Nitrogen Fertilizer and Its Combination with Straw Affect Soil Labile Carbon and Nitrogen Fractions in Paddy Fields
WANG ShiChao1,2, YAN ZhiHao1, WANG JinYu1, HUAI ShengChang1, WU HongLiang1, XING TingTing1, YE HongLing1, LU ChangAi,11 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/ National Engineering Laboratory for Improving Arable Land/Key Laboratory of Soil Quality, Chinese Academy of Agricultural Sciences, Beijing 100081 2 Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021
Received:2019-05-16Accepted:2019-06-26Online:2020-02-16 作者简介 About authors 王士超,E-mail:wangschao@163.com。
摘要 【目的】土壤微生物量碳氮和水溶性有机碳氮是土壤中最活跃的碳氮组分,是衡量土壤碳氮周转与养分有效性的重要指标。探讨秸秆配施氮肥、氮肥用量及基追比例对稻田土壤微生物量碳氮、水溶性有机碳氮、易氧化有机碳和速效氮的影响,明确秸秆还田条件下水稻生长季不同氮肥用量与基追比的土壤活性碳氮变化特征,为稻麦轮作区秸秆还田的氮肥管理提供理论依据。【方法】2012—2015年在湖北省荆门市田间试验中设置施氮量、秸秆配施氮肥和施氮时期3个大田试验。施氮量:不施氮(N0),推荐施氮(165 kg·hm -2,N165),习惯施氮(195 kg·hm -2,N195);秸秆配施氮肥:秸秆移除(CK),秸秆还田(移栽前将上季小麦秸秆全部还田,S),秸秆还田+习惯施氮量(SN),秸秆还田+推荐施氮量(SF),秸秆还田+推荐施氮量+腐解菌剂(SM);施氮时期:基施﹕拔节期﹕抽穗期氮肥施用比例为7﹕3﹕0(R1),5﹕3﹕2(R2),10﹕0﹕0(R3)。【结果】秸秆还田+习惯施氮量(SN)显著提高了水稻拔节期土壤微生物量碳(SMBC)含量,但是其成熟期水溶性有机碳含量(DOC)显著降低。秸秆还田+推荐施氮量(SF)显著提高了水稻拔节期土壤水溶性有机氮含量(DON)。腐解菌剂的施用显著降低了水稻成熟期DON含量,拔节期易氧化有机碳含量(ROC)也显著降低。秸秆还田下增加氮肥用量显著提高了水稻抽穗期和灌浆期土壤速效氮含量(AN);推荐施氮处理(165 kg N·hm -2)的DON和AN含量显著升高;农民习惯施氮处理(195 kg N·hm -2)降低了DON和AN含量;增加追施氮肥比例对土壤SMBC和DOC含量无明显影响,但提高了水稻拔节期SMBN和ROC含量。【结论】施氮量及其基追比是影响秸秆还田下稻田土壤活性碳氮含量的主要因素,合理配施氮肥能提高土壤微生物量碳、速效氮及水溶性有机氮等活性碳氮组分含量,增加追肥比例也能提高水稻生育期内土壤活性碳氮含量。 关键词:稻田;秸秆还田;施氮量;氮肥基追比;微生物量碳氮;水溶性有机碳氮
Abstract 【Objective】Soil microbial biomass carbon & nitrogen (N) (SMBC & SMBN) and water soluble organic carbon & nitrogen (DOC & DON) are the active pools in soil, which are essential indexes for assessing soil carbon and nitrogen turnover and nutrient availability for providing scientific information and guidelines and nitrogen management under straw returning in rice-wheat rotation system. The objective of the study was to investigate the effects of straw incorporation, nitrogen application rate and basal/topdressing ratios of nitrogen fertilizers on the SMBC, SMBN, DOC, DON, ROC and AN at paddy field, so as to explicit the optimal nitrogen rate and basal/topdressing ratios of nitrogen fertilizers under the straw incorporation condition. 【Method】A 4-year field experiment with straw incorporation matched with nitrogen fertilizer was conducted in rice cropping system from 2012 to 2015 in Jingmen city, Hubei Province. Three field experiments including different nitrogen application, straw incorporation combined with nitrogen fertilization and different ratios of base N to dressing N. Field experiments included: (1) different nitrogen rates, including No N fertilizer (N0), Optimal N fertilizer (165 kg N·hm -2, N165), the farmer common N rate (195 kg N·hm -2, N195); (2) different straw incorporation combined with nitrogen fertilization: straw removal (CK), straw incorporation (wheat straw incorporation before rice transplanting, S), straw incorporation matched with farmer common N rate (SN), straw incorporation matched with optimal N rate (SF), SF plus straw decomposing microbial inoculants (SM); (3) three basal/topdressing ratios of nitrogen fertilizers in the shooting and heading stage: 7﹕3﹕0 (R1), 5﹕3﹕2 (R2); 10﹕0﹕0 (R3). 【Result】The results showed that the SMBC content significantly increased at rice jointing stage and the DOC content obviously decreased after the maturity under the SN treatment. The DON content increased under the SF treatment at rice jointing stage. DON and ROC contents decreased under the SM treatments at the maturity and jointing stage. The AN content increased in the SF treatment at rice heading and grain filling stage. Appropriate N application rate (165 kg N·hm -2) was favorable to increasing the DON and AN in soil. However, the DON and AN contents decreased under high application rate of N fertilizer (195 kg N·hm -2). The higher proportion of topdressing fertilizer increased the SMBN and ROC contents at rice jointing stage, but had no impacts on the SMBC and DOC contents. 【Conclusion】Nitrogen rate and basal/topdressing ratios were main factor for determining active soil carbon and nitrogen contents under straw incorporation in Paddy field. Appropriate nitrogen fertilizer could increase SMBC, AN, and DON contents, and the higher topdressing fertilizer could also increase active soil carbon and nitrogen contents during rice growth stage. Keywords:paddy field;straw incorporation;nitrogen application rate;basal/topdressing ratios of nitrogen fertilizers;soil microbial biomass carbon/nitrogen (SMBC/SMBN);water soluble organic carbon/nitrogen (DOC/DON)
PDF (513KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 王士超, 闫志浩, 王瑾瑜, 槐圣昌, 武红亮, 邢婷婷, 叶洪龄, 卢昌艾. 秸秆还田配施氮肥对稻田土壤活性碳氮动态变化的影响[J]. 中国农业科学, 2020, 53(4): 782-794 doi:10.3864/j.issn.0578-1752.2020.04.010 WANG ShiChao, YAN ZhiHao, WANG JinYu, HUAI ShengChang, WU HongLiang, XING TingTing, YE HongLing, LU ChangAi. Nitrogen Fertilizer and Its Combination with Straw Affect Soil Labile Carbon and Nitrogen Fractions in Paddy Fields[J]. Scientia Acricultura Sinica, 2020, 53(4): 782-794 doi:10.3864/j.issn.0578-1752.2020.04.010
Table 2 表2 表2不同秸秆配施氮肥处理的土壤微生物量碳氮含量 Table 2SMBC and SMBN contents under straw incorporation matched with nitrogen fertilizer (mg·kg-1)
测定 项目 Index
处理 Treatment
采样时期 Growth stage
平均值 Average
返青期 Regreening
拔节期 Shooting
分蘖期 Tillering
抽穗期 Heading
灌浆期 Grain-filling
成熟期 Maturity
SMBC
CK
1314.1±479.0a
203.2±83.2b
1833.9±763.1a
3186.3±510.3a
1840.8±1185.5a
2349.8±1082.2a
1788.0a
S
1871.7±332.6a
674.3±492.9ab
997.1±577.4a
2252.5±1539.7a
3290.9±1248.4a
815.2±771.7a
1650.3a
SN
1170.0±667.2a
1217.6±900.8a
1310.6±492.0a
1245.4±551.5a
2905.6±1590.9a
1580.6±1686.9a
1571.6a
SF
1414.0±505.7a
965.8±518.9ab
1926.6±1885.6a
1585.5±1690.7a
1833.5±1017.4a
2278.2±2227.5a
1667.3a
SM
1947.4±526.4a
604.8±588.6ab
1213.7±782.2a
1602.3±530.0a
2384.8±749.0a
1455.0±934.2a
1534.7a
平均值 Average
1543.4B
733.1C
1456.4BC
1974.4AB
2451.1A
1695.8AB
SMBN
CK
35.0±3.1a
14.1±6.1a
22.5±3.7a
36.4±30.6a
23.0±1.6a
29.2±19.6a
26.7a
S
25.5±2.8a
37.0±33.7a
20.6±11.3a
39.9±6.0a
17.2±8.1a
13.1±8.1a
25.6a
SN
26.9±9.5a
12.4±3.3a
12.5±5.8a
16.5±10.9a
20.7±12.1a
16.8±7.4a
17.6a
SF
37.2±19.9a
44.6±22.7a
16.2±10.3a
23.3±22.6a
22.1±6.9a
18.0±9.5a
26.9a
SM
35.0±3.1a
28.2±14.1a
30.9±25.1a
30.2±16.8a
25.8±15.9a
22.0±16.0a
28.7a
平均值 Average
31.9A
27.2A
20.5A
29.3A
21.8A
19.8A
表中数值为平均值±标准差(n=4);小写字母表示同一土壤养分指标不同秸秆配施氮肥处理的比较,大写字母表示不同采样时期间的比较,不同字母表示差异显著(P < 0.05)。下同 The data in the table indicates as means±SD; The small letters show comparison between different cultivation models, nitrogen fertilizer rate or fertilization treatments, capital letters show comparison between different growth stages, different letters mean significance at 5% level. The same as below
LIL, ZHU HH, SU YR, XIAO HA, HUANG DY, WU JS . Effects of rice straw incorporation in situ and ex situ on soil organic C and active organic C in agricultural soils in red soil hilly region Scientia Agricultura Sinica, 2009,42(3):926-933. (in Chinese) [本文引用: 1]
WANG DJ, CHANG ZZ, WANGC, ZHANGG, ZHANG SM . Regulation and effect of 100% straw return on crop yield and environment Chinese Journal of Eco-Agriculture, 2015,23(9):1073-1082. (in Chinese) [本文引用: 1]
EMBACHERA, ZSOLNAYA, GATTINGERA, MUNCH JC . The dynamics of water extractable organic matter (WEOM) in common arable topsoils: II. Influence of mineral and combined mineral and manure fertilization in a Haplic Chernozem , 2008,148(1):63-69. [本文引用: 2]
XU MG, LOU YL, SUN XL, WANGW, BANIYAMUDDINM, ZHAOK . Soil organic carbon active fractions as early indicators for total carbon change under straw incorporation , 2011,47(7):745-752. [本文引用: 1]
XUK, LIUM, CHEN JD, GU HY, DAI QG, MA KQ, WANGF, HEL . Effects of wheat-straw returning into paddy soil on dissolved organic carbon contents and rice grain yield Chinese Journal of Applied Ecology, 2015,16(2):430-436. (in Chinese) [本文引用: 1]
JONES DL, HEALEY JR, WILLETT VB, FARRAR JF, HODGEA . Dissolved organic nitrogen uptake by plants—an important N uptake pathway? , 2005,37(3):413-423. [本文引用: 2]
TIANK, ZHAO YC, XU XH, HAIN, HUANG BA, DENG WJ . Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: A meta-analysis , 2015,204:40-50. [本文引用: 1]
ZHANG WJ, XU MG, WANG XJ, HUANG QH, NIEJ, LI ZZ, LI SL, SEON WH, KYEONG BL . Effects of organic amendments on soil carbon sequestration in paddy fields of subtropical China , 2012,12(4):457-470. [本文引用: 1]
ZENGJ, GUO TW, YU XF, DONGB . Effect of fertilization on soil active C and C pool management index Chinese Journal of Soil Science, 2011,42(4):812-815. (in Chinese) [本文引用: 1]
WANG DD, ZHOUL, HUANG SQ, LI CF, CAO CG . Short-term effects of tillage practices and wheat-straw returned to the field on topsoil labile organic carbon fractions and yields in central China Journal of Agro-Environment Science, 2013,32(4):735-740. (in Chinese) [本文引用: 1]
HAO ZP, CHRISTIEP, ZHENGJ, LIL, CHENQ, WANG JG . Excessive nitrogen inputs in intensive greenhouse cultivation may influence soil microbial biomass and community composition , 2009,40(15/16):2323-2337. [本文引用: 1]
ZAHIRS, AHMAD SR, HIDAYAT UR . Soil microbial biomass and activities as influenced by green manure legumes and n fertilizer in rice-wheat system , 2010,42(4):2589-2598. [本文引用: 1]
VANCE ED, BROOKES, PC, JENKINSON DS . An extraction method for measuring soil microbial biomass C , 1987,19(6):703-707. [本文引用: 1]
BROOKES PC, LANDMANA, PRUDENG, JENKINSON DS . Chloroform fumigation and the release of soil nitrogen: a rapild direct extraction method to measure microbial biomass nitrogen in soil , 1985,17(6):837-842. [本文引用: 1]
YANR, ZHAO MX, ZHOU JB . Effects of different conditions on the determination of total nitrogen in solution by persulfate oxidation method Journal of Northwest A&F University (Natural Science Edition), 2005,33(12):107-111. (in Chinese) [本文引用: 1]
ZHOU JB, LI SX . Choosing of a proper oxidizer for alkaline persulfate oxidation to determining total nitrogen in solution Plant Nutrition and Fertilizer Science, 1998,4(3):299-304. (in Chinese) [本文引用: 1]
BLAIR GJ, LEFROYR D B, LISEL . S soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems , 1995,46:1459-1466. [本文引用: 1]
BAO SD. Soil Agro-chemistry Analysis Beijing:China Agriculture Press, 2000. (in Chinese) [本文引用: 1]
JACKSON LE, CALDERON FJ, STEENWERTH KL, SCOW KM, ROLSTON DE . Responses of soil microbial processes and community structure to tillage events and implications for soil quality , 2003,114(3/4):305-317. [本文引用: 1]
LI GT, ZHAO ZJ, HUANG YF, LI BG . Effect of straw returning on soil nitrogen transformation Plant Nutrition and Fertilizer Science, 2002,8(2):162-167. (in Chinese) [本文引用: 1]
SPEDDING TA, HAMELC, MEHUYS GR, MADRAMOOTOO CA . Soil microbial dynamics in maize-growing soil under different tillage and residue management systems , 2004,36(3):499-512. [本文引用: 1]
GARDENASA, AGRENG, BIRD JA, CLARHOLMM, HALLINS, KATTERERT, KNICKERH . Knowledge gaps in soil carbon and nitrogen interactions - From molecular to global scale , 2011,43(4):702-717. [本文引用: 1]
LEMKE RL, VANDENBYGAART AJ, CAMPBELL CA, LAFOND GP, GRANTB . Crop residue removal and fertilizer N: Effects on soil organic carbon in a long-term crop rotation experiment on a Udic Boroll , 2010,135(1/2):42-51. [本文引用: 1]
LEBAUER DS, TRESEDER KK . Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed , 2008,89(2):371-379. [本文引用: 1]
ZENG XN, WANGL, SUNY, SONG QL, FENG YJ, YUANY . Effect of N fertilizer application on soil organic carbon and carbon pool management index under rice straw returning Heilongjiang Agricultural Science, 2016(5):41-44. (in Chinese) [本文引用: 1]
TAN LM, WUH, LIH, ZHOUP, LI KL, WANG JR, GE TD, YUAN HZ, WU JS . Input and distribution of rice photosynthesized carbon in the tillering stage under different nitrogen application following continuous13C labeling Environmental Science, 2014,35(5):1933-1938. (in Chinese) [本文引用: 1]
YANG XY, LIU XIAOH, HAN XR, DUAN PP, ZHU YC, QIW . Responses of soil microbial biomass and soluble organic matter to different application rates of N: A comparison between Liaochun 10 and Liaochun 18 Scientia Agricultura Sinica, 2016,49(7):1315-1324. (in Chinese) URL [本文引用: 1]
LOVELL RD, JARVIS SC, BARDGETT RD . Soil microbial biomass and activity in long-term grassland: effects of management changes , 1995,27:969-975. [本文引用: 1]
LIANGC, BALSER TC . Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy , 2011,9(1):75. [本文引用: 1]
ZHONG Y QW, YANWM, SHANGGUANZP . Impact of long-term N additions upon coupling between soil microbial community structure and activity, and nutrient-use efficiencies , 2015,91:151-159. [本文引用: 1]
LI FL, LIUM, LI ZP, JIANG CY, HAN FX, CHE YP . Changes in soil microbial biomass and functional diversity with a nitrogen gradient in soil columns , 2013,64:1-6. [本文引用: 1]
TIAN XF, HU HW, DING QD, SONG MH, XU XL, ZHENGY, GUO LD . Influence of nitrogen fertilization on soil ammonia oxidizer and denitrifier abundance, microbial biomass, and enzyme activities in an alpine meadow , 2013,50(4):703-713. [本文引用: 1]
SHIY, YU ZW . Effects of nitrogen fertilizer rate and ratio of base and topdressing on yield of wheat, content of soil nitrate and nitrogen balance Acta Ecologica Sinica, 2006,26(11):3661-3669. (in Chinese) [本文引用: 1]
LIN JJ, LI GH, XUE LH . Subdivision of nitrogen use efficiency of rice based on 15N tracer Acta Agronomica Sinica, 2014,40(8):1424-1434. (in Chinese) [本文引用: 1]