删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

米粉稻籽粒直链淀粉积累特性

本站小编 Free考研考试/2021-12-26

张恒栋1,2, 黄敏,1, 邹应斌1, 陈佳娜1, 单双吕11湖南农业大学农学院,长沙 410128
2贵州黔西南喀斯特区域发展研究院,贵州黔西南 562400

Amylose Accumulation Properties in the Grains of Noodle Rice

ZHANG HengDong1,2, HUANG Min,1, ZOU YingBin1, CHEN JiaNa1, SHAN Shuang Lv11College of Agronomy, Hunan Agricultural University, Changsha 410128
2Qianxinan Institute of Karst Regional Development, Qianxinan 562400, Guizhou

通讯作者: 黄敏, E-mail:mhuang@hunan.edu.cn

责任编辑: 杨鑫浩
收稿日期:2020-07-8接受日期:2020-09-28网络出版日期:2021-04-01
基金资助:国家重点研发计划项目.2016YFD0300509


Received:2020-07-8Accepted:2020-09-28Online:2021-04-01
作者简介 About authors
张恒栋, E-mail:zhangliang870306@126.com







摘要
【目的】稻米中直链淀粉含量是影响米粉品质的重要因素,较高直链淀粉含量的稻米加工的米粉结构坚固,可以减少米粉的蒸煮损失,探索米粉稻籽粒直链淀粉积累特性为调控米粉稻直链淀粉含量和提高米粉稻品质提供理论依据。【方法】2016—2017年早、晚季,选择2个高直链淀粉含量米粉稻品种(陆两优996和中嘉早17)和2个低直链淀粉含量对照品种(陵两优268和湘早籼45)为材料进行大田试验,基于Logistic方程对各品种的籽粒灌浆和直链淀粉积累特性进行分析。【结果】米粉稻直链淀粉含量比对照品种高44.8%—72.3%,差异显著。水稻籽粒直链淀粉积累渐增期、快速期、缓增期及最大积累速率时积累的直链淀粉量,米粉稻比对照品种分别高60.0%—91.1%、61.2%—92.3%、59.3%—89.3%和61.2%—92.8%。相同的种植季节,直链淀粉积累平均速率、渐增期积累速率和最大积累速率,米粉稻比对照平均分别高36.7%—91.2%、40.2%—58.3%和29.2%—108.7%,渐增期持续时间长0.6—2.8 d,最大积累速率启动时间晚1.4—2.9 d。不同的生长季节和品种,直链淀粉积累渐增期、快速期、缓增期直链淀粉积累量对籽粒持续期直链淀粉积累量的贡献率相对稳定,分别为21.03%—21.32%、57.58%—57.88%、11.38%—14.62%。籽粒直链淀粉的积累伴随着籽粒灌浆过程进行,籽粒灌浆干物质积累渐增期、快速期、缓增期比对应的直链淀粉积累阶段发生早0.1—4.9 d。相同的种植季节,籽粒灌浆渐增期、最大灌浆速率启动时间和灌浆持续时间,米粉稻比对照平均长或晚0.1—1.8 d、1.2—2.0 d和1.2—3.6 d。2016年早季水稻开花后前5 d的平均气温和入射辐射量分别为30.1℃和21.1 MJ·m-2,比其他3季同阶段分别高5.1℃—6.3℃和2.0—19.1 MJ·m-2,2016年早季籽粒灌浆和直链淀粉积累持续期比其他3季分别缩短了6.2—11.5d和9.0—13.9 d,籽粒灌浆和直链淀粉积累平均速率分别提高了53.9%—73.7%和57.4%—67.9%。【结论】灌浆前期高温和强光照可以缩短籽粒灌浆和直链淀粉积累持续期,并提高籽粒灌浆和直链淀粉积累速率;籽粒灌浆和直链淀粉积累渐增期持续时间长和直链淀粉积累速率高是米粉稻高直链淀粉含量形成的基础;较长的灌浆持续期、较高的直链淀粉积累速率及最大直链淀粉积累速率和灌浆速率启动时间较晚,有利于米粉稻籽粒直链淀粉积累量的增加。
关键词: 米粉稻;直链淀粉含量;籽粒灌浆;积累特性

Abstract
【Objective】Amylose content in rice grain is a key factor affecting the quality of rice noodle. Rice noodles processed from rice with higher amylose content have a strong structure, which can reduce the cooking loss of rice noodle. It is important to regulate the amylose content and quality of noodle rice by ascertaining the amylose accumulation property of noodle rice grain. 【Method】Using two high amylose content noodle rice varieties (Luliangyou 996 and Zhongjiazao 17) and two low amylose content rice varieties (Lingliangyou 268 and Xiangzaoxian 45 as control) as materials, the field experiments were conducted in early and late season in 2016 and 2017. The grain-filling properties and amylose accumulation properties were analyzed based on the Logistic equation. 【Result】The amylose content in noodle rice variety was 44.8%-72.3% significant higher in noodle rice than that of control variety. The amylose accumulation in noodle rice showed 61.2%-92.8%, 60.0%-91.1%, 61.2%-92.3%, and 59.3%-89.3% higher than that in control variety during the gradual increase phase, rapid phase, slow increase phase, and the maximum accumulation rate phase, respectively. In the same planting season, the average rate of amylose accumulation, the accumulation rate during the increasing period and the maximum accumulation rate of noodle rice were 36.7%-91.2%, 40.2%-58.3%, and 29.2%-108.7% higher than that of control variety, respectively. And the duration of the gradual increase period was 0.6-2.8 d longer than the control variety, and the maximum amylose accumulation rate start-up time was 1.4-2.9 d later than that of control variety. The contribution of amylose accumulation in gradual, rapid, and slowly increase period of amylose accumulation duration to total amylose accumulation were relatively stable with different rice varieties growing in different seasons, with the value of 21.03%-21.32%, 57.58%-57.88%, and 11.38%-14.62%, respectively. Grain amylose accumulation was accompanied by the grain filling process, and the gradual, rapid, and slowly increase phase of grain filing dry matter accumulation occurred 0.1-4.9 d earlier than that of the corresponding amylose accumulation. Meanwhile, the grain filling period, maximum filling rate start time and filling duration of noodle rice were on average 0.1-1.8 d, 1.2-2.0 d and 1.2-3.6 d longer or later than that of control variety. The mean temperature and incident radiation during the 5 days after flowering in early season of 2016 were 30.1℃ and 21.1 MJ·m-2, which showed 5.1℃-6.3℃ and 2.0-19.1 MJ·m-2 higher than the other three seasons of the same growing period; while the grain-filling and amylose accumulation duration reduced 6.2-11.5 d and 9.0-13.9 d in the early season in 2016 than the other three seasons, respectively, and the grain-filling rate and amylose accumulation rate was increased by 53.9%-73.7% and 57.4%-67.9%, respectively. 【Conclusion】Higher temperature and incident radiation in the early stage of grain-filling could reduce the duration of grain-filling and amylose accumulation, and improve the grain-filling rate and amylose accumulation rate. The longer duration of gradual period with grain-filling and amylose accumulation as well as the higher amylose accumulation rate in gradual period in rice grain were the basics of high amylose content in noodle rice. The longer grain-filling duration, the higher amylose accumulation rate, the later happened time of the maximum amylose accumulation and grain-filling rate were benefit to amylose accumulation in grain of noodle rice.
Keywords:noodle rice;amylose content;grain-filling;accumulation characteristics


PDF (487KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
张恒栋, 黄敏, 邹应斌, 陈佳娜, 单双吕. 米粉稻籽粒直链淀粉积累特性[J]. 中国农业科学, 2021, 54(7): 1354-1364 doi:10.3864/j.issn.0578-1752.2021.07.004
ZHANG HengDong, HUANG Min, ZOU YingBin, CHEN JiaNa, SHAN Shuang Lv. Amylose Accumulation Properties in the Grains of Noodle Rice[J]. Scientia Agricultura Sinica, 2021, 54(7): 1354-1364 doi:10.3864/j.issn.0578-1752.2021.07.004


开放科学(资源服务)标识码(OSID):

0 引言

【研究意义】米粉是仅次于稻米作为主食食用的大米产品[1,2],其原料以早籼稻为主,在我国有广泛的市场[3,4]。目前米粉稻种类较多,品质差异大,加工成的米粉质量存在较大差异,难以满足市场对产品质量的需求[5]。品种来源和稻米品质,尤其是米粉稻稻米的直链淀粉含量是影响其加工米粉品质的关键因素[5,6,7]。研究米粉稻籽粒灌浆过程中直链淀粉积累特性对提升米粉稻直链淀粉含量有重要意义。【前人研究进展】种植米粉稻是解决早籼稻因食味差导致经济价值低的一条有效途径[8,9]。前人通过品种的筛选和选育,普遍认为高直链淀粉含量的水稻品种适合做米粉稻,直链淀粉含量较高的稻米加工的米粉结构坚固,可以减少米粉的蒸煮损失,黏性较强[10]。不同的研究者对适合加工米粉的稻米直链淀粉含量的结果略有差异,认可度较高的结果为稻米直链淀粉含量在20%—26.14%时,加工的米粉品质较优[2, 4, 11-12]。刘友明等[13]认为直链淀粉含量为10%—17.5%的稻米适合做米粉的加工。直链淀粉含量是由直链淀粉积累量和籽粒干物质量共同决定的,受品种及环境因素的影响显著[14]。宽窄行栽培[12]及合理的氮磷比例[15]有利于米粉稻直链淀粉含量的优化,施用乙烯利可以促进米粉稻直链淀粉含量的增加[16]。不同类型水稻品种直链淀粉含量差异在灌浆初期已经比较明显,随着灌浆时间的推移,直链淀粉含量升高[17]。高直链淀粉含量的水稻品种直链淀粉的积累量和积累速率大于低直链淀粉含量的品种[18],同时直链淀粉积累量大的品种其最大积累速率出现的时间晚、活跃积累天数长[19]。水稻直链淀粉积累快速期因研究地域或品种的不同得到的结果并不一致[17,18,19,20,21],温度是直链淀粉形成过程中重要因素之一[22,23,24,25],程方民等[23]认为齐穗后20 d内受温度影响直链淀粉含量变化较大,适温条件下灌浆期籽粒直链淀粉积累速率慢,持续时间长,高温有助于直链淀粉含量的提升[25]。【本研究切入点】通过品种的筛选可知高直链淀粉含量的水稻品种适合做米粉的加工,不同的栽培调控措施可以调节米粉稻直链淀粉含量的变化,然而米粉稻籽粒灌浆过程中直链淀粉的积累特性及其与籽粒灌浆参数的关系鲜有报道,米粉稻直链淀粉积累动态参数及其对直链淀粉含量的影响尚不明确。【拟解决的关键问题】本研究通过选用高直链淀粉的米粉稻品种和低直链淀粉的对照品种进行籽粒灌浆、直链淀粉积累动态研究,分析不同水稻品种籽粒灌浆和直链淀粉积累参数,明确影响米粉稻直链淀粉含量形成的籽粒灌浆和直链淀粉积累特性。

1 材料与方法

1.1 试验地概况

试验于2016—2017年早、晚季在湖南省浏阳市永安镇进行,土壤基本情况为有机质43.44 g·kg-1、速效氮200.70 mg·kg-1、速效磷6.24 mg·kg-1、速效钾148.13 mg·kg-1,pH 6.08。

1.2 试验材料

根据当地生产实际,选择米粉稻品种(NR)陆两优996(LLY996,籼型两系杂交稻)、中嘉早17(ZJZ17,籼型常规稻)和对照品种(CK)陵两优268(LLY268,籼型两系杂交稻)、湘早籼45(XZX45,籼型常规稻)为材料。

1.3 试验设计

采用随机区组设计,重复3次,小区面积40 m2。试验用58 cm×25 cm的秧盘,装填淤泥育秧,播种方式参照SHAN等[26]采用双本印刷播种,每年早季于3月27日播种,4月19日移栽,晚季于7月7日播种,7月23日移栽。试验用井关PZ80-25插秧机插秧,早季施135 kg N·hm-2,晚季施150 kg N·hm-2,N﹕P2O5﹕K2O为1﹕0.5﹕1。氮肥按照基肥﹕蘖肥﹕穗肥按照5﹕2﹕3的方式施用,磷肥全部做基肥施用,钾肥按照基肥﹕穗肥为5﹕5的比例施用,田间管理同当地生产习惯保持一致。

1.4 测定内容与方法

1.4.1 直链淀粉含量的测定 直链淀粉含量测定参照标准NY147-88[27],采用KI-I靛蓝比色法。

1.4.2 籽粒灌浆和直链淀粉积累动态 于齐穗期对所有小区内的水稻选取开花的稻穗100穗进行挂牌标记。自齐穗后3 d起每个小区在挂牌标记的稻穗中随机选取5穗进行取样,于70℃烘干后手工脱壳,并计数获得的粒数后称重,计算平均粒重。采用超微粉碎机粉碎后测定每个时期的直链淀粉含量,用粒重×各时期直链淀粉含量计算直链淀粉的积累量。

籽粒灌浆和直链淀粉积累的各参数参照HUANG等[28]和刘红杰等[29]的方法进行计算,计算增长动态的2个拐点t1和t2,及灌浆持续时间点t3,开花期—t1为渐增期(T1),t1—t2为快速期(T2),t2—t3为缓增期(T3),花后—t3为灌浆持续时间(D)。

1.5 数据分析

采用Microsoft Excel 2016 整理数据和绘制图表,采用Statistix 8.0软件进行数据分析,用LSD0.05法进行多重比较,DPS 18.0进行相关性分析和数学模型的建立。

2 结果

2.1 不同种植季节抽穗期气温和辐射数据

早、晚季花后日平均气温分别为27.3℃、21.3℃(2016年)和27.4℃、22.5℃(2017年);早季种植,2016年水稻开花后前5 d的日平均气温为30.1℃,比2017年同时间段高5.4℃及2年晚季同阶段高5.1℃—6.3℃;晚季种植,2016年水稻花后前15 d日平均气温为22.6℃,比2017年同时间段低3.2℃。2016年早、晚季日平均入射辐射量为15.4 MJ·m-2和12.4 MJ·m-2,分别比2017年同季节日平均辐射量高11.5%和45.9%(图1)。

Fig. 1

新窗口打开|下载原图ZIP|生成PPT
Fig. 1The daily mean temperature and incident radiation after flowering in early and late season

ES:早季,LS:晚季 ES and LS were the early growing season and the late growing season, respectively


2.2 不同水稻直链淀粉含量差异

杂交稻 LLY996(NR)在早、晚季种植直链淀粉含量分别达到 23.31%、20.78%(2016年)和23.75%、22.51%(2017年),分别比同一种植季节的LLY268(CK)高78.9%、41.5%(2016年)和64.0%、42.3%(2017年),同季节ZJZ17(NR)的直链淀粉含量比XZX45(CK)高47.1%—66.0%,差异显著。2016—2017年NR直链淀粉含量平均比CK分别高72.3%、63.1%(早季)和45.1%、44.8%(晚季)(图 2)。

图2

新窗口打开|下载原图ZIP|生成PPT
图2不同水稻在早、晚季种植直链淀粉含量

图中不同字母表示同年内直链淀粉含量差异显著(P<0.05),ES:早季,LS:晚季,LLY996:陆两优996,ZJZ17:中嘉早17,LLY268:陵两优268,XZX45:湘早籼45
Fig. 2The amylose content of different rice varieties planting in early and late season

The different letter showed significantdifferences at P<0.05, ES and LS were the early growing season and the late growing season, respectively; LLY996: Luliangyou996, ZJZ17: Zhongjiazao17, LLY268: Lingliangyou268, , XZX45: Xiangzaoxian45


2.3 不同水稻品种籽粒直链淀粉积累动态

不同的水稻品种在不同的种植季节,直链淀粉的积累动态均极显著拟合Logistic方程(R2=0.955—0.995),拟合参数如表1所示。拟合方程计算不同水稻品种直链淀粉积累参数(表2),由不同阶段直链淀粉的积累量可知,相同种植季节直链淀粉积累的Ta1、Ta2、Ta3期及最大积累速率启动时直链淀粉的积累量,LLY996比LLY268分别高56.9%—103.4%、57.0%—104.4%、55.0%—96.3%和56.9%—105.1%;ZJZ17比XZX45分别高49.2%—78.7%、50.0%—80.1%、47.5%—76.2%和50.4%—80.4%;同季内NR分别比CK平均高60.0%—91.1%、61.2%—92.3%、59.3%—89.3%和61.2%—92.8%。

Table 1
表1
表1不同水稻品种直链淀粉积累动态拟合Logistic方程Y=K/(1+EXP(A-BX)参数
Table 1The parameters of the dynamic of amylose accumulation with different rice varieties fitted the Logistic equation Y=K/(1+EXP(A-BX)
季节
Season
品种
Variety
20162017
KABR2KABR2
ESLLY9964.623.270.3350980**5.593.250.1820987**
ZJZ173.903.620.4350.967**5.184.020.2490.995**
LLY2682.344.720.6720.969**2.743.060.2300.984**
XZX452.313.420.4590.993**2.873.010.2020.981**
LSLLY9964.303.100.2260.955**4.453.020.2410.975**
ZJZ173.773.330.2540.967**4.153.790.3090.982**
LLY2682.733.040.2310.969**2.582.570.2010.960**
XZX452.203.740.3420.958**2.772.780.2190.963**
ES:早季,LS:晚季,K:籽粒中直链淀粉积累理论值(mg/粒),A和B:Logistic方程回归参数,R:相关系数,**表示0.01水平下相关性显著。LLY996、ZJZ17、LLY268、XZX45分别为陆两优996、中嘉早17、陵两优268和湘早籼45。下同
ES and LS were the early growing season and the late growing season, respectively; K: Theoretical value of amylose accumulation in rice grain (mg·grain-1), A and B: Parameters in Logistic equation, R: Correlation coefficient, ** showed the correlation are extremely significant at 0.01 level. LLY996, ZJZ17, LLY268, XZX45 were Luliangyou 996, Zhongjiazao 17, Lingliangyou 268, Xiangzaoxian 45, respectively. The same as below

新窗口打开|下载CSV

Table 1
表1
表1不同水稻品种直链淀粉积累参数
Table 1The parameters of amylose accumulation with different rice varieties
年份
Year
季节
Season
品种
Variety
积累速率
Accumulation rate (mg·grain-1·d-1)
持续时间
Time of duration (d)
积累量
Accumulation (mg·grain-1)
MRaDa
(d)
Ta
(d)
AA
(mg·grain-1)
IRaMRaMeRaTa1Ta2Ta3Ta1Ta2Ta3Ta1Ta2Ta3
2016ESLLY9960.0550.3870.1970.170.340.145.87.93.90.982.670.539.82.3317.6
ZJZ170.0430.4240.2070.150.370.145.36.13.20.822.250.448.31.9414.6
LLY2680.0140.3930.1690.100.350.155.13.91.80.491.350.277.01.1610.8
XZX450.0330.2650.1320.110.230.094.65.72.90.491.330.267.51.1713.2
2017ESLLY9960.0370.2540.1300.110.220.1110.614.57.21.183.230.8117.92.8132.3
ZJZ170.0220.3220.1500.100.280.1510.910.65.11.092.990.7416.12.5826.6
LLY2680.0270.1580.0820.080.140.077.611.55.70.581.580.4013.31.3724.8
XZX450.0260.1450.0760.070.130.068.413.06.60.611.660.4214.91.4328.0
2016LSLLY9960.0400.2430.1260.120.210.117.911.75.80.912.480.6213.72.1525.4
ZJZ170.0320.2390.1210.100.210.107.910.45.20.802.180.5413.11.8823.5
LLY2680.0270.1580.0830.080.140.077.511.45.70.581.580.4013.21.3724.6
XZX450.0170.1880.0900.060.160.087.17.73.80.461.270.3110.91.0918.6
2017LSLLY9960.0480.2680.1410.130.240.127.110.95.50.942.570.6512.52.2223.5
ZJZ170.0280.3210.1530.110.280.148.08.54.20.882.400.5912.32.0920.7
LLY2680.0340.1300.0720.090.110.066.213.16.70.551.490.3812.81.2926.1
XZX450.0330.1520.0820.080.130.076.712.06.10.591.600.4012.71.3924.8
IRa, MRa, MeRa represented the initial rate, the maximum rate and the mean rate of amylose accumulation, respectively; Ta1, Ta2, Ta3 represented the gradual increase period, the rapid increase period, and the slowly increase period of amylose accumulation, respectively; Ta, AA represented the time and the amylose accumulation when the maximum rate of amylose accumulation occurred, respectively; Da represented time of duration of amylose accumulation. The same as below
IRa、MRa、MeRa分别为直链淀粉积累起始速率、最高速率和平均速率,Ta1、Ta2、Ta3分别为直链淀粉积累的渐增期、快速期和缓增期,Ta、AA为直链淀粉积累最大速率出现的时间和积累的直链淀粉量。Da为直链淀粉持续积累时间。下同

新窗口打开|下载CSV

表2可知,相同的种植季节,直链淀粉积累的渐增期(Ta1),NR比CK平均长0.6—2.8 d,其中LLY996比LLY268长0.4—3.0 d,ZJZ17比XZX45长0.7—2.5 d;直链淀粉积累快速期(Ta2)、缓增期(Ta3)和积累持续期(Da)在NR和CK之间无明显差异规律。直链淀粉最大积累速率启动时间,NR比CK平均晚1.4—2.9 d,其中除2017年晚季4个水稻品种最大积累速率出现在同一天,相同种植季节LLY996最大积累速率比LLY268晚0.5—4.6 d,ZJZ17比XZX45晚0.8—2.2 d。

相同的种植季节直链淀粉积累平均速率、Ta1期积累速率和最大积累速率均表现为NR高于CK(表2),平均分别高36.7%—91.2%、40.2%—58.3%和29.2%—108.7%,其中LLY996比LLY268分别高16.6%—95.8%、37.5%—70%和56.9%—105.1%,ZJZ17比XZX45分别高34.4%—97.4%、36.4%—66.7%和50.4%—80.4%;相同种植季节直链淀粉积累起始速率、Ta2和Ta3期直链淀粉积累速率表现为NR比CK平均高10.8%—161.6%、29.0%—116.8%和24.4%—103.6%。相同类型的品种间差异在不同季节的变化略有不同。

2.4 不同水稻品种籽粒灌浆动态

不同水稻品种籽粒灌浆过程拟合Logistic方程的拟合参数如表3所示,相关系数R2为0.964—0.996,相关性极显著。由不同水稻品种直链淀粉积累参数(表4)可知,相同的种植季节,籽粒灌浆Tf1持续期,NR比CK平均长0.1—1.8 d;籽粒最大灌浆速率启动时间,NR比CK平均晚1.2—2.0 d,其中LLY996和ZJZ17的Tf1持续期分别比2个对照品种平均长1.1 d和1.0 d,最大灌浆速率启动时间比2个对照品种平均延迟2.1 d和0.9 d。

Table 3
表3
表3不同水稻品种籽粒灌浆动态拟合Logistic方程Y=K1/(1+EXP(A1-B1X)参数
Table 3The parameters of the dynamic of grain filling with different rice varieties fitted the Logistic equation Y=K1/ (1+EXP(A1-B1X)
季节
Season
品种
Variety
20162017
K1A1B1R2K1A1B1R2
ESLLY99619.42.540.3280.981**21.42.930.210.987**
ZJZ1717.843.1020.4120.987**19.653.420.2410.994**
LLY26818.721.690.3720.983**18.112.870.2450.988**
XZX4518.722.700.3960.996**18.392.700.2000.985**
LSLLY99620.642.590.2160.965**18.382.550.2450.976**
ZJZ1717.112.950.2690.984**17.612.630.2140.982**
LLY26818.302.920.2780.989**15.462.760.3080.973**
XZX4515.943.380.3360.985**15.702.700.2750.964**
K1:成熟期理论粒重(mg/粒),A1和B1:Logistic方程回归参数,R:相关系数
K1: Theoretical grain weight at maturity (mg·grain-1); A1 and B1: Parameters in Logistic equation; R: Correlation coefficient

新窗口打开|下载CSV

Table 4
表4
表4不同水稻品种籽粒灌浆参数
Table 4The parameters of grain filling with different rice varieties
年份
Year
季节
Season
品种
Variety
灌浆速率
Grain filling rate (mg·grain-1·d-1)
持续时间
Time of duration (d)
积累量
Accumulation (mg·grain-1)
MRfDf
(d)
Tf
(d)
MFD
(mg·grain-1)
IRfMRfMeRfTf1Tf2Tf3Tf1Tf2Tf3Tf1Tf2Tf3
2016ESLLY9960.4311.5910.8921.101.400.693.78.04.24.0711.172.917.79.6315.9
ZJZ170.3031.8380.9550.871.610.814.36.43.23.7410.312.597.58.8813.9
LLY2680.9151.7391.1073.951.530.751.07.13.73.9510.832.764.59.2911.8
XZX450.4371.8531.0161.131.620.803.56.73.33.9710.872.656.89.3313.5
2017ESLLY9960.2161.1240.5970.590.990.497.712.56.44.5412.323.1414.010.7526.6
ZJZ170.1451.1840.5910.471.040.528.711.05.44.1311.402.8014.29.8425.1
LLY2680.2251.1090.5940.600.970.496.310.85.43.8010.492.6211.79.0422.5
XZX450.2170.9200.5040.560.810.406.913.26.73.8810.642.6713.59.2026.8
2016LSLLY9960.2891.1150.6200.740.980.485.912.26.24.3711.923.0012.010.3324.3
ZJZ170.2181.1510.6100.601.010.506.19.84.93.649.882.4511.08.5920.8
LLY2680.2471.2720.6770.671.120.565.89.44.83.9010.502.6810.59.1520.0
XZX450.1711.3390.6720.551.170.586.17.93.93.339.262.2810.18.0217.9
2017LSLLY9960.3031.1260.6300.770.990.495.010.85.53.8610.652.6810.49.1821.3
ZJZ170.2001.1090.5840.560.970.486.49.95.03.579.642.4211.38.3521.3
LLY2680.2671.1900.6470.700.970.314.78.64.43.2810.211.479.07.7817.6
XZX450.2551.0790.5920.660.960.575.09.64.93.308.632.249.87.8319.5
IRf、MRf、MeRf分别为灌浆起始速率、最高速率和平均速率,Tf1、Tf2、Tf3分别为灌浆过程的渐增期、快速期和缓增期,Tf、MFD为最大灌浆速率出现的时间和积累的干物质量,Df为持续灌浆时间
IRf, MRf, MeRf represented the initial rate, the maximum rate and the mean rate of grain filling, respectively; Tf1, Tf2,Tf3 represented the gradual increase period, the rapid increase period, and the slowly increase period of grain filling, respectively; Tf and MFD represented the time and the dry matter weight when the maximum grain filling rate occurred, respectively; Df was the time of duration of grain filling

新窗口打开|下载CSV

相同的种植季节,籽粒持续灌浆期,NR比CK平均长1.2—3.6 d;Tf3持续期积累的干物质量,NR比CK平均多1.7%—37.5%,其中晚季籽粒灌浆持续期表现为LLY996比LLY268和XZX45长3.7—4.3 d,ZJZ17比LLY268和XZX45长1.8—2.9 d,Tf3持续期积累的干物质量,LLY996和ZJZ17分别比2个对照品种多11.9%—82.3%和7.5%—8.0%,2年早季种植,品种间变化规律不一致。

早季种植,籽粒起始灌浆速率和Tf1期灌浆速率,LLY996比LLY268分别低4.0%—52.9%和1.7%—72.2%,ZJZ17比XZX45分别低30.7%—33.2%和16.1%—23.0%,NR比CK平均分别低18.3%—45.7%和6.1%—8.6%,晚季间无明显变化规律。晚季种植,籽粒灌浆的平均速率,NR比CK平均低2.0%—8.8%;Tf2期和Tf3期的持续时间,NR比CK平均长1.3—2.4 d和0.6—1.2 d;Tf1期、Tf2期和最大灌浆速率启动时积累的干物质量,NR比CK平均分别高10.8%—12.9%、7.7%—10.3%和10.2%—12.3%;而早季种植,NR和CK之间无明显变化规律。

2.5 直链淀粉积累的不同阶段的贡献率及其与籽粒灌浆过程的同步性

直链淀粉积累过程伴随籽粒灌浆过程产生(图3),不同种植季节NR和CK表现为籽粒灌浆过程中干物质积累的渐增期、快速期、缓增期启动时间比直链淀粉积累对应的阶段早0.1—4.9 d,多数集中在1.0—3.0 d。同一阶段籽粒灌浆启动时间早于直链淀粉积累启动时间,其发生启动的顺序依次表现为籽粒灌浆和直链淀粉积累的渐增期、籽粒灌浆快速期、直链淀粉积累快速期、籽粒灌浆缓增期、直链淀粉积累的缓增期;而灌浆和直链淀粉积累的持续期结束的时间除了极少数存在不规律性,大部分表现为灌浆持续期结束较早。虽然同一积累阶段直链淀粉的积累量在品种间有较大的差异(表3),但是同一直链淀粉积累阶段的积累量对其籽粒直链淀粉总量的贡献率基本上稳定(表5),不同的水稻品种在Ta1期、Ta2期、Ta3期直链淀粉积累量对籽粒总直链淀粉积累量的贡献率分别为20.91%—21.32%、57.58%—57.88%、11.26%—14.73%。

Table 5
表5
表5不同水稻直链淀粉积累持续期直链淀粉积累量对其籽粒直链淀粉积累总量的贡献率
Table 5The contribution rate of amylose accumulation during the amylose continuous accumulation duration to its total amylose accumulation in grain with different rice (%)
季节
Season
品种
Variety
20162017
Ta1Ta2Ta3Ta1Ta2Ta3
ESLLY99621.2157.7911.4721.1157.5811.26
ZJZ1721.0357.6911.2821.0457.7214.29
平均Mean21.12a57.74a11.38a21.08a57.75a14.39a
LLY26820.9457.6911.5421.1757.6614.60
XZX4521.2157.5811.2621.2557.6714.63
平均Mean21.08a57.63a11.40a21.21a57.75a14.62a
LSLLY99621.1657.6714.4221.1257.7514.61
ZJZ1721.2257.8214.3221.2057.8314.22
平均Mean21.19a57.75a14.37a21.16a57.79a14.41a
LLY26821.2557.8814.6521.3257.7514.73
XZX4520.9157.7314.0921.3057.7614.44
平均Mean21.08a57.80a14.37a21.31a57.76a14.58a

新窗口打开|下载CSV

图3

新窗口打开|下载原图ZIP|生成PPT
图3不同水稻品种不同种植季节籽粒灌浆和直链淀粉积累持续时间

Tf1、Tf2、Tf3定义同表4,Ta1、Ta2、Ta3定义同表2,每个形状的上限即为直链淀粉积累和籽粒灌浆各时期的结束时间,籽粒灌浆和直链淀粉积累的渐增期、快速期结束时间即为快速期和缓增期开始时间。1-4、6-9、11-14、16-19分别为2016年早季、晚季和2017年早季、晚季,同一种植季节内从左到右品种依次为陆两优996、中嘉早17、陵两优268和湘早籼45
Fig. 3The duration time of amylose accumulation and grain filling with different rice varieties grown in different seasons

Tf1, Tf2, Tf3 were the same as defined in Table 4, and Ta1, Ta2, Ta3 were the same as defined in Table 2. The upper bound for each trait was the end time of each period in grain filling and amylose accumulation, the end time of gradual and rapid increased period were the initial time of rapid and slowly increased period in grain filling and amylose accumulation. 1-4, 6-9, 11-14, 16-19 showed the rice grown in 2016 early and late season and 2017 early and late season, and the rice varieties were LLY996, ZJZ17, LLY268, XZX45 from left to right in the same growing season, respectively


3 讨论

高直链淀粉的水稻直链淀粉的积累量和积累速率显著高于中、低直链淀粉含量的水稻[17]。随着灌浆时间的推移,籽粒中直链淀粉含量明显升高,品种间直链淀粉含量的差异在灌浆初期就已经比较明显,而不是中后期表现出来的[17,18,19,20,21]。郭连安等[19]研究表明直链淀粉积累量的高低主要取决于直链淀粉最大积累速率,闫素辉等[30]认为小麦籽粒直链淀粉积累起始速率、平均速率和最高速率高的品种直链淀粉积累量大。本文结果表明,相同的种植季节,NR在直链淀粉积累渐增期、快速期、缓增期及最大积累速率时,直链淀粉积累量比CK高60.0%—91.1%、61.2%—92.3%、59.3%—89.3%和61.2%—92.8%,直链淀粉积累渐增期积累速率,NR比CK高36.4%—70.0%(表2),如何根据直链淀粉积累参数变化特点,进行优化米粉稻直链淀粉含量的栽培调控措施的探索还需要进一步研究。

水稻直链淀粉的含量是随着籽粒灌浆过程形成的,形成过程均可以用Logistic方程进行拟合[19, 21],籽粒中直链淀粉和支链淀粉的合成和积累是水稻籽粒灌浆过程中的主要活动[21]。本研究结果表明,相同的种植季节,籽粒持续灌浆期,NR比CK平均长1.2—3.6 d,籽粒灌浆渐增期,NR比CK平均长0.1—1.8 d;籽粒最大灌浆速率启动时间,NR比CK平均晚1.2—2.0 d。直链淀粉的积累渐增期结束时间晚于籽粒灌浆渐增期结束时间,快速期、缓增期开始的时间和最大积累速率启动时间分别晚于籽粒灌浆干物质积累的快速期、缓增期开始的时间和最大灌浆速率启动时间,多数直链淀粉的积累持续时间长于籽粒灌浆持续时间(图3)。这可能是因为总淀粉的积累过程在很大程度上可以反映籽粒干物质的积累动态[31],虽然不同水稻品种直链淀粉积累量不一致,但是基本上保持相同的变化趋势。支链淀粉形成的聚合物可以为直链淀粉的合成提供场所[32],随着籽粒的发育,籽粒中直链淀粉的积累速率和积累量低于支链淀粉[22, 33]

关于直链淀粉积累的快速期前人有不同的结论,何秀英等[20]认为是花后3—12 d,郭连安等[19]认为是花后5—20 d,范永义等[33]认为花后15 d内是直链淀粉积累最快的时期。本研究结果表明,根据品种和种植季节的不同,水稻直链淀粉积累的渐增期、快速期启动和持续的时间均有差异,同一季节渐增期持续的时间,NR比CK长0.4—2.5 d,同一品种不同的种植季节持续时间相差1.1—5.6 d,从而导致快速积累期开始和持续的时间也不一致。不同的品种在不同的种植季节渐增期、快速积累期发生和持续的时间不同,直链淀粉积累量差异很大,但是这2个时期内直链淀粉的积累量对籽粒总直链淀粉量的贡献率保持稳定,渐增期、快速积累期的贡献率为20.91%—21.32%、57.58%—57.88%,变化幅度很小。不同积累阶段发生和持续的时间随着品种和季节的变化有较大差异,因此,用花后某个时间段来定义直链淀粉的快速积累期存在一定的片面性。

灌浆前期是籽粒直链淀粉积累受外界环境因素影响最大的时期,直链淀粉积累的调控主要在灌浆阶段的前期和中期[34],籽粒灌浆是籽粒干物质积累的过程,其中包含淀粉的积累,直链淀粉作为淀粉组分之一,它的积累受到籽粒灌浆过程中诸多因素的影响[17,18,19,20,21,22,23,24]。前人研究表明,灌浆期遮光不利于直链淀粉的积累,弱光会降低水稻的灌浆速率和起始势,低温会延长水稻的灌浆期同时降低灌浆速率[35,36]。本研究结果表明,2016年早季,不同水稻品种直链淀粉积累速率和灌浆速率高于其他3季,灌浆和直链淀粉积累持续时间均短于其他3季,主要与灌浆起始阶段较高的温度和光照强度有关。自然环境是一个复杂的环境,光照强度和温度的变化对籽粒灌浆和直链淀粉积累的影响程度需要借助人工气候培养室进行进一步研究。

4 结论

灌浆前期高温和强光照可以提高水稻籽粒灌浆和直链淀粉积累速率并缩短籽粒灌浆和直链淀粉积累持续期。与对照品种相比,米粉稻品种有较长的灌浆持续期,尤其是达到最大灌浆速率的时间和灌浆渐增期表现出一致的规律;稻米直链淀粉积累的渐增期、快速期、缓增期直链淀粉的积累量对直链淀粉积累总量贡献率相对稳定,与对照相比,米粉稻品种直链淀粉积累量和积累速率较高,尤其是渐增期积累速率和最大积累速率,因此米粉稻品种灌浆持续时间较长,直链淀粉积累速率较高。直链淀粉积累渐增期积累速率高、持续时间长是米粉稻形成高直链淀粉含量的基础。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

AHMED I, QAZI I, LI Z, ULLAH J.Rice noodles: Materials, processing and quality evaluation//Proceedings of the Pakistan Academy of Sciences: B
Life and Environmental Sciences, 2016, 53(3): 215-238.

[本文引用: 1]

HAN J, SEO T, LIM S, PARK D.Utilization of rice starch with gums in Asian starch noodle preparation as substitute for sweet potato starch
Food Sciences & Biotechnology, 2011, 20(5): 1173-1178.

[本文引用: 2]

王永辉, 张业辉, 张名位, 魏振承, 唐小俊, 张瑞芬, 邓媛元, 张雁. 不同水稻品种大米直链淀粉含量对加工米粉丝品质的影响
中国农业科学, 2013, 46(1): 109-120.

[本文引用: 1]

WANG Y H, ZHANG Y H, ZHANG M W, WEI Z C, TANG X J, ZHANG R F, DENG Y Y, ZHANG Y.Effect of amylose content of different rice varieties on the qualities of rice vermicelli
Scientia Agricultura Sinica, 2013, 46(1): 109-120. (in Chinese)

[本文引用: 1]

郭利利, 周显青, 熊宁, 刘利, 倪姗姗, 孟欢, 孙婷琳, 彭志兵. 压榨型鲜湿米粉条制作方法的研究
中国粮油学报, 2017, 32(5): 110-116.

[本文引用: 2]

GUO L L, ZHOU X Q, XIONG N, LIU L, NI S S, MENG H, SUN T L, PENG Z B.The processing procedure of the pressed and fresh rice noodles
Journal of the Chinese Cereals and Oils Association, 2017, 32(5): 110-116. (in Chinese)

[本文引用: 2]

雷婉莹, 吴卫国, 廖卢艳, 倪婷, 张喻. 鲜湿米粉品质评价及原料选择
食品科学, 2020, 41(1): 74-79.

[本文引用: 2]

LEI W Y, WU W G, LIAO L Y, NI T, ZHANG Y.Quality evaluation and raw material selection for wet rice noodles
Food Science, 2020, 41(1): 74-79. (in Chinese)

[本文引用: 2]

王学华, 李合松, 青先国. 米粉稻品质特性及加工研究进展
作物研究, 2004(5): 304-307.

[本文引用: 1]

WANG X H, LI H S, QING X G. The research progress of quality characters and process of noodle rice
Crop Research, 2004(5): 304-307. (in Chinese)

[本文引用: 1]

罗文波, 林亲录, 黄亮, 吴跃, 肖华西, 王佳. 不同品种籼米生产的鲜湿米粉理化特性与感官品质
食品与机械, 2011, 27(3): 7-21.

[本文引用: 1]

LUO W B, LIN Q L, HUANG L, WU Y, XIAO H X, WANG J.Study on physiochemical and sensory properties of fresh rice noodles produced by different varieties of indica rice
Food & Machinery, 2011, 27(3): 7-21. (in Chinese)

[本文引用: 1]

周显青, 张鹏举, 张玉荣, 孟欢, 熊宁. 赣鄂两省早籼稻谷的品质分析
河南工业大学学报(自然科学版), 2018, 39(1): 1-9.

[本文引用: 1]

ZHOU X Q, ZHANG P J, ZHANG Y R, MENG H, XIONG N.Quality analysis of early indica rice in Jiangxi and Hubei provinces
Journal of Henan University of Technology (Natural Science Edition), 2018, 39(1): 1-9. (in Chinese)

[本文引用: 1]

钟连进, 温晓, 朱海江, 程方民. 论早籼稻的可持续发展
农业现代化研究, 2003, 24(3): 166-169.

[本文引用: 1]

ZHONG L J, WEN X, ZHU H J, Cheng F M.Sustainable development of early-season indica rice
Research of Agricultural Modernization, 2003, 24(3):166-169. (in Chinese)

[本文引用: 1]

JEONG S, KIM Y, KO S, YOON M R, LEE J S, LEE S.Physicochemical characterization and in-vitro digestibility of extruded rice noodles with different amylase contents based on rheological approaches
Journal of Cereal Science, 2016, 71(1): 258-263.

[本文引用: 1]

高晓旭, 佟立涛, 钟葵, 刘丽娅, 周闲容, 周素梅, 王立. 鲜米粉加工专用原料的选择
中国粮油学报, 2015, 30(2): 1-5.

[本文引用: 1]

GAO X X, TONG L T, ZHONG K, LIU L Y, ZHOU X R, ZHOU S M, WANG L.Raw material selection for fresh rice noodles
Journal of the Chinese Cereals and Oils Association, 2015, 30(2): 1-5. (in Chinese)

[本文引用: 1]

王学华. 米粉稻品种筛选及配套栽培技术研究
[D]. 长沙: 湖南农业大学, 2011.

[本文引用: 2]

WANG X H.Screening of rice varieties for rice noodle and studying on corresponding cultivation techniques
[D]. Changsha: Hunan Agricultural University, 2011. (in Chinese)

[本文引用: 2]

刘友明, 谭汝成, 荣建华, 赵思明. 方便米粉加工原料的选择研究
食品科技, 2008, 3(16): 133-136.

[本文引用: 1]

LIU Y M, TAN R C, RONG J H, ZHAO S M.Study on raw material selection for instant rice noodle
Food Science and Technology, 2008, 3(16): 133-136. (in Chinese)

[本文引用: 1]

杨国涛, 谢崇华, 张玲, 李海清, 李伟. 不同氮、钾配比对杂交水稻灌浆期直链淀粉积累的影响
植物营养与肥料学报, 2009, 15(2): 297-302.

[本文引用: 1]

YANG G T, XIE C H, ZHANG L, LI H Q, LI W.Effects of nitrogen and potassium on amylose content in hybrid rice during grain filling
Plant Nutrition and Fertilizer Science, 2009, 15(2): 297-302. (in Chinese)

[本文引用: 1]

黎腊梅, 杨国涛, 蒋芬, 张杰, 范永义, 韦叶娜, 陈永军, 胡运高. 氮磷处理对‘B优268’产量及直链淀粉含量的影响
中国农学通报, 2017, 33(23): 1-5.

[本文引用: 1]

LI L M, YANG G T, JIANG F, ZHANG J, FAN Y Y, WEI Y N, CHEN Y J, HU Y G.Effect of nitrogen and phosphorus on yield and amylose content of ‘B You 268’
Chinese Agricultural Science Bulletin, 2017, 33(23): 1-5. (in Chinese)

[本文引用: 1]

吴成春. 米粉稻稻米直链淀粉含量化学调控及其生理基础研究
[D]. 长沙: 湖南农业大学, 2007.

[本文引用: 1]

WU C C.Chemical regulation of noodle rice grain amylose content and it’s physiological foundations
[D]. Changsha:Hunan Agricultural University, 2007. (in Chinese)

[本文引用: 1]

钟连进, 程方民. 水稻籽粒灌浆过程直链淀粉的积累及其相关酶的品种类型间差异
作物学报, 2003, 29(3): 452-456.

[本文引用: 5]

ZHONG L J, CHENG F M.Varietal differences in amylose accumulation and activities of major enzymes associated with starch synthesis during grain filling in rice
Acta Agronomica Sinica, 2003, 29(3): 452-456. (in Chinese)

[本文引用: 5]

金正勋, 秋太权, 孙艳丽, 崔成焕. 稻米品质形成机理研究-品质不同的粳稻品种籽粒灌浆过程中胚乳内含物质积累动态的比较研究
东北农业大学学报, 2000, 31(2): 105-111.

[本文引用: 4]

JIN Z X, QIU T Q, SUN Y L, CUI C H.Study on the nature of formation of rice quality charactics comparative study on the accumulation dynamic of compounds in the endosperm of different quality japonica rice in the filling course
Journal of Northeast Agricultural University, 2000, 31(2): 105-111. (in Chinese)

[本文引用: 4]

郭连安, 胡运高, 杨国涛, 鄢圣敏, 易军. 不同直链淀粉含量水稻籽粒淀粉积累及其相关酶的活性变化研究
云南大学学报(自然科学版), 2014, 36(6): 942-949.

[本文引用: 7]

GUO L A, HU Y G, YANG G T, YAN S M, YI J.The research on the accumulation of grain starch and change of related enzymes activity in rice with different amylose contents
Journal of Yunan University (Natural Science Edition), 2014, 36(6): 942-949. (in Chinese)

[本文引用: 7]

何秀英, 吴东辉, 伍时照, 甄海. 水稻直链淀粉形成积累动态的研究
华南农业大学学报(自然科学版), 2003, 24(3): 9-12.

[本文引用: 4]

HE X Y, WU D H, WU S Z, ZHEN H.Studies on the formation and accumulation of amylose content in rice
Journal of South China Agricultural University (Natural Science Edition), 2003, 24(3): 9-12. (in Chinese)

[本文引用: 4]

谢宏, 李丹丹, 原蓼蓼, 梁婧婧. 用Logistic方程模拟稻米淀粉组分的积累特性
粮食与饲料工业, 2012(9): 9-12.

[本文引用: 5]

XIE H, LI D D, YUAN L L, LIANG J J. Modeling the accumulating process of rice starch components with Logistic equation
Cereal & Feed Industry, 2012(9): 9-12. (in Chinese)

[本文引用: 5]

姚姝, 于新, 周丽慧, 陈涛, 赵庆勇, 朱镇, 张亚东, 赵春芳, 赵凌, 王才林. 氮肥用量和播期对优良食味粳稻直链淀粉含量的影响
中国水稻科学, 2016, 30(5): 532-540.

[本文引用: 3]

YAO S, YU X, ZHOU L H, CHEN T, ZHAO Q Y, ZHU Z, ZHANG Y D, ZHAO C F, ZHAO L, WANG C L.Amylose content in good eating quality rice under different nitrogen rates and sowing dates
Chinese Journal of Rice Science, 2016, 30(5): 532-540. (in Chinese)

[本文引用: 3]

程方民, 丁元树, 朱碧岩. 稻米直链淀粉含量的形成及其与灌浆结实期温度的关系
生态学报, 2000, 20(4): 646-652.

[本文引用: 3]

CHENG F M, DING Y S, ZHU B Y.The formation of amylose content in rice grain and its relation with field temperature
Acta Ecologica Sinica, 2000, 20(4): 646-652. (in Chinese)

[本文引用: 3]

UMEMOTO T, NAKAMURA Y, ISHIKURA N. Activity of starch synthase and the amylose content in rice endosperm
Phytochemistry, 1995, 40(6): 1613-1616.

[本文引用: 2]

ABEYSEKERA W K S M, PREMAKUMARA G A S, BENTOTA A P, SUMITH D, ABEYSIRIWARDENA Z. Grain amylose content and its stability over seasons in a selected set of rice varieties grown in Sri Lanka
The Journal of Agricultural Sciences, 2017, 12(1): 43-50.

[本文引用: 2]

SHAN S, JIANG P, FANG S, CAO F, ZHANG H, CHEN J, YIN X, TAO Z, LEI T, HUANG M, ZOU Y.Printed sowing improves grain yield with reduced seed rate in machine-transplanted hybrid rice
Field Crops Research, 2019, 245: 107676.

[本文引用: 1]

中华人民共和国农业部. 米质测定方法: NY147-88. 北京: 中国标准测定出版社, 1988.
[本文引用: 1]

The Ministry of Agriculture of the People’s Republic of China. The examine method on the quality of rice: NY147-88. Beijing: Standards Press of China, 1988. (in Chinese)
[本文引用: 1]

HUANG M, ZHANG H, ZHAO C, CHEN G, ZOU Y.Amino acid content in rice grains is affected by high temperature during the early grain-filling period
Scientific Reports, 2019, 9(1): 2700.

[本文引用: 1]

刘红杰, 倪永静, 任德超, 杜克明, 葛君, 朱培培, 赵敬领, 黄建英, 吕国华, 胡新. 不同基因型冬小麦籽粒灌浆特征及其与千粒重的关系
中国农业气象, 2019, 40(10): 630-636.

[本文引用: 1]

LIU H J, NI Y J, REN D C, DU K M, GE J, ZHU P P, ZHAO J L, HUANG J Y, LÜ G H, HU X.Grain filling characters and its correlation with 1000-grain weight in different winter wheat varieties
Chinese Journal of Agrometeorology, 2019, 40(10): 630-636. (in Chinese)

[本文引用: 1]

闫素辉, 王振林, 戴忠民, 李文阳, 付国占, 贺明荣, 尹燕枰. 两个直链淀粉含量不同的小麦品种籽粒淀粉合成酶活性与淀粉积累特征的比较
作物学报, 2007, 33(1): 84-89.

[本文引用: 1]

YAN S H, WANG Z L, DAI Z M, LI W Y, FU G Z, HE M R, YIN Y P.Activities of enzymes involved in starch synthesis and accumulation in grains of two wheat cultivars with a different amylose content
Acta Agronomica Sinica, 2007, 33(1): 84-89. (in Chinese)

[本文引用: 1]

陈洁. 水稻籽粒淀粉和蛋白质积累模拟模型研究
[D]. 南京: 南京农业大学. 2011.

[本文引用: 1]

CHEN J.Study on rice grain starch and protein accumulation simulation model
[D]. Nanjing: Nanjing Agricultural University, 2011. (in Chinese)

[本文引用: 1]

DENYER K, JOHNSON P, ZEEMAN S, SMITH A M.The control of amylose synthesis
Journal of Plant Physiology, 2001, 158(4): 479-487.

[本文引用: 1]

范永义, 唐虹, 张玲, 杨国涛, 赵祥, 韦叶娜, 敬银钦, 刘正, 胡运高. 高直链淀粉水稻的淀粉积累及相关酶活性关系研究
广东农业科学, 2014, 41(20): 5-8.

[本文引用: 2]

FAN Y Y, TANG H, ZHANG L, YANG G T, ZHAO X, WEI Y N, JING Y Q, LIU Z, HU Y G.Starch accumulation of rice with high amylose content and related enzyme activity
Guangdong Agricultural Sciences, 2014, 41(20): 5-8. (in Chinese)

[本文引用: 2]

SHI C, WU J, WU P.Genetic analysis of developmental behavior for amylose content in filling process of rice
Journal of the Science of Food and Agriculture, 2005, 85(5): 791-796.

[本文引用: 1]

刘奇华, 李天, 蔡建, 张建军. 不同生育期遮光对水稻籽粒直链淀粉及蛋白质含量的影响
中国农学通报, 2006, 22(8): 234-237.

[本文引用: 1]

LIU Q H, LI T, CAI J, ZHANG J J.Effects of shading at different growth stages on amylose and protein contents in rice grain
Chinese Agricultural Science Bulletin, 2006, 22(8): 234-237. (in Chinese)

[本文引用: 1]

施伟, 朱国永, 孙明法, 王爱民, 陈中兵, 严国红. 水稻籽粒灌浆的影响因子及其机制研究进展
中国农学通报, 2020, 36(8): 1-7.

[本文引用: 1]

SHI W, ZHU G Y, SUN M F, WANG A M, CHEN Z B, YAN G H.Influence factors and mechanism of rice grain filling: Research progress
Chinese Agricultural Science Bulletin, 2020, 36(8): 1-7. (in Chinese)

[本文引用: 1]

相关话题/直链 淀粉 过程 物质 籽粒