight (g) | ||||||
---|---|---|---|---|---|---|---|---|---|
2013-2014 | 2014-2015 | 2015-2016 | 2013-2014 | 2014-2015 | 2015-2016 | 2013-2014 | 2014-2015 | 2015-2016 | |
泰安 TA | |||||||||
对照 CON | 43.5d | 39.8c | 44.0b | 30.4ab | 34.9c | 31.6b | 45.9bc | 39.2a | 47.5a |
优化施肥 OPT | 45.9cd | 44.7ab | 49.9a | 32.2a | 36.7bc | 34.3a | 46.5ab | 37.9bc | 44.3bc |
控释氮肥A1 (A1) | 47.2bc | 42.9bc | 49.4a | 31.1ab | 38.7ab | 34.2a | 44.7c | 37.0bc | 44.9bc |
控释氮肥A2 (A2) | 50.3a | 46.1ab | 50.3a | 29.9b | 38.8ab | 33.8ab | 46.2abc | 37.8abc | 44.0c |
控释氮肥B (B) | 48.7abc | 45.9ab | 50.9a | 30.9ab | 37.8ab | 35.2a | 47.5a | 38.5ab | 45.2b |
控释氮肥C (C) | 50.4a | 47.1a | 51.3a | 30.1ab | 39.6a | 34.6a | 46.0abc | 37.9abc | 44.9bc |
控释氮肥D (D) | 49.8ab | 44.0ab | 51.1a | 31.2ab | 38.5ab | 34.4a | 44.9c | 36.4c | 45.0bc |
控释氮肥E (E) | 50.0ab | 45.4ab | 51.8a | 29.9b | 38.2ab | 34.6a | 45.8bc | 38.6ab | 44.9bc |
德州 DZ | |||||||||
对照 CON | 21.2d | 11.5b | 11.5d | 17.7d | 11.8d | 15.3c | 41.0b | 39.0c | 41.9c |
优化施肥 OPT | 24.0bc | 21.2a | 21.2bc | 36.0a | 27.3c | 27.8b | 51.2a | 48.7a | 52.9a |
控释氮肥A1 (A1) | 24.7b | 21.8a | 21.8ab | 29.0c | 27.8bc | 29.3ab | 52.9a | 45.6b | 50.0b |
控释氮肥A2 (A2) | 25.8a | 20.6a | 22.7a | 30.0bc | 27.4c | 29.0ab | 53.1a | 48.8a | 49.7b |
控释氮肥B (B) | 24.7b | 21.8a | 20.5bc | 31.3b | 29.7ab | 29.0ab | 51.0a | 46.7ab | 50.4ab |
控释氮肥C (C) | 24.4b | 21.6a | 20.4bc | 30.0bc | 30.4a | 29.4a | 53.3a | 46.4ab | 49.8b |
控释氮肥D (D) | 23.2c | 20.5a | 20.5bc | 28.7c | 29.1abc | 29.2ab | 53.8a | 47.8ab | 51.3ab |
控释氮肥E (E) | 23.8c | 21.0a | 20.3c | 28.7c | 30.8a | 29.8a | 53.3a | 49.3a | 49.7b |
驻马店 ZMD | |||||||||
对照 CON | 31.5b | 31.6b | 31.5b | 35.3b | 34.8b | 35.0b | 40.5b | 40.3b | 40.3b |
优化施肥 OPT | 37.5a | 37.5a | 39.2a | 36.3a | 36.3a | 36.7a | 41.8b | 41.5b | 42.5a |
控释氮肥A1 (A1) | 37.6a | 37.3a | 37.2a | 36.2a | 36.0a | 35.8a | 42.6a | 42.6a | 42.5a |
控释氮肥A2 (A2) | 38.2a | 37.9a | 38.0a | 36.4a | 36.2a | 36.0a | 42.8a | 42.6a | 42.5a |
控释氮肥B (B) | 37.8a | 37.8a | 37.7a | 36.3a | 36.3a | 36.2a | 42.6a | 42.6a | 42.6a |
控释氮肥C (C) | 39.0a | 38.8a | 38.7a | 36.3a | 36.3a | 36.0a | 42.5ab | 42.3ab | 42.2ab |
控释氮肥D (D) | 38.5a | 38.0a | 38.2a | 36.2a | 36.2a | 36.4a | 42.5ab | 42.4ab | 42.2ab |
控释氮肥E (E) | 38.4a | 38.8a | 39.2a | 36.5a | 36.5a | 36.5a | 42.6a | 42.6a | 42.3ab |
新窗口打开
2.2 氮肥表观回收率与氮吸收
氮肥表观回收率和氮吸收受试验处理、地点与年份的影响,试验地点(土壤类型)的影响最大(表4)。如图2所示,驻马店砂姜黑土结果表明,与OPT相比,A2、C和E显著提高2013—2014年氮肥表观回收率和氮吸收,氮肥表观回收率分别提高21%、28%和22%,氮吸收分别提高7.5%、9.8%和7.7%;A1、B和D较OPT氮肥表观回收率和氮吸收均无显著差异。2014—2015年,A2、C较OPT相比氮肥表观回收率分别显著提高16%、20%,E使氮肥表观回收率、氮吸收分别显著提高23%、9.0%。2015—2016年,各控释肥处理较OPT处理氮肥表观回收率均显著降低,但A2、B、C和E处理的氮吸收并没有降低。平均3年结果,相比OPT,A2、C和E提高了氮肥表观回收率与氮吸收,氮肥表观回收率提高7.7%—11%,氮吸收增加4.3%—5.3%;A1、B和D降低了氮肥表观回收率和氮吸收,氮肥表观回收率降低4.5%—11%,氮吸收减少0.4%—3.3%。石家庄褐土各控释肥(A1—E)处理对小麦氮肥表观回收率和植株氮吸收的影响具有一致的变化规律,相比OPT,D处理3年均显著增加氮肥表观回收率和氮吸收,分别增加21.5%—29.9%和9.4%—14.8%,而其他控释氮肥的氮肥表观回收率与氮吸收均无差异。平均3年结果,A1—E处理较OPT处理均具有提高氮肥表观回收率与氮吸收的趋势。显示原图|下载原图ZIP|生成PPT
图2不同氮肥处理对小麦氮肥表观回收率和氮吸收的影响
-->Fig. 2Effects of different N treatments on NRE and total N uptake
-->
2.3 群体数量
由表6可见,泰安砂姜黑土结果表明,与OPT相比,A2显著增加了3年的冬前分蘖数,增幅6.5%—23.4%;D、E分别使2015—2016和2014—2015年的冬前分蘖增加10.6%、6.8%;平均3年结果,各控释肥(A1—E)处理的冬前分蘖均趋于增加。C、D和E处理较OPT处理显著增加最大分蘖,平均3年结果,A1—E处理较OPT最大分蘖增加10.9%—23%。2013—2014年,A2、C、D和E处理较OPT处理显著增加2013—2014年有效分蘖数,分别提高9.6%、9.8%、8.5%和8.9%,但后两年各控释氮肥较OPT处理有效分蘖无显著差异。平均3年结果,相比OPT处理,A2—E处理均具有增加小麦有效分蘖的趋势。德州潮土结果发现,不同控释氮肥对小麦的冬前分蘖和最大分蘖的影响规律一致,平均3年结果,A1、A2较OPT趋于增加冬前分蘖和最大分蘖,B、C、D、E较OPT趋于减少冬前分蘖和最大分蘖。A2较OPT使2013—2014年的有效分蘖显著增加了7.0%,综合3年结果,与OPT相比,A1、A2、B趋于增加有效分蘖,而C、D、E趋于降低有效分蘖。Table 6
表6
表6不同控释氮肥处理对群体发育的影响
Table 6Population development as affected by different N treatments
处理 Treatment | 泰安 TA | 德州 DZ | ||||||
---|---|---|---|---|---|---|---|---|
2013-2014 | 2014-2015 | 2015-2016 | 2013-2014 | 2014-2015 | 2015-2016 | |||
冬前分蘖Early winter tillers (×104 tillers/667m2) | ||||||||
对照 CON | 47.6bc | 74.0c | 75.4c | 50.3b | 46.9b | 47.9b | ||
优化施肥 OPT | 43.6c | 82.1b | 78.4c | 71.9a | 66.9a | 67.4a | ||
控释氮肥A1 (A1) | 44.8c | 81.5b | 78.1c | 71.9a | 66.9a | 68.1a | ||
控释氮肥A2 (A2) | 56.9a | 87.8a | 89.2a | 74.1a | 68.9a | 69.6a | ||
控释氮肥B (B) | 44.2c | 82.4ab | 80.5bc | 69.0a | 64.3a | 64.8a | ||
控释氮肥C (C) | 49.2abc | 85.0ab | 81.5bc | 65.4a | 60.9a | 64.4a | ||
控释氮肥D (D) | 51.0abc | 86.2ab | 87.7ab | 68.3a | 63.6a | 66.7a | ||
控释氮肥E (E) | 55.8bc | 88.1a | 80.9bc | 67.6a | 62.9a | 66.4a | ||
最大分蘖Maximum tillers (×104 tillers/667m2) | ||||||||
对照 CON | 91.4d | 115c | 103d | 58.5d | 54.5d | 62.7e | ||
优化施肥 OPT | 118c | 119c | 105cd | 83.9abc | 78.1abc | 85.7ab | ||
控释氮肥A1 (A1) | 142ab | 142b | 110bc | 96.8a | 90.1a | 91.8a | ||
控释氮肥A2 (A2) | 119c | 148ab | 114abc | 91.5ab | 85.2ab | 90.9a | ||
控释氮肥B (B) | 124c | 156a | 113abc | 82.1bc | 76.4bc | 81.2bc | ||
控释氮肥C (C) | 135b | 143b | 116ab | 73.7c | 68.6c | 69.6de | ||
控释氮肥D (D) | 145a | 156a | 120ab | 81.2bc | 75.6bc | 75.7cd | ||
控释氮肥E (E) | 140ab | 156a | 122a | 76.1c | 70.9c | 72.7cd | ||
有效分蘖Effective tillers (×104 tillers/667m2) | ||||||||
对照 CON | 43.5d | 39.8c | 44.0b | 21.2d | 11.5b | 12.8b | ||
优化施肥 OPT | 45.9cd | 44.7ab | 49.9a | 24.0bc | 21.2a | 21.8a | ||
控释氮肥A1 (A1) | 47.2bc | 42.9bc | 49.4a | 24.7b | 21.8a | 21.9a | ||
控释氮肥A2 (A2) | 50.3a | 46.1ab | 50.3a | 25.8a | 20.6a | 21.8a | ||
控释氮肥B (B) | 48.7abc | 45.9ab | 50.9a | 24.7b | 21.8a | 21.1a | ||
控释氮肥C (C) | 50.4a | 47.1a | 51.3a | 24.4b | 21.6a | 20.4a | ||
控释氮肥D (D) | 49.8ab | 44.0ab | 51.1a | 23.2c | 20.5a | 22.3a | ||
控释氮肥E (E) | 50.0ab | 45.4ab | 51.8a | 23.8bc | 21.0a | 21.3a |
新窗口打开
2.4 土壤无机氮
图3可知,泰安砂姜黑土结果表明,2015年小麦灌浆期,相比OPT,B显著提高0—30 cm土层的无机氮44%,A1、C、D和E均提高了30—60 cm土层的无机氮含量,分别增加14%、25%、44%和8.9%。在60—90 cm土层,A1、A2、B和C处理的无机氮与OPT处理相比无显著差异,D、E处理较OPT处理显著降低,分别减少37%和48%。2016年灌浆期,A1、A2、C和D较OPT在0—30 cm、30—60 cm和60—90 cm的无机氮均无显著差异,B分别显著减少了30—60 cm、60—90 cm土层无机氮51%、51%,E减少了60—90 cm的无机氮44%。2015年收获期,与OPT相比,C、E处理分别显著增加了0—30 cm的无机氮19%、22%,A1、A2和D处理无机氮显著降低,分别减少34%、26%和34%。A2显著降低30—60 cm土层无机氮27%,其他控释氮肥处理较OPT均无差异;60—90 cm土层,A1、E分别显著降低32%、22%,A2、B、C和D处理无显著差异。2016年收获期,相比OPT,B显著增加了0—30 cm、30—60 cm土层,D显著增加了0—30 cm、60—90 cm土层的无机氮。A1、A2、C和E处理在0—30 cm、30—60 cm和60—90 cm土层的无机氮较OPT处理均无显著差异。显示原图|下载原图ZIP|生成PPT
图3不同氮肥处理对土壤无机氮的影响
-->Fig. 3Effects of different N treatments on soil Nmin
-->
德州潮土无机氮含量总体低于泰安砂姜黑土(图3)。与OPT相比,2016年灌浆期,A1显著提高30—60 cm土层无机氮96%,A1、D分别显著提高60—90 cm的无机氮215%、185%。A2、B、C和E处理60—90 cm土层无机氮趋于增加,增幅达29%—80%。收获期,与OPT处理相比,C使0—30 cm土层的无机氮显著增加111%,E使30—60 cm土层显著增加141%。其他控释氮肥处理的无机氮在各土层中与OPT处理相比均无显著差异。但总体看来,一次性施用控释氮肥具有增加土壤无机氮的趋势,相比OPT处理,B、D、E处理使0—30 cm,A2、B、C处理使30—60 cm,A1、A2、C、E处理使60—90 cm土层的无机氮趋于增加,增幅分别为12%—66%、5.8%—39%、53%—123%。
3 讨论
小麦高产的实现要在保持相对稳定的穗粒数和千粒重的基础上,通过显著提高亩穗数来实现[19]。本研究在泰安砂姜黑土上3年的试验结果发现不同控释氮肥处理较普通尿素处理具有增产的趋势,主要与亩穗数有所增加而穗粒数和千粒重相对稳定有关,亩穗数对产量的贡献大于穗粒数、千粒重。这与前人的研究结果一致,即亩穗数对产量的决定程度最高,其次为穗粒数,最小为千粒重[20,21]。在驻马店砂姜黑土上的研究却有不同的结果,与普通尿素分次施入相比,控释氮肥处理随着产量的增加,千粒重具有增加的趋势,而亩穗数和穗粒数均无显著变化。原因可能是因为控释氮肥处理的小麦在灌浆期土壤墒情、氮素供应以及温度条件均比较适宜,对灌浆较为有利,因而利于增加千粒重。在本研究中,德州与菏泽潮土上的结果表明,不同控释氮肥处理的产量效应存在较大波动,随着试验持续进行,与普通尿素分次施入相比,试验进行第3年菏泽A2、C、E与德州A1、A2、C处理的产量趋于稳定和提高,这可能与控释氮肥处理能够维持较高的土壤氮浓度(图3),进而促进更多的亩穗数和穗粒数形成有关。已有研究表明,适量增施氮肥可提高土壤氮浓度进而促进小麦的分蘖能力和穗花的发育,使单位面积穗数和穗粒数增加[22]。A1、A2、C和E处理的千粒重较OPT处理显著降低,主要原因为产量3个构成因素发育阶段存在部分重叠,三者之间存在一定的相互影响,通常表现为产量构成的互补效应[23]。前人研究表明小麦亩穗数的产生取决于小麦分蘖从产生到死亡的整个综合过程[23]。因此,高产的小麦群体必须有足够的分蘖数量,同时提高群体质量[24]。在泰安砂姜黑土上,与OPT处理相比,不同控释氮肥处理显著增加了小麦的分蘖数量,形成更加合理的群体结构,有利于小麦高产和稳产(图1)。德州潮土上的结果表明,控释氮肥A1、A2的分蘖数量有增加的趋势,进而促进了小麦产量的增加,相反,B、D和E处理的分蘖数量趋于减少,因而最终导致产量相对降低。冬小麦的群体发育主要包括两个关键阶段,一是冬前分蘖阶段[25],一是拔节-开花茎蘖退化阶段[26]。生产中,许多栽培学家都非常重视小麦冬前群体发育的质量[27,28],冬前分蘖阶段中小麦低位分蘖发育的持续期越长,数量越多,最终成穗的几率就越大。本研究中泰安的结果表明控释氮肥处理的冬前分蘖较OPT处理显著增多,或具有增多的趋势,有利于小麦形成更多的穗数,并最终获得较高的产量。
根层养分供应与作物生长需求时空同步是提高肥料利用率和产量的关键[29,30]。研究表明,小麦在拔节期以前以及孕穗期至成熟期的氮素需求并不高[31]。在本试验中,小麦越冬期温度低,控释氮肥的养分几乎没有释放,而此时期小麦对氮素的需求也非常少。拔节-开花阶段是小麦对养分需求最高、积累最多的时期[32,33],对小麦高产起决定性的作用[34,35],是调控小麦生长的重要阶段[36]。本研究中,小麦拔节-开花时期随着气温和地温逐渐回升,有利于控释氮肥的快速释放,因而能够充分满足小麦营养生长和生殖生长对氮素的大量需求。合理的氮素供应不仅可以调节小麦个体的分蘖特性,增加小麦的有效分蘖数与单株的有效茎数[37],而且能够增加最终成穗数[38]。驻马店砂姜黑土上的试验结果表明,控释氮肥A2、C与E处理较OPT处理显著提高了小麦的氮肥表观回收率,表明这几类控释氮肥在田间的养分释放能够与小麦关键生育期对氮素的需求相吻合,达到时空同步营养的目的,从而提高了小麦的氮吸收和产量。石家庄褐土上的研究结果具有类似的规律(图1、2)。
控释肥氮素释放主要受土壤温度和水分等因素的影响[39,40]。小麦生育期长,生长季内温湿度等土壤环境变幅大,不同包膜材料及工艺生产的控释肥释放性能差异很大[41,42],因此,相同土壤类型上施用不同控释肥的产量效应并不相同。有研究发现,树脂包膜肥料的释放性能主要受土壤水分、温度的影响。聚氨脂包膜肥料的养分释放主要依赖于温度的变化,水分、pH及土壤生物活性对其释放几乎无影响[43]。环氧树脂包膜肥料因包膜材料性能稳定,养分释放除受温度影响之外,还与包膜厚度有关。本研究中,相比C、E(聚氨脂包膜)和B(环氧树脂包膜),A2(水性树脂包膜)养分释放期相对较快,C、E其次,B最长。A2释放曲线为“S”型,起始缓慢释放的养分避免了氮素流失和土壤脱氮,中间的快速释放又能满足小麦拔节-开花期快速生长的需求,在3种土壤类型上,A2均具有较好的稳产效果。C、E养分随年后温度的回升而快速释放,养分释放曲线与小麦对养分的最大需求期相同步,因而能促进氮肥利用率。B在土壤中的释放期相对更长,在小麦拔节-开花期没有充足的氮素供应,最终影响分蘖成穗率。本研究从产量和氮肥效率两方面综合来看,小麦生长季内砂姜黑土上A2、C和E,褐土上A2、D以及潮土上A2、C的养分释放性能能够与小麦氮素需求较为吻合,均具有较稳定的增产效果。本研究中没有促进小麦产量和氮肥利用率的控释氮肥处理,主要原因可能是控释氮肥氮素释放周期与小麦生长需求不匹配[44]。
4 结论
控释氮肥在不同土壤类型上具有不同的应用效果。控释氮肥在田间的氮素释放性能与小麦生育期内对氮素的需求相互匹配,对提高小麦氮肥效率和产量至关重要,也是在不同土壤类型下进行控释氮肥产品筛选的关键依据。综合3年的研究结果得出,砂姜黑土上适宜的控释氮肥品种为A2、C和E,可以实现冬小麦一次性施肥生产;褐土上适宜的控释氮肥品种为A2和D;控释氮肥A2在潮土上连续3年均能使小麦维持高产,其他控释氮肥类型的应用效果年际间变异较大,从3年的研究结果综合来看,控释氮肥A2、C可以实现冬小麦一次性施肥。The authors have declared that no competing interests exist.
参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
[1] | . , 小麦是中国重要的粮食作物,然而近些年却在不断萎缩,肥料投入不合理导致成本过高是主要原因。本文利用农户调查数据,通过主成分分析筛选出同一类农户,通过建立肥料效应函数定量评价了中国小麦施肥水平。结果发现如果按照经济效益来评价,我国75%的小麦种植户已经超量使用化肥,而如果从产量效率来说,却有74%农户需要增加化肥。这些结果都说明中国化肥过量使用已经比较明显,施肥不经济,盲目追求高产。未来应从产量、收益甚至环境保护等角度综合引导农户合理施肥。 ., 小麦是中国重要的粮食作物,然而近些年却在不断萎缩,肥料投入不合理导致成本过高是主要原因。本文利用农户调查数据,通过主成分分析筛选出同一类农户,通过建立肥料效应函数定量评价了中国小麦施肥水平。结果发现如果按照经济效益来评价,我国75%的小麦种植户已经超量使用化肥,而如果从产量效率来说,却有74%农户需要增加化肥。这些结果都说明中国化肥过量使用已经比较明显,施肥不经济,盲目追求高产。未来应从产量、收益甚至环境保护等角度综合引导农户合理施肥。 |
[2] | . , 为促进小麦生产和合理施用化肥,对中国25年来小麦生产和化肥施用状况进行了分析.结果表明,自1980年以来,河南、山东、河北、江苏、安徽、四川、陕西7省小麦播种面积和总产占到全国的66.28%和73.53%,化肥用量占全国用量的48.53%.从1998~2004年,中国小麦每公顷化肥平均用量为295.5 kg,化肥用量占全国化肥总用量的17.61%.小麦生产中化肥成本平均为903.3元/ha,化肥的费用占到小麦生产直接费用的33.27%~37.30%,平均为35.59%.从目前中国的小麦生产与化肥施用状况来看,存在着不同区域间小麦单产水平差别大、化肥利用率低、土壤硝态氮残留高、地下水污染严重等问题.在今后的研究中,应该实行养分资源综合管理,充分挖掘品种的生物学潜力,实现小麦产量和化肥利用率的协同提高. ., 为促进小麦生产和合理施用化肥,对中国25年来小麦生产和化肥施用状况进行了分析.结果表明,自1980年以来,河南、山东、河北、江苏、安徽、四川、陕西7省小麦播种面积和总产占到全国的66.28%和73.53%,化肥用量占全国用量的48.53%.从1998~2004年,中国小麦每公顷化肥平均用量为295.5 kg,化肥用量占全国化肥总用量的17.61%.小麦生产中化肥成本平均为903.3元/ha,化肥的费用占到小麦生产直接费用的33.27%~37.30%,平均为35.59%.从目前中国的小麦生产与化肥施用状况来看,存在着不同区域间小麦单产水平差别大、化肥利用率低、土壤硝态氮残留高、地下水污染严重等问题.在今后的研究中,应该实行养分资源综合管理,充分挖掘品种的生物学潜力,实现小麦产量和化肥利用率的协同提高. |
[3] | . , <P><FONT face=Verdana>【目的】分析中国主要农业生态区小麦的化肥增产效应,为小麦进一步增产和提高化肥效率提供依据。【方法】总结近年来全国测土配方施肥试验示范数据,通过化肥偏生产力、农学效率等指标分析中国主要农业生态区小麦施肥的增产效应及其变化特点。【结果】各区域施肥量水平较高且差异明显,其中黄淮海区施肥量最高,为383 kg<I>&#</I>8226;hm-2;北部高原区施肥量最低,为233 kg<I>&#</I>8226;hm-2。西北区和长江中下游区的化肥增产作用高于北部高原区和黄淮海区。化肥偏生产力水平最高的区域是西北区,为23.9 kg<I>&#</I>8226;kg-1;最低的地区是黄淮海区,为17.4 kg<I>&#</I>8226;kg-1。化肥农学效率的最高的地区是西北区,为9.7 kg<I>&#</I>8226;kg-1;最低的地区是黄淮海区,为4.2 kg<I>&#</I>8226;kg-1。与20世纪80年代初相比,长江中下游区和西北区的氮肥农学效率分别提高了21.6%和5.6%,而黄淮海区和北部高原区分别降低了46.0%和12.4%;北部高原区和西北区的磷肥农学效率分别提高了13.7%和10.4% ;黄淮海区和长江中下游区分别降低了38.6%和6.24%。【结论】各区域小麦施肥水平明显提高且差异加大,化肥增产作用仍很显著,增产效应差异明显,粮食低产区不一定是化肥高效区。合理施肥,提高化肥养分效率仍然是各区域小麦增产的重要途径。<BR></FONT></P> ., <P><FONT face=Verdana>【目的】分析中国主要农业生态区小麦的化肥增产效应,为小麦进一步增产和提高化肥效率提供依据。【方法】总结近年来全国测土配方施肥试验示范数据,通过化肥偏生产力、农学效率等指标分析中国主要农业生态区小麦施肥的增产效应及其变化特点。【结果】各区域施肥量水平较高且差异明显,其中黄淮海区施肥量最高,为383 kg<I>&#</I>8226;hm-2;北部高原区施肥量最低,为233 kg<I>&#</I>8226;hm-2。西北区和长江中下游区的化肥增产作用高于北部高原区和黄淮海区。化肥偏生产力水平最高的区域是西北区,为23.9 kg<I>&#</I>8226;kg-1;最低的地区是黄淮海区,为17.4 kg<I>&#</I>8226;kg-1。化肥农学效率的最高的地区是西北区,为9.7 kg<I>&#</I>8226;kg-1;最低的地区是黄淮海区,为4.2 kg<I>&#</I>8226;kg-1。与20世纪80年代初相比,长江中下游区和西北区的氮肥农学效率分别提高了21.6%和5.6%,而黄淮海区和北部高原区分别降低了46.0%和12.4%;北部高原区和西北区的磷肥农学效率分别提高了13.7%和10.4% ;黄淮海区和长江中下游区分别降低了38.6%和6.24%。【结论】各区域小麦施肥水平明显提高且差异加大,化肥增产作用仍很显著,增产效应差异明显,粮食低产区不一定是化肥高效区。合理施肥,提高化肥养分效率仍然是各区域小麦增产的重要途径。<BR></FONT></P> |
[4] | ., Synthetic nitrogen (N) fertilizer has played a key role in enhancing food production and keeping half of the world's population adequately fed. However, decades of N fertilizer overuse in many parts of the world have contributed to soil, water, and air pollution; reducing excessive N losses and emissions is a central environmental challenge in the 21st century. China's participation is essential to global efforts in reducing N-related greenhouse gas (GHG) emissions because China is the largest producer and consumer of fertilizer N. To evaluate the impact of China's use of N fertilizer, we quantify the carbon footprint of China's N fertilizer production and consumption chain using life cycle analysis. For every ton of N fertilizer manufactured and used, 13.5 tons of CO2-equivalent (eq) (t CO2-eq) is emitted, compared with 9.7 t CO2-eq in Europe. Emissions in China tripled from 1980 [131 terrogram (Tg) of CO2-eq (Tg CO2-eq)] to 2010 (452 Tg CO2-eq). N fertilizer-related emissions constitute about 7% of GHG emissions from the entire Chinese economy and exceed soil carbon gain resulting from N fertilizer use by several-fold. We identified potential emission reductions by comparing prevailing technologies and management practices in China with more advanced options worldwide. Mitigation opportunities include improving methane recovery during coal mining, enhancing energy efficiency in fertilizer manufacture, and minimizing N overuse in field-level crop production. We find that use of advanced technologies could cut N fertilizer-related emissions by 20-63%, amounting to 102-357 Tg CO2-eq annually. Such reduction would decrease China's total GHG emissions by 2-6%, which is significant on a global scale. |
[5] | ., Anthropogenic emissions of reactive nitrogen to the atmosphere and water bodies can damage human health and ecosystems. As a measure of a nation鈥檚 contribution to this potential damage, a country鈥檚 nitrogen footprint has been defined as the quantity of reactive nitrogen emitted during the production, consumption and transportation of commodities consumed within that country, whether those commodities are produced domestically or internationally. Here we use global emissions databases, a global nitrogen cycle model, and a global input-output database of domestic and international trade to calculate the nitrogen footprints for 188 countries as the sum of emissions of ammonia, nitrogen oxides and nitrous oxide to the atmosphere, and of nitrogen potentially exportable to water bodies. Per-capita footprints range from under 7 kg N yrin some developing countries to over 100 kg N yrin some wealthy nations. Consumption in China, India, the United States and Brazil is responsible for 46% of global emissions. Roughly a quarter of the global nitrogen footprint is from commodities that were traded across country borders. The main net exporters have significant agricultural, food and textile exports, and are often developing countries, whereas important net importers are almost exclusively developed economies. We conclude that substantial local nitrogen pollution is driven by demand from consumers in other countries. |
[6] | ., There is increasing interest in nitrogen (N) deposition because of its importance as a nutrient resource and a component of acid deposition within the overall global N cycle. Precipitation samples were collected for periods varying from 6 months to 6 years (1998–2004) from seven sites in the Beijing area to determine the amount and seasonal distribution of N (bulk/wet) deposition. Bulk deposition of N ranged from 26.6 to 38.5 kg N ha 611 year 611 and averaged 30.6 kg N ha 611 year 611. Bulk deposition of NH 4–N was, on average, 2.1 times the NO 3–N deposition, suggesting that reduced N is the major form of N deposition in the study area. Concentrations of NH 4–N and NO 3–N in rainfall averaged 4.8 and 2.2 mg N L 611 and showed great temporal variation from month to month. A negative relationship between rainfall and NH 4–N or NO 3–N concentration in rainwater was observed by an exponential equation, indicating dilution of NH 4–N and NO 3–N with increasing precipitation. Bulk deposition of inorganic N occurred mainly from April to September (>80% of total bulk deposition), which was consistent with both the monthly distribution of precipitation and the times of fertilizer applications in local agricultural land. Wet-only deposition of inorganic N, however, was 8.3–8.4 kg N ha 611 lower than that of bulk deposition during similar periods in 2003 (June–November) and 2004 (April–November), suggesting the potential contribution of dry deposition to total N deposition in the Beijing area. |
[7] | ., |
[8] | ., The annual nitrogen (N) budget and groundwater nitrate-N concentrations were studied in the field in three major intensive cropping systems in Shandong province, north China. In the greenhouse vegetable systems the annual N inputs from fertilizers, manures and irrigation water were 1358, 1881 and 402 kg N ha 611 on average, representing 2.5, 37.5 and 83.8 times the corresponding values in wheat ( Triticum aestivum L.)–maize ( Zea mays L.) rotations and 2.1, 10.4 and 68.2 times the values in apple ( Malus pumila Mill.) orchards. The N surplus values were 349, 3327 and 746 kg N ha 611, with residual soil nitrate-N after harvest amounting to 221–275, 1173 and 613 kg N ha 611 in the top 90 cm of the soil profile and 213–242, 1032 and 976 kg N ha 611 at 90–180 cm depth in wheat–maize, greenhouse vegetable and orchard systems, respectively. Nitrate leaching was evident in all three cropping systems and the groundwater in shallow wells (<15 m depth) was heavily contaminated in the greenhouse vegetable production area, where total N inputs were much higher than crop requirements and the excessive fertilizer N inputs were only about 40% of total N inputs. |
[9] | ., ABSTRACT N itrogen fertilizer has played an important role in increasing rice yields, and total consumption of N for rice production has increased gradually worldwide (Zhu and Chen, 2002; Singh et al., 2012). However, fertilizer N use efficiency of rice is generally low for rice grown in a transplanted culture ranging from 25 to 45%, and average about 35% (Dobermann and Cassman, 2002; Roy and Misra, 2002). More than half of the N fertilizer applied is lost and results not only in an environmental hazard but also a substantial economic loss (Matson et al., 1997; Galloway, 1998; Choudhury and Kennedy, 2005; Li et al., 2009). Even though practices such as deep application (Roberts et al., 2009) and subsequent multiple topdressings of N fertilizer improve N fertilizer use efficiency, lack of application machinery and rising cost of labor and the shortage of agricultural workers often limit the implementation of these practices (Zhang, 2008). Therefore, many studies have focused on the development of new types of fertilizers with emphasis on reduced cost, convenience of application, and higher N use efficiency. Sulfur coated and resin-coated urea are two kinds of coated and CRU, which can reduce nutrient losses to the environment while increasing nutrient availability for the plant or the crop by slow release the nutrient from the coated fertilizer ( |
[10] | ., Controlled release nitrogen fertilizer (CRNF) has been shown to increase yield of crops and improve the nitrogen (N) use efficiency of fertilizer in a number of production systems. However, the synchronized relationships between N release of CRNF and N requirements of cotton were rarely studied. In the present study, the effects of two CRNF including polymer coated urea (PCU) and polymer coating of sulfur-coated urea (PSCU) on yield and nutrients uptake of cotton were investigated under field conditions in 2012 and 2013. The results indicated that the successive release rate of N from CRNF corresponded well to the N requirements of cotton plants. In addition, significant linear correlations between N release rate of CRNF and N requirements of cotton were observed during the whole growth periods of cotton. Moreover, the release rate showed significantly positive correlations with cotton yield, soil inorganic N content, N use efficiency, total N uptake and biomass of aboveground. The seed cotton yields in treatments which applied PCU and PSCU once were increased by 14.81鈥18.15% compared with U1 (urea applied as basal fertilizer). However, there was no significant difference between CRNF and U2 (twice-split applications of urea fertilizer). Although the numbers of bolls and lint percentage were not significantly enhanced by using CRNF, the boll weight was 3.63鈥11.51% higher than that in urea treatments. In addition, the N uptake and N use efficiency of cotton plant were improved by CRNF compared to the urea treatments. The inorganic N content supplied by soil was also enhanced by using CRNF, especially from full bloom stage to initial boll-opening stage. The results suggest that the release rate curves of CRNF were ideal patterns which could synchronize N release with N requirements pattern of cotton. In addition, it could be economical and eco-friendly and widely used for cotton production. |
[11] | ., Nitrogen (N) and sulfur (S) fertilization play important roles for improving cotton yield, but no studies have been implemented to explain their interaction on yield, nitrogen use efficiency and physiological characteristics of cotton. In order to investigate the interaction effects of polymer coated urea (PCU) and S fertilization on the contents of inorganic N and available S, enzymes activities of leaves and yield of cotton, the field experiment with different types of N fertilizers and S rates was carried out in 2014 and 2015. The experiment consisted of two N fertilizer types including PCU and common urea fertilizer (Urea) in combination with three S rates (0, 60 and 120kgha611) in the split-plot design, where the types of N fertilizer were the main plot and S rates were the subplots. The results indicated that the N release characteristic of PCU in field condition was closely matched to the N requirements of cotton, the contents of soil nitrate nitrogen (NO361-N) and ammonium nitrogen (NH4+-N) were significantly increased from the first bloom stage to the initial boll-opening stage by using PCU compared with urea. And the content of available S was significantly increased in full boll setting stage. Meanwhile, the number of bolls and lint yields of PCU were 7.03–8.91% and 5.54–11.17% higher than urea treatments. Lint yields were also increased 3.77–9.26% by S fertilization, evidencing a clear interaction between N and S, but no significant difference was observed between S60 and S120 treatments. In addition, the N apparent recovery use efficiency (RUE) and agronomic use efficiency (AUE) were increased, fiber length and strength were improved, the nitrate reductase and peroxidase activities and photosynthetic rates (Pn) were enhanced by PCU and S fertilization. However, the lint percentage, micronaire and fiber elongation were neither affected by the type of N fertilizers and S rates, nor by their interaction. Consequently, the application of PCU combined with 60kgha611sulfur fertilizer on cotton could not only increase the yield and nitrogen use efficiency but also improve the fiber quality and physiological properties of leaves. |
[12] | . , ., |
[13] | . , ., |
[14] | . , ., |
[15] | [D]. , [D]. , |
[16] | . , ., |
[17] | . , 当前关于控释肥对氮素损失和作物产量影响研究比较广泛,但缺乏对控释肥长期施用的土壤氮素平衡以及相应氮素管理的研究。该试验在小麦/玉米两熟农田研究了连续施用3年控释肥后的氨挥发损失、土壤氮素残留和作物吸收规律特征。试验设5个处理:不施肥处理(CK),常量尿素(CU),优化尿素(75%常规用量,OU),常规用抑制量控释尿素(CC)和优化用量抑制控释尿素(OC)处理。试验结果表明,控释肥明显降低3个施肥时期(小麦底肥,小麦追肥和玉米底肥)的氨挥发损失。3年试验结束时,OU处理土壤剖面(0-180 cm)硝态氮显著减少,而OC处理只有深层(100 cm以下)硝态氮累积量显著减少。由于过量施肥,试验第一年所有施肥处理之间小麦和玉米产量均无显著差异,OU处理下的小麦和玉米3年平均产量显著低于其他施肥处理。OC处理的3年平均肥料表观利用率最高,其次为CC和OU处理,CU处理最低。通过本研究结果说明,控释肥对提高当前小麦/玉米农田区作物产量的效果不显著,但可有效改善肥料利用效率,并在肥料投入减少25%的情境下,能够长期保持土壤氮素平衡。 ., 当前关于控释肥对氮素损失和作物产量影响研究比较广泛,但缺乏对控释肥长期施用的土壤氮素平衡以及相应氮素管理的研究。该试验在小麦/玉米两熟农田研究了连续施用3年控释肥后的氨挥发损失、土壤氮素残留和作物吸收规律特征。试验设5个处理:不施肥处理(CK),常量尿素(CU),优化尿素(75%常规用量,OU),常规用抑制量控释尿素(CC)和优化用量抑制控释尿素(OC)处理。试验结果表明,控释肥明显降低3个施肥时期(小麦底肥,小麦追肥和玉米底肥)的氨挥发损失。3年试验结束时,OU处理土壤剖面(0-180 cm)硝态氮显著减少,而OC处理只有深层(100 cm以下)硝态氮累积量显著减少。由于过量施肥,试验第一年所有施肥处理之间小麦和玉米产量均无显著差异,OU处理下的小麦和玉米3年平均产量显著低于其他施肥处理。OC处理的3年平均肥料表观利用率最高,其次为CC和OU处理,CU处理最低。通过本研究结果说明,控释肥对提高当前小麦/玉米农田区作物产量的效果不显著,但可有效改善肥料利用效率,并在肥料投入减少25%的情境下,能够长期保持土壤氮素平衡。 |
[18] | . , 【目的】研究不同缓释化处理氮肥对夏玉米的产量、氮肥去向及氮素平衡的影响,为提高夏玉米一次性施肥的氮肥利用率并降低氮肥的环境影响提供理论依据。【方法】试验于2014—2015年以郑单958为供试品种,在华北地区中低产田连续两年进行大田试验,共设置6个处理,分别为:不施氮(CK)、尿素(CU)、树脂包膜尿素(CRF)、控失尿素(LCU)、凝胶尿素(CLP)和脲甲醛(UF)。在玉米成熟期采集植物和土壤样品,用于测定植物含氮量和土壤无机氮含量,并计算作物吸氮量、氮肥利用率、土壤无机氮积累量、氮肥损失量等。【结果】(1)氮肥缓释化处理能够明显提高夏玉米的产量,促进氮素吸收。与尿素相比,脲甲醛、凝胶尿素、树脂包膜尿素和控失尿素可分别提高夏玉米产量18.9%、16.8%、13.7%和13.6%,同时氮肥农学利用效率分别提高6.5、4.8、4.0和3.7 kg·kg-1。(2)不同氮肥处理的作物吸收肥料氮以及肥料氮在0—100 cm土层残留量之间存在显著性差异。脲甲醛、凝胶尿素、树脂包膜尿素、控失尿素和尿素的氮肥表观回收率分别为54.9%、42.4%、38.3%、38.3%和22.0%,肥料氮在0—100 cm土层残留量分别占施氮量的28.3%、43.8%、39.2%、46.2%和46.6%。此外,与尿素相比,氮肥缓释化处理能够显著降低肥料氮的损失,凝胶尿素、控失尿素、脲甲醛和树脂包膜尿素分别降低了47.6%、43.1%、40.8%和26.7%。(3)综合分析不同氮肥处理的农田氮素平衡,脲甲醛处理的夏玉米吸氮量最高,为245.0 kg·hm~(-2),其次是凝胶尿素,为222.5 kg·hm~(-2)。脲甲醛的0—100 cm土层残留量在缓释化氮肥中最低,为153.4 kg·hm~(-2),树脂包膜尿素、凝胶尿素和控失尿素分别为173.1、181.5和185.7 kg·hm~(-2)。凝胶尿素处理的氮表观损失量最低,为35.6 kg·hm~(-2),控失尿素、脲甲醛和树脂包膜尿素的氮表观损失量分别为38.8、41.2和51.3 kg·hm~(-2)。【结论】在华北地区中低产田土壤上,氮肥缓释化处理能够显著促进夏玉米对氮素的吸收、减少氮素损失。脲甲醛和凝胶尿素的效果相对较好。 ., 【目的】研究不同缓释化处理氮肥对夏玉米的产量、氮肥去向及氮素平衡的影响,为提高夏玉米一次性施肥的氮肥利用率并降低氮肥的环境影响提供理论依据。【方法】试验于2014—2015年以郑单958为供试品种,在华北地区中低产田连续两年进行大田试验,共设置6个处理,分别为:不施氮(CK)、尿素(CU)、树脂包膜尿素(CRF)、控失尿素(LCU)、凝胶尿素(CLP)和脲甲醛(UF)。在玉米成熟期采集植物和土壤样品,用于测定植物含氮量和土壤无机氮含量,并计算作物吸氮量、氮肥利用率、土壤无机氮积累量、氮肥损失量等。【结果】(1)氮肥缓释化处理能够明显提高夏玉米的产量,促进氮素吸收。与尿素相比,脲甲醛、凝胶尿素、树脂包膜尿素和控失尿素可分别提高夏玉米产量18.9%、16.8%、13.7%和13.6%,同时氮肥农学利用效率分别提高6.5、4.8、4.0和3.7 kg·kg-1。(2)不同氮肥处理的作物吸收肥料氮以及肥料氮在0—100 cm土层残留量之间存在显著性差异。脲甲醛、凝胶尿素、树脂包膜尿素、控失尿素和尿素的氮肥表观回收率分别为54.9%、42.4%、38.3%、38.3%和22.0%,肥料氮在0—100 cm土层残留量分别占施氮量的28.3%、43.8%、39.2%、46.2%和46.6%。此外,与尿素相比,氮肥缓释化处理能够显著降低肥料氮的损失,凝胶尿素、控失尿素、脲甲醛和树脂包膜尿素分别降低了47.6%、43.1%、40.8%和26.7%。(3)综合分析不同氮肥处理的农田氮素平衡,脲甲醛处理的夏玉米吸氮量最高,为245.0 kg·hm~(-2),其次是凝胶尿素,为222.5 kg·hm~(-2)。脲甲醛的0—100 cm土层残留量在缓释化氮肥中最低,为153.4 kg·hm~(-2),树脂包膜尿素、凝胶尿素和控失尿素分别为173.1、181.5和185.7 kg·hm~(-2)。凝胶尿素处理的氮表观损失量最低,为35.6 kg·hm~(-2),控失尿素、脲甲醛和树脂包膜尿素的氮表观损失量分别为38.8、41.2和51.3 kg·hm~(-2)。【结论】在华北地区中低产田土壤上,氮肥缓释化处理能够显著促进夏玉米对氮素的吸收、减少氮素损失。脲甲醛和凝胶尿素的效果相对较好。 |
[19] | . , ., |
[20] | . , ., |
[21] | [D]. , [D]. , |
[22] | . , The results of this study showed that nitrogen application improved the nitrogen uptake by wheat, especially during its late growth stage. Although a higher nitrogen application rate could increase the amount of absorbed nitrogen, an excess of nitrogen would remain in vegetative organs at the stage after flowering, owing to the low translocation rate of nitrogen from these organs to the grain, and hence, the nitrogen use efficiency and nitrogen harvest index were decreased. Compared with that on high fertility soil, the ratio of nitrogen absorbed from fertilizer to total absorbed nitrogen was higher when the wheat was grown on low fertility soil. On high fertility soil, wheat plant absorbed more nitrogen from top-dressed fertilizer than from basis fertilizer, and top-dressed fertilizer contributed more nitrogen to the grain. It was reversed on low fertility soil. ., The results of this study showed that nitrogen application improved the nitrogen uptake by wheat, especially during its late growth stage. Although a higher nitrogen application rate could increase the amount of absorbed nitrogen, an excess of nitrogen would remain in vegetative organs at the stage after flowering, owing to the low translocation rate of nitrogen from these organs to the grain, and hence, the nitrogen use efficiency and nitrogen harvest index were decreased. Compared with that on high fertility soil, the ratio of nitrogen absorbed from fertilizer to total absorbed nitrogen was higher when the wheat was grown on low fertility soil. On high fertility soil, wheat plant absorbed more nitrogen from top-dressed fertilizer than from basis fertilizer, and top-dressed fertilizer contributed more nitrogen to the grain. It was reversed on low fertility soil. |
[23] | ., Production of tillers and their subsequent survival are important events in growth and development of barley (Hordeum vulgare L.) that affect the number of spikes produced per unit land area. Studies were conducted at St. Paul and Crookston, MN to evaluate tiller production, tiller mortality, and yield of 10 barley genotypes with different tillering capacities. In addition, these studies evaluated the influence of row spacing and seeding rate on tillering. |
[24] | . , ., |
[25] | ., Understanding population establishment associated with different cultivars and N management practices is essential to optimize populations and achieve a high yield for wheat production. A field experiment was conducted in 2012 and 2013 using five N levels and two winter wheat (Triticum aestivum L.) cultivars: a low-tillering cultivar (TN) and a high-tillering cultivar (LX) in the North China Plain (NCP). The objective of this study was to evaluate grain yield and population establishment of the two cultivars in relation to the different N rates, and to determine the best N management practice and cultivar selection. Grain yield in TN was 5% higher than that of LX in 2013 (p<0.01), but not in 2012 due to low spring temperatures and late sowing. Compared to LX, TN decreased the number of unproductive tillers in the spring while with similar productive tillers before the winter, and thus optimized population establishment and had higher yields. The optimal N rate (ONR) based on in-season root-zone N management averaged 162kg Nha611, and the grain yield using ONR averaged 8.0tha611 for 2 years for both cultivars. Addition of N beyond the ONR did not increase yield, and treatments receiving 70% of the ONR had a 7.9% reduction in yield compared with the ONR treatment. The farmers’ practice N rate (300kgNha611) promoted unproductive tillers in the spring and inhibited productive tillers growth before winter, especially for the low-tillering cultivar of TN. In conclusion, selection of a low-tillering cultivar combined with optimal N management in the NCP could be a strategy useful to optimize population quantity, quality, and achieve a high yield, especially when using best crop management practices. |
[26] | ., New insights into changes in physiological processes associated with genetic gains in yield potential are essential for improved understanding of yield-limiting factors. Our field study was conducted at two sites with three N levels and 15 modern wheat ( Triticum aestivum L.) varieties. The goal was to evaluate yield components, time courses of dry matter production, and N accumulation among different yield categories, and to determine physiological processes associated with yield–trait relationships. Close correlations were observed between yield and dry matter production after the stem elongation stage, particularly post-anthesis. Similar close correlations were observed between grain yield and N accumulation over the whole growing season, except for the re-greening stage. No positive correlation was found between yield and harvest index. Differences in dry matter production among different yield categories began at anthesis; differences in N accumulation emerged even earlier. We conclude that consistent increases in dry matter production (especially post-anthesis) and N accumulation are crucial for further improvements in wheat yield–trait relationships. |
[27] | |
[28] | . , 山东农业大学小麦栽培研究室与滕州市农业局组成小麦高产攻关协作组,在滕州市级索镇千佛阁村建立小麦高产攻关田,2009年麦收,经农业部组织专家实打验收,3·42亩济麦22小麦亩产789·9 kg。近几年,山东农业大学小麦栽培研究室还与兖州市农业局、鄄城县农业局组成协作组,利用多 ., 山东农业大学小麦栽培研究室与滕州市农业局组成小麦高产攻关协作组,在滕州市级索镇千佛阁村建立小麦高产攻关田,2009年麦收,经农业部组织专家实打验收,3·42亩济麦22小麦亩产789·9 kg。近几年,山东农业大学小麦栽培研究室还与兖州市农业局、鄄城县农业局组成协作组,利用多 |
[29] | ., |
[30] | ., 78 We examined future transformation of agriculture in China. 78 China must increase grain yield, resource use efficiency and protect environment. 78 We proposed a “double high” model with high-yield and high resource-use efficiency. 78 Food security and environment protection can be harmonized by the concept. 78 New technologies and unique transfer ways in China support such as transformation. |
[31] | ., Background Hessian fly (Mayetiola destructor), a member of the gall midge family, is one of the most destructive pests of wheat (Triticum aestivum) worldwide. Probing of wheat plants by the larvae results in either an incompatible (avirulent larvae, resistant plant) or a compatible (virulent larvae, susceptible plant) interaction. Virulent larvae induce the formation of a nutritive tissue, resembling the inside surface of a gall, in susceptible wheat. These nutritive cells are a rich source of proteins and sugars that sustain the developing virulent Hessian fly larvae. In addition, on susceptible wheat, larvae trigger a significant increase in levels of amino acids including proline and glutamic acid, which are precursors for the biosynthesis of ornithine and arginine that in turn enter the pathway for polyamine biosynthesis. Results Following Hessian fly larval attack, transcript abundance in susceptible wheat increased for several genes involved in polyamine biosynthesis, leading to higher levels of the free polyamines, putrescine, spermidine and spermine. A concurrent increase in polyamine levels occurred in the virulent larvae despite a decrease in abundance of Mdes-odc (ornithine decarboxylase) transcript encoding a key enzyme in insect putrescine biosynthesis. In contrast, resistant wheat and avirulent Hessian fly larvae did not exhibit significant changes in transcript abundance of genes involved in polyamine biosynthesis or in free polyamine levels. Conclusions The major findings from this study are: (i) although polyamines contribute to defense in some plant-pathogen interactions, their production is induced in susceptible wheat during interactions with Hessian fly larvae without contributing to defense, and (ii) due to low abundance of transcripts encoding the rate-limiting ornithine decarboxylase enzyme in the larval polyamine pathway the source of polyamines found in virulent larvae is plausibly wheat-derived. The activation of the host polyamine biosynthesis pathway during compatible wheat-Hessian fly interactions is consistent with a model wherein the virulent larvae usurp the polyamine biosynthesis machinery of the susceptible plant to acquire nutrients required for their own growth and development. |
[32] | ., In barley no studies have attempted to pinpoint the critical period for grain number determination, and it is frequently stated that the critical period is similar to that of wheat. However, there are important differences between the species and among barley genotypes (i.e. two- and six-rowed types) suggesting that this assumption requires testing. The objectives of this paper were (i) to determine the critical period for grain number determination in two- and six-rowed barleys, and (ii) to identify which yield components were more sensitive to changes in incident radiation during that period. Two field experiments were conducted using two pairs of near isogenic lines differing only in the spike type. Shading was imposed at different periods throughout the crop cycle (from 60 days before heading to 15 days after) to reduce incident solar radiation approximately 70%. The critical period for grain number determination tended to be slightly earlier in two- (ca. between 40 and 10 days before heading) than in six-rowed barleys (ca. between 30 days before heading until that stage). In terms of the external phenology, the beginning of the critical period for setting grains was 10 days after the beginning of stem elongation, and 10 days before flag leaf appearance in two- and six-rowed lines, respectively. Changes in the number of grains per unit area were correlated with crop growth rate during the critical period for yield determination. |
[33] | ., The critical period for grain yield determination has not been determined for triticale. We aimed to identify it, determining the relative importance of both the major yield components and the dry matter acquisition by the spikes at anthesis. A field experiment was carried out with two triticales, differing in tillering capacity, subjected to shading treatments at five different timings from early tillering to maturity. Results showed that reductions in grain yield were more significant when shading was imposed during 3 weeks before and 1 week after anthesis. Reductions in grain yield by shading treatments were associated with lower number of grains per m 2 more than with changes in the average grain weight. Reductions in grains per m 2 were due to reductions in the number of fertile florets per spike, affecting grains per spike. The assimilate acquisition by the spikes during the critical period was a key determinant of floret survival. Grain number per m 2 was related with photothermal quotient during 30 days before anthesis and spike dry weight at anthesis, though the goodness of the prediction compared with wheat, was lowered by poorer grain setting percentage. |
[34] | ., In the trial on fine sandy loam in North Dakota plots were dressed with 45 lb N as NH4NO3 per acre with or without 43 lb P as superphosphate, 26 lb before flowering and the rest with the N before sowing. Dry matter, percentage and yield of N and P in whole plants and in parts were estimated. Concentrations of both N and P were higher with fertilising. In whole plants percentage N decreased from... |
[35] | ., Food security is becoming a crucial concern worldwide. In this study, we focus on wheat – a staple crop in China – as a model to review its history, status quo and future scenarios, with regard to key production technologies and management practices for wheat production and associated food security issues since the new era in China: the post-1949 era. First, the dominant technologies and management practices over the past 6065years are reviewed. Secondly, we outline several key innovative technologies and their theoretical bases over the last decade, including (i) prohibiting excessively early senescence at a later growth stage to maintain viable leaves with higher photosynthetic capacity, (ii) postponing top dressing nitrogen application to balance carbon and nitrogen nutrition, and (iii) achieving both high yield and better grain quality mainly by increasing soil productivity and balancing the ratio of nutrient elements. Finally, concerns such as water shortages and excessive application of chemical fertilizers are presented. Nevertheless, under high negative conditions, including global warming, rapid population growth, decreasing amounts of arable land, increasing competition with cash crops and severe environmental pollution, we conclude that domestic food production will be able to meet Chinese demand in the mid to long term, because increasingly innovative technologies and improved management practices have been and may continue to be applied appropriately. 08 2013 Society of Chemical Industry |
[36] | ., Understanding the time-course of dry matter (DM) and nitrogen (N) accumulation in terms of yield–trait relationships is essential to simultaneously increase grain yield and synchronize N demand and N supply. We collected 413 data points from 11 field experiments to address patterns of DM and N accumulation with time in relation to grain yield and management of winter wheat in China. Detailed growth analysis was conducted at the Zadok growth stages (GS) 25 (regreening), GS30 (stem elongation), GS60 (anthesis), and GS100 (maturity) in all experiments, including DM and N accumulation. Grain yield averaged 7.3 Mg ha611, ranging from 2.1 to 11.2 Mg ha611. The percent N accumulation was consistent prior to DM accumulation, while both DM and N accumulation increased continuously with growing time. Both the highest and fastest DM and N accumulations were observed from stem elongation to the anthesis stage. Significant correlations between grain yield and DM and N accumulation were found at each of the four growth stages, although no positive relationship was observed between grain yield and harvest index or N harvest index. The yield increase from 7–9 Mg ha611to >9 Mg ha611was mainly attributed to increased DM and N accumulation from stem elongation to anthesis. Although applying more N fertilizer increased N accumulation during this stage, DM accumulation was not improved, indicating that N fertilizer management and related agronomic management should be intensified synchronously across the wheat growing season to simultaneously achieve high yields and match N demand and N supply. |
[37] | |
[38] | ., This research was conducted to determine the effects of applying N-fertilizer to standard and semidwarf spring wheat varieties on the components of grain yield, and especially on the ability of tillers to develop and produce ears under semiarid conditions. For two growing seasons at Mandan, North Dakota, tillers were identified and tagged according to the leaf axil from which they originated. The survival and development of these tillers, identified as M, T1, T2, and T3for main stem and tillers from axils of first, second and third true leaves respectively, were observed and measured from emergence to maturity. N-fertilizer was applied at 0, 50 and 270 kg N/ha annually, representing deficient, adequate and excessive N supply. N-fertilizer application increased grain yield of both varieties, with the increase between 50 and 270 kg N/ha being significant for the standard variety only. Most of this response to N resulted from an increase in the number of ears/ha, arising from reduced mortality of tillers, particularly T2and T3tillers during the latter part of the season when water was limited. For a given variety, grain production by M and by T1tillers was seldom affected by N treatment. Although data were analysed by several means, all results indicate that improved N nutrition enables the later-developing tillers to survive and produce ears more competitively. Final grain yield was closely correlated with N content of a given tiller at the tillering stage, and to dry weight of individual tillers at both tillering and heading. Order of tiller had no appreciable effect on N content of grain. The proportion of final grain yield originating from M decreased from about 60% without N to about 36% for 270 kg N/ha, primarily because of increased survival and production from T2and T3tillers following the application of N-fertilizer. |
[39] | ., |
[40] | ., The effects of newly developed controlled release urea (CRU) and its placement method on the N use efficiency and nutritional quality of winter wheat (Triticum aestivum L.) grown on a loam soil were investigated during 2 yr. The winter wheat was grown on a loam soil. The CRU was applied at 0, 75, 150, and 225 kg N ha-1 and the urea was applied at 225 kg N ha-1 The CRU was applied with wheat seeds during sowing while the urea treatment was split into two applications: two-thirds applied during sowing and one-third at the 5-tiller stage (Z25). Results showed that N release rates of CRU fit N requirements of wheat and the placement of wheat seeds with CRU improved wheat's apparent N uptake efficiency by 28.5% compared to urea treatment. Although the CRU treatment at 150 kg N ha-1 had one-third less supplied N than that of conventional urea treatment (225 kg N ha-1), the wheat with CRU at 150 kg N ha-1 produced 6.5% more grain. In addition, at the same or one-third reduced amount of N compared with the conventional urea treatment, CRU significantly increased the contents of Fe and Mn, providing additional nutrition and quality to the wheat grain. |
[41] | . , 【目的】在保水保肥性差、氮素淋溶损失严重的姜堰高砂土地区,采用新型水基反应成膜技术的包膜尿素,研究可提高小麦产量以及氮肥利用率的肥料品种和施肥方法。【方法】本研究采用30、60、90 d三种控释期包膜尿素(PCU30、PCU60、PCU90)并各设置三种施肥方式处理:播种行下方12 cm处一次基施、播种行侧方3 cm深5cm处一次基施、播种行侧方10 cm深5 cm处一次基施(T1、T2、T3)。小麦成熟期测定各小麦秸秆和籽粒产量与干物质分配,测定氮素吸收量。【结果】三种包膜尿素中,施用PCU60增产效果最好,其侧施处理优于种下深施,其中T2处理的小麦产量最高,为8661 kg/hm2,比当地习惯施肥增产6.5%。PCU60 T2处理的氮肥利用率为53.7%,较习惯施肥提高17.3%,差异显著。PCU90各处理较习惯施肥均减产且收获期土壤硝态氮残留量高,不适合当地使用。【结论】在砂土基质下,PCU60在播种行侧方3 cm深5 cm处一次基施可替代尿素分次施用,降低劳动成本。 ., 【目的】在保水保肥性差、氮素淋溶损失严重的姜堰高砂土地区,采用新型水基反应成膜技术的包膜尿素,研究可提高小麦产量以及氮肥利用率的肥料品种和施肥方法。【方法】本研究采用30、60、90 d三种控释期包膜尿素(PCU30、PCU60、PCU90)并各设置三种施肥方式处理:播种行下方12 cm处一次基施、播种行侧方3 cm深5cm处一次基施、播种行侧方10 cm深5 cm处一次基施(T1、T2、T3)。小麦成熟期测定各小麦秸秆和籽粒产量与干物质分配,测定氮素吸收量。【结果】三种包膜尿素中,施用PCU60增产效果最好,其侧施处理优于种下深施,其中T2处理的小麦产量最高,为8661 kg/hm2,比当地习惯施肥增产6.5%。PCU60 T2处理的氮肥利用率为53.7%,较习惯施肥提高17.3%,差异显著。PCU90各处理较习惯施肥均减产且收获期土壤硝态氮残留量高,不适合当地使用。【结论】在砂土基质下,PCU60在播种行侧方3 cm深5 cm处一次基施可替代尿素分次施用,降低劳动成本。 |
[42] | ., |
[43] | . , ., |
[44] | . , 【目的】控释尿素已被证明对于提高氮素利用率、减少氮素损失和增产有积极意义,且不同包膜的控释尿素由于包膜材料的不同,对于氮素的释放和供应强度有所不同。本文在黄淮海区域采用玉米田间试验,探讨硫膜和树脂膜控释尿素在氮素供应和减少氮素损失等方面的效应,以期为黄淮海区域夏玉米在高温多雨的种植条件下两种控释尿素的选择和应用提供依据。【方法】以硫膜和树脂膜控释尿素为研究对象,采用田间试验研究0—100 cm土壤剖面中的硝态氮含量,玉米整个生育期的土壤氮素平衡和玉米产量以及氮素利用率。【结果】与相同施氮量的普通尿素相比,硫膜和树脂膜控释尿素均具有“前控后保”的特性,使玉米苗期0—100 cm土层的土壤硝态氮含量降低了11.7%<img src='波浪.TIF'/>56.7%和28.8%<img src='波浪.TIF'/>68.2%,玉米灌浆期和收获期0—40 cm土层的硝态氮含量分别提高了16.3%<img src='波浪.TIF'/>46.7%、 0.5%<img src='波浪.TIF'/>60.7%;两种控释尿素均能有效降低玉米整个生育期土壤残留的无机氮量、氮素表观损失量和盈余量,降幅分别为12.0%<img src='波浪.TIF'/>18.4%、13.2%<img src='波浪.TIF'/>66.4%和15.6%<img src='波浪.TIF'/>30.9%,使玉米产量提高14.6%<img src='波浪.TIF'/>37.5%,氮素利用率提高12.3<img src='波浪.TIF'/>20.8个百分点。 在N 210 kg/hm<sup>2</sup>、N 300 kg/hm<sup>2</sup>两种施氮量条件下,与相同施氮量的硫膜控释尿素相比,树脂膜控释尿素处理的玉米苗期0—60 cm土层的硝态氮含量降低了26.4%<img src='波浪.TIF'/>39.1%,灌浆期0—40 cm土层和收获期0—20 cm土层的硝态氮含量分别提高了10%<img src='波浪.TIF'/>21.8%和9.6%<img src='波浪.TIF'/>16.4%,土壤残留无机氮量、氮素表观损失量和盈余量分别降低了2.3%<img src='波浪.TIF'/>6.0%、44.6%<img src='波浪.TIF'/>61.3%和17.0%<img src='波浪.TIF'/>17.7%,玉米产量提高了6.8%<img src='波浪.TIF'/>8.3%,氮素利用率提高了7.1<img src='波浪.TIF'/>8.4个百分点,说明树脂膜控释尿素的效果优于硫膜控释尿素。树脂膜控释尿素和硫膜控释尿素在施氮量N 300 kg/hm<sup>2</sup>时均比N 210 kg/hm<sup>2</sup>条件下玉米整个生育期不同土层的硝态氮含量提高了1.2%<img src='波浪.TIF'/>90.9%和2.0%<img src='波浪.TIF'/>56.7%,玉米整个生育期土壤残留无机氮量、氮素表观损失量和盈余量分别提高了42.1%<img src='波浪.TIF'/>47.6%、 66.2%<img src='波浪.TIF'/>137.9%、 52.5%<img src='波浪.TIF'/>53.8%,玉米产量和氮素利用率分别提高了20.8%和22.5%、6.5和5.2个百分点,施氮量N 300 kg/hm<sup>2</sup>优于N 210 kg/hm<sup>2</sup>。【结论】树脂膜控释尿素在减少夏玉米农田土壤剖面硝态氮残留、维持土壤氮素平衡和提高氮素利用率等方面的效果优于硫膜控释尿素和普通尿素。综合考虑保证土壤氮素供应、减少氮素损失、提高玉米产量及氮素利用率等因素,在黄淮海区域高温多雨气候条件下种植夏玉米,以施氮量N 300 kg/hm<sup>2</sup>的树脂膜控释尿素或者硫膜和树脂膜控释尿素二者配合施用效果最佳。 ., 【目的】控释尿素已被证明对于提高氮素利用率、减少氮素损失和增产有积极意义,且不同包膜的控释尿素由于包膜材料的不同,对于氮素的释放和供应强度有所不同。本文在黄淮海区域采用玉米田间试验,探讨硫膜和树脂膜控释尿素在氮素供应和减少氮素损失等方面的效应,以期为黄淮海区域夏玉米在高温多雨的种植条件下两种控释尿素的选择和应用提供依据。【方法】以硫膜和树脂膜控释尿素为研究对象,采用田间试验研究0—100 cm土壤剖面中的硝态氮含量,玉米整个生育期的土壤氮素平衡和玉米产量以及氮素利用率。【结果】与相同施氮量的普通尿素相比,硫膜和树脂膜控释尿素均具有“前控后保”的特性,使玉米苗期0—100 cm土层的土壤硝态氮含量降低了11.7%<img src='波浪.TIF'/>56.7%和28.8%<img src='波浪.TIF'/>68.2%,玉米灌浆期和收获期0—40 cm土层的硝态氮含量分别提高了16.3%<img src='波浪.TIF'/>46.7%、 0.5%<img src='波浪.TIF'/>60.7%;两种控释尿素均能有效降低玉米整个生育期土壤残留的无机氮量、氮素表观损失量和盈余量,降幅分别为12.0%<img src='波浪.TIF'/>18.4%、13.2%<img src='波浪.TIF'/>66.4%和15.6%<img src='波浪.TIF'/>30.9%,使玉米产量提高14.6%<img src='波浪.TIF'/>37.5%,氮素利用率提高12.3<img src='波浪.TIF'/>20.8个百分点。 在N 210 kg/hm<sup>2</sup>、N 300 kg/hm<sup>2</sup>两种施氮量条件下,与相同施氮量的硫膜控释尿素相比,树脂膜控释尿素处理的玉米苗期0—60 cm土层的硝态氮含量降低了26.4%<img src='波浪.TIF'/>39.1%,灌浆期0—40 cm土层和收获期0—20 cm土层的硝态氮含量分别提高了10%<img src='波浪.TIF'/>21.8%和9.6%<img src='波浪.TIF'/>16.4%,土壤残留无机氮量、氮素表观损失量和盈余量分别降低了2.3%<img src='波浪.TIF'/>6.0%、44.6%<img src='波浪.TIF'/>61.3%和17.0%<img src='波浪.TIF'/>17.7%,玉米产量提高了6.8%<img src='波浪.TIF'/>8.3%,氮素利用率提高了7.1<img src='波浪.TIF'/>8.4个百分点,说明树脂膜控释尿素的效果优于硫膜控释尿素。树脂膜控释尿素和硫膜控释尿素在施氮量N 300 kg/hm<sup>2</sup>时均比N 210 kg/hm<sup>2</sup>条件下玉米整个生育期不同土层的硝态氮含量提高了1.2%<img src='波浪.TIF'/>90.9%和2.0%<img src='波浪.TIF'/>56.7%,玉米整个生育期土壤残留无机氮量、氮素表观损失量和盈余量分别提高了42.1%<img src='波浪.TIF'/>47.6%、 66.2%<img src='波浪.TIF'/>137.9%、 52.5%<img src='波浪.TIF'/>53.8%,玉米产量和氮素利用率分别提高了20.8%和22.5%、6.5和5.2个百分点,施氮量N 300 kg/hm<sup>2</sup>优于N 210 kg/hm<sup>2</sup>。【结论】树脂膜控释尿素在减少夏玉米农田土壤剖面硝态氮残留、维持土壤氮素平衡和提高氮素利用率等方面的效果优于硫膜控释尿素和普通尿素。综合考虑保证土壤氮素供应、减少氮素损失、提高玉米产量及氮素利用率等因素,在黄淮海区域高温多雨气候条件下种植夏玉米,以施氮量N 300 kg/hm<sup>2</sup>的树脂膜控释尿素或者硫膜和树脂膜控释尿素二者配合施用效果最佳。 |