Mechanisms and Managements of Water and Fertilizer Synergy in Greenhouse Vegetable Fields
WU XuePing1, LI YinKun21 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081 2 Beijing Research Center of Intelligent Equipment for Agriculture, Beijing 100097
Received:2019-09-27Accepted:2019-10-8Online:2019-10-16 作者简介 About authors 武雪萍,E-mail:wuxueping@caas.cn
PDF (311KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 武雪萍, 李银坤. 温室蔬菜水肥增效机制与管理研究[J]. 中国农业科学, 2019, 52(20): 3605-3610 doi:10.3864/j.issn.0578-1752.2019.20.011 WU XuePing, LI YinKun. Mechanisms and Managements of Water and Fertilizer Synergy in Greenhouse Vegetable Fields[J]. Scientia Acricultura Sinica, 2019, 52(20): 3605-3610 doi:10.3864/j.issn.0578-1752.2019.20.011
我国温室蔬菜土壤氮磷积累现象突出。研究表明,河北省大棚蔬菜土壤碱解氮、速效磷和有效钾的平均含量分别是相邻露地的1.0—9.4倍、1.4—36.3倍和0.6—4.6倍[5]。河北省日光温室蔬菜0—20 cm土层硝态氮含量在29.1—269.4 mg·kg-1,山东寿光 0—30 cm 土层硝态氮残留量为120—500 kg·hm-2,平均为340 kg N·hm-2;山东惠民菜地0—90 cm 土层硝态氮累积量为270—5 038 kg N·hm-2[13,14]。JOHNSON等[15]研究发现,当土壤无机氮超过了土壤-植物缓冲范围时,可能造成浅层地下水硝酸盐污染。过量施肥导致温室蔬菜的氮肥利用率仅有10%左右[2,16]。利用15N示踪技术研究发现,温室番茄氮肥利用效率只有8%—9%[17]。过量有机肥和高浓度复合肥的投入导致土壤磷养分积累现象特别严重。张树金等[18]的调查数据显示,在目前的磷肥投入水平下,4—8年以后土壤全磷显著增加,是大田土壤全磷的2—4 倍。对衡水市240个村温室蔬菜的土壤养分状况调查表明,土壤有效磷含量为45.0—108.5 mg·kg-1[19]。山东寿光温室土壤有效磷(P)含量平均达到了 200 mg·kg-1,高的甚至达到437 mg·kg-1[20]。
氮素淋洗是温室蔬菜生产体系氮素的主要损失途径。在温室辣椒种植体系中施氮量分别为600、1 200、1 800 kg N·hm-2时,淋出90 cm土体的硝态氮量为224、345和542 kg N·hm-2,分别占施氮量的37%、29%和30%[28]。温室番茄长期定位试验中传统氮素管理造成每季氮素表观损失达79%,平均氮素损失比例在59%—63%之间[29,30]。陶虹蓉等[31]研究表明,温室黄瓜季淋洗出90 cm 土体的氮总量为56.08—203.13 kg N·hm-2,占总施氮量的9.02%—32. 69%。在对南方温室番茄和黄瓜生产体系的监测发现,番茄季和黄瓜季的硝态氮淋洗率在8.4%—13.6%和21.0%—39.2%之间[32];南京郊区的15N试验发现氮素总损失为34.2%—46.0%[33]。
2.5 氮素气态损失
氨挥发是农田氮素气态损失的重要途径。STREETS等[34]研究表明,在发展中国家的农业生产中,氮肥的氨挥发损失为10%—50%。而在中国,氮肥的氨挥发损失已由1990 年的11%上升至2005年的13.2%,氨挥发总量也从1.80 Tg N增加至23.6 Tg N[35,36]。水田、旱地和草地的氨挥发损失则分别占施氮量的20%、14%和6%,菜地的氨挥发损失也占到施氮量的11%— 18%[37,38]。李银坤等[39]研究表明,温室黄瓜-番茄种植体系内土壤氨挥发损失量为17.8—48.1 kg N·hm-2,随施氮量的减少呈显著降低趋势(P<0.05)。说明控制氮肥投入量,是降低温室菜地氨挥发损失的重要措施。
ZHANG ZH, CHEN QY, GAO LH, WANG JJ, SHENJ, LI ZM, ZHANG XY . Research on the countermeasures for the development of facility vegetable industry in China Vegetables, 2010(5):1-3. (in Chinese) [本文引用: 1]
LIANGJ, WANG LY, CHENQ, ZHANG WF . Current status of nitrogen application rate of tomato in China and its utilization rate, yield impact and contribution rate of soil fertility Chinese Vegetables, 2015(10):16-21. (in Chinese) [本文引用: 3]
WANG YK, WANG HJ . Research on the production efficiency of facility vegetables in China China Agricultural Science and Technology Review, 2015,17(2):159-166. (in Chinese) [本文引用: 1]
CHENQ, ZHANGX, ZHANGH, CHRISTIEP, LIX, HORLACHERD, LIEBIGHP . Evaluation of current fertilizer practice and soil fertility in vegetable production in the Beijing region 2004,69(1):51-58. [本文引用: 1]
ZHANG YC, LI QY, ZHAI YX, CHEN LL, WU YS, KANG FY . Analysis and evaluation of fertilization status of greenhouse vegetables in Hebei Province Hebei Agricultural Science, 2005(9):61-67. (in Chinese) [本文引用: 3]
RENT . Effects of different nitrogen and organic fertilizer inputs on carbon and nitrogen in the soil of facility tomato [D]. Beijing: China Agricultural University, 2011. ( in Chinese) [本文引用: 1]
WANG JG. Facility Degraded Soil Restoration and Efficient Use of Resources in Vegetable Fields. Beijing: China Agricultural University Press, 2011. ( in Chinese) [本文引用: 3]
LI HM . Evaluation of Integrated management cultivation model of tomato dropper fertilization in greenhouse of Lucheng City, Hebei Province [D]. Beijing: China Agricultural University, 2006. ( in Chinese) [本文引用: 1]
LIU XM, FAN FC, WANG HJ . Comprehensive evaluation of water-saving technology integration model for facilities and vegetables in North China Chinese Agricultural Science Bulletin, 2011,27(14):165-170. (in Chinese) [本文引用: 1]
SONG XZ . Nitrate leaching in protected land production and its impact on groundwater groups [D]. Beijing: China Agricultural University, 2007. ( in Chinese) [本文引用: 1]
WANG LY, ZHAO XC, QU MS, YUAN HM, CHENQ, ZHAO YZ, WANG KW . The status and technique requirement of soil fertilization and irrigation for fruit vegetable in greenhouse Acta Agriculturae Boreali-Sinica, 2012,27(Suppl.):298-303. (in Chinese) [本文引用: 1]
WANG LY . Effects of root nitrogen and phosphorus supply on cucumber and tomato growth and nitrogen and phosphorus use efficiency [D]. Beijing: China Agricultural University, 2012. ( in Chinese) [本文引用: 1]
刘建玲, 张福锁, 杨奋翮 . 北方耕地和蔬菜保护地土壤磷素状况研究 , 2000,6(2):179-186. DOI:10.11674/zwyf.2000.0209Magsci [本文引用: 1] 以北方一般耕地和蔬菜保护地为供试土壤 ,研究了不同种植条件下土壤磷素状况 ,蔬菜保护地土壤磷素的空间分布特性。结果表明 ,蔬菜保护地土壤全磷、无机磷、有机磷、Olsen-P的平均含量是一般耕地土壤的 2.7~14.0倍 ,土壤Olsen P占全磷的比率 ,Ca<sub>2</sub>-P ,Ca<sub>8</sub>-P ,Al-P占土壤无机磷的比率显著高于一般耕地土壤。蔬菜保护地土壤各形态磷素主要积累在 0~20cm土层 ,并随土层深度的增加各形态磷素的含量逐渐降低 ,各土层Olsen-P ,Ca<sub>2</sub>-P ,Ca<sub>8</sub>-P ,Al-P含量降低幅度明显高于Fe-P ,O-P ,Ca<sub>10</sub>-P含量的降低值 LIU JL, ZHANG FS, YANG FH . Study on phosphorus status of cultivated land and vegetable protection land in northern China Journal of Plant Nutrition and Fertilizer, 2000,6(2):179-186. (in Chinese) DOI:10.11674/zwyf.2000.0209Magsci [本文引用: 1] 以北方一般耕地和蔬菜保护地为供试土壤 ,研究了不同种植条件下土壤磷素状况 ,蔬菜保护地土壤磷素的空间分布特性。结果表明 ,蔬菜保护地土壤全磷、无机磷、有机磷、Olsen-P的平均含量是一般耕地土壤的 2.7~14.0倍 ,土壤Olsen P占全磷的比率 ,Ca<sub>2</sub>-P ,Ca<sub>8</sub>-P ,Al-P占土壤无机磷的比率显著高于一般耕地土壤。蔬菜保护地土壤各形态磷素主要积累在 0~20cm土层 ,并随土层深度的增加各形态磷素的含量逐渐降低 ,各土层Olsen-P ,Ca<sub>2</sub>-P ,Ca<sub>8</sub>-P ,Al-P含量降低幅度明显高于Fe-P ,O-P ,Ca<sub>10</sub>-P含量的降低值
JU XT, KOU CL, ZHANG FS, CHRISTIEP . Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain , 2006,143(1):117-125. [本文引用: 2]
JOHNSON GV, RAUN WR . Improving nitrogen use efficiency for cereal production , 1999,91(3):357-363. [本文引用: 1]
ZHUJ, LIX, CHRISTIEP, LIJ . Environmental implications of low nitrogen use efficiency in excessively fertilized hot pepper (Capsicum frutescens L. ) cropping systems. Agriculture, , 2005,111(1):70-80. [本文引用: 1]
韩鹏远, 焦晓燕, 王立革, 董二伟, 王劲松 . 太原城郊老菜区番茄氮肥利用率及氮去向研究 , 2010,18(3):482-485. Magsci [本文引用: 1] 为了加强太原城郊老菜区蔬菜生产中氮素管理和降低蔬菜生产对环境的污染, 在田间采用微区<sup>15</sup>N示踪法研究了番茄生产过程中农民习惯施氮(FAR)和推荐施氮(RAR)的氮肥利用效率和氮去向。结果表明: 与习惯施氮比较, 推荐施氮对番茄各部位干物质量、氮浓度和产量均无显著影响, 且明显降低了番茄地上部吸收化学肥料氮的百分率, 但对各部位氮肥利用效率和总氮肥利用效率无显著影响, 氮肥利用效率仅为8%~9%, 这可能与土壤原来氮库或所施有机肥矿化提供了大量氮素有关。两种施肥处理均导致65%左右的氮素损失, 其中习惯施氮和推荐施氮分别导致30%和26%的氮素淋洗到40 cm以下土层, 为此有必要种植蔬菜后利用深根系粮食作物吸收土壤下层氮素来降低蔬菜生产对环境的影响。 HAN PY, JIAO XY, WANG LG, DONG EW, WANG JS . Nitrogen fertilizer utilization and nitrogen fate of tomato in the old vegetable area of Taiyuan City. Chinese Journal of Eco-Agriculture, 2010,18(3):482-485. (in Chinese) Magsci [本文引用: 1] 为了加强太原城郊老菜区蔬菜生产中氮素管理和降低蔬菜生产对环境的污染, 在田间采用微区<sup>15</sup>N示踪法研究了番茄生产过程中农民习惯施氮(FAR)和推荐施氮(RAR)的氮肥利用效率和氮去向。结果表明: 与习惯施氮比较, 推荐施氮对番茄各部位干物质量、氮浓度和产量均无显著影响, 且明显降低了番茄地上部吸收化学肥料氮的百分率, 但对各部位氮肥利用效率和总氮肥利用效率无显著影响, 氮肥利用效率仅为8%~9%, 这可能与土壤原来氮库或所施有机肥矿化提供了大量氮素有关。两种施肥处理均导致65%左右的氮素损失, 其中习惯施氮和推荐施氮分别导致30%和26%的氮素淋洗到40 cm以下土层, 为此有必要种植蔬菜后利用深根系粮食作物吸收土壤下层氮素来降低蔬菜生产对环境的影响。
ZHANG SJ, YU HY, LI TX, ZHANG XZ . Study on the characteristics of phosphorus migration in greenhouse soil. Journal of Agro-Environment Science, 2010,29(8):1534-1541. (in Chinese) [本文引用: 1]
WANG YD, LIANG JX . Analysis of soil fertility status of vegetables in Hengshui facility Crop Journal, 2006(1):40-41. (in Chinese) [本文引用: 1]
RENT, CHRISTIEP, WANGJ, CHENQ, ZHANGF . Root zone soil nitrogen management to maintain high tomato yields and minimum nitrogen losses to the environment , 2010,125(1):25-33. [本文引用: 1]
冯永军, 陈为峰, 张蕾娜, 吴安民 . 设施园艺土壤的盐化与治理对策 , 2001,17(2):111-114. Magsci [本文引用: 1] 对山东设施园艺土壤盐分状况进行了调查分析,结果表明:设施栽培土壤盐化的主要原因是连年施肥量的增加,使设施内比设施外土壤盐分高,一般为露地的1.34~3.74倍,尤其是3~5年棚龄出现积盐高峰,电导率平均1.21 ms/cm,高者达4.06 ms/cm;同时,土壤盐分离子也均有不同程度增加,其中K<sup>+</sup>、Ca<sup>2+</sup>、SO<sup>2-</sup><sub>4</sub>与NO<sup>-</sup><sub>3</sub>增幅较大,大多为对照(露地)的2.1~21.5倍。该文探讨了设施园艺土壤盐化的原因,为持续稳定利用提供了参考。 FENG YJ, CHEN WF, ZHANG LN, WU AM . Facility landscaping soil salinization and management strategies Transaction of the Chinese Society of Agricultural Engineering, 2001,17(2):111-114. (in Chinese) Magsci [本文引用: 1] 对山东设施园艺土壤盐分状况进行了调查分析,结果表明:设施栽培土壤盐化的主要原因是连年施肥量的增加,使设施内比设施外土壤盐分高,一般为露地的1.34~3.74倍,尤其是3~5年棚龄出现积盐高峰,电导率平均1.21 ms/cm,高者达4.06 ms/cm;同时,土壤盐分离子也均有不同程度增加,其中K<sup>+</sup>、Ca<sup>2+</sup>、SO<sup>2-</sup><sub>4</sub>与NO<sup>-</sup><sub>3</sub>增幅较大,大多为对照(露地)的2.1~21.5倍。该文探讨了设施园艺土壤盐化的原因,为持续稳定利用提供了参考。
YU HY, LI TX, ZHOU JM . Accumulation, migration and ion composition changes of soil salinity in facilities Journal of Plant Nutrition and Fertilizer, 2007(4):642-650. (in Chinese) [本文引用: 1]
ZANG YG, JIANGY, LIANG WJ . Accumulation of soil soluble salt in vegetable greenhouses under heavy application of fertilizers , 2006,1(3):123-127. [本文引用: 1]
ZHANG JJ, DUAN ZQ . Research progress on the causes, hazards and classification and grading standards of soil secondary salinization in vegetable gardens Soils, 2011(3):361-366. (in Chinese) [本文引用: 1]
LIU JX, MAL, LI BW . Changes of soil physical and chemical properties in cucumber greenhouses with different planting years Journal of Soil and Water Conservation, 2013(27):164-168. (in Chinese) [本文引用: 1]
LIU ZH, JIANG LH, ZHANG WJ, ZHENG FL, WANGM, LIN HT . Evolution of fertilization amount and soil nutrient change of facility vegetables in Shandong Province Acta Pedologica Sinica, 2008,45(2):296-303. (in Chinese) [本文引用: 1]
LI YT, LI BW, MAL . Study on the Change Law of Soil Physical and Chemical Properties of Tomato in Different Planting Years Journal of Agricultural University of Hebei, 2016(39):63-68. (in Chinese) [本文引用: 1]
ZHUJ, LIX, CHRISTIEP, LIJ . Environmental implications of low nitrogen use efficiency in excessively fertilized hot pepper (Capsicum frutescens L.) cropping systems. Agriculture, , 2005,111(1):70-80. [本文引用: 1]
HE FF . Nitrogen optimization and environmental effects analysis in the annual production system of facility tomato [D]. Beijing: China Agricultural University, 2006. ( in Chinese) [本文引用: 1]
RENT . Effects of different nitrogen fertilizers and organic fertilizers on the fate of carbon and nitrogen in tomato soils [D]. Beijing: China Agricultural University, 2011. ( in Chinese) [本文引用: 1]
TAO HR, LI YK, GUO WZ, LI HP, LI LZ, YANGY . Effects of different irrigation amounts on nitrogen concentration and nitrogen leaching of cucumber soil solution in sandy soil greenhouse Soil and Fertilizer Sciences in China, 2018(3):175-180. (in Chinese) [本文引用: 1]
MINJ . Study on nitrogen utilization and loss of fertilizer and greenhouse nitrogen optimization in greenhouse vegetable fields in Taihu Lake region [D]. Yangling: Northwest A&F University, 2007. ( in Chinese) [本文引用: 1]
CAOB, HE FY, XU QM, CAI GX . Effect and fate of nitrogen fertilizer in tomato land in Nanjing suburb Chinese Journal of Applied Ecology, 2006(10):1839-1844. (in Chinese) [本文引用: 1]
STREETS DG, BOND TC, CARMICHAEL GR, FERNANDES SD, FUQ, HED, KLIMONTZ, NELSON SM, TSAIINY, WANG MQ, WOO JH, YARBER KF . An inventory of gaseous and primary aerosol emissions in Asia in the year 2000 , 2003,108(D21):8809. [本文引用: 1]
CAI GX, ZHU ZL . An assessment of N loss from agricultural fields to the environment in China , 2000,57(1):67-73. [本文引用: 2]
ZHANG YS, LUAN SJ, CHEN LL, SHAOM . Estimating the volatilization of ammonia from synthetic nitrogenous fertilizers used in China , 2011,92(3):480-493. [本文引用: 1]
HE FY, YINB, JIN XX, CAOB, CAI GX . Study on ammonia volatilization of soils in two vegetable fields in Nanjing Acta Pedologica Sinica, 2005,42(2):253-259. (in Chinese) [本文引用: 1]
BOUWMAN AF, LEE DS, ASMAN WA H, DENTENERF J, VAN DERHOEK W, OLIVIERJ G J . A global high-resolution emission inventory for ammonia , 1997,11(4):561-587. [本文引用: 1]
LI YK, WU XP, WU QF, WU HJ . Effect of water and nitrogen dosage on soil ammonia volatilization loss in greenhouse vegetable cultivation Journal of Plant Nutrition and Fertilizer, 2016,22(4):949-957. (in Chinese) [本文引用: 1]
张玉铭, 胡春胜, 董文旭 . 农田土壤N2O生成与排放影响因素及N2O总量估算的研究 , 2004,12(3):119-123. Magsci [本文引用: 1] 综述了国内外农田土壤N<sub>2</sub>0生成与排放及其影响因素、N<sub>2</sub>O排放测定技术及总量估算等方面的研究进展,指出硝化与反硝化过程均可产生N<sub>2</sub>0,而影响硝化、反硝化过程的土壤水分含量、温度、pH、有机碳含量和土壤质地等是影响农田土壤N<sub>2</sub>0生成与排放的重要因素。根据我国各地农田土壤N<sub>2</sub> 0排放通量测定结果及相应模型分析,初步估算全国农田土壤N<sub>2</sub>0年排放总量为N 398Gg,约占全球农田土壤排放总量的10%,其中旱田N<sub>2</sub>O年排放总量为N 310Gg,水田为N 88Gg。 ZHANG YM, HU CS, DONG WX . Study on the factors affecting the formation and emission of N2O in farmland soil and the estimation of total N2O. Chinese Journal of Eco-Agriculture, 2004,12(3):119-123. (in Chinese) Magsci [本文引用: 1] 综述了国内外农田土壤N<sub>2</sub>0生成与排放及其影响因素、N<sub>2</sub>O排放测定技术及总量估算等方面的研究进展,指出硝化与反硝化过程均可产生N<sub>2</sub>0,而影响硝化、反硝化过程的土壤水分含量、温度、pH、有机碳含量和土壤质地等是影响农田土壤N<sub>2</sub>0生成与排放的重要因素。根据我国各地农田土壤N<sub>2</sub> 0排放通量测定结果及相应模型分析,初步估算全国农田土壤N<sub>2</sub>0年排放总量为N 398Gg,约占全球农田土壤排放总量的10%,其中旱田N<sub>2</sub>O年排放总量为N 310Gg,水田为N 88Gg。
李银坤, 武雪萍, 郭文忠, 薛绪掌 . 不同氮水平下黄瓜—番茄日光温室栽培土壤N2O排放特征 , 2014,30(23):260-267. Magsci [本文引用: 1] 为探讨日光温室黄瓜-番茄种植体系内N2O排放动态变化及其对不同氮水平的响应规律,采用密闭静态箱法,研究了常规氮量(黄瓜季1 200 kg/hm2,番茄季900 kg/hm2)、比常规氮量减25%(黄瓜季900 kg/hm2,番茄季675 kg/hm2)、减50%(黄瓜季600 kg/hm2,番茄季450 kg/hm2)以及不施氮对日光温室土壤N2O排放的影响。结果表明,温度是影响日光温室土壤N2O排放强度的重要因素,4-10月(平均气温为27.4℃)的N2O排放通量最高达818.4μg/(m2·h);而2-3月(平均气温15.1℃)以及11-12月(平均气温14.7℃)期间的N2O排放通量最高仅为464.5 μg/(m2·h),比4-10月的N2O排放峰值降低了43.2%。N2O排放峰值在氮肥追施后5 d内出现,N2O排放量集中在氮肥施用后7 d内,可占整个监测期(271 d)排放量的64.7%~67.8%。施氮因增加了土壤硝态氮含量而引起N2O排放爆发式增长,0~10 cm土壤硝态氮含量与N2O排放量呈指数函数关系(P<0.01)。日光温室黄瓜-番茄种植体系内的N2O排放量为0.99~9.92 kg/hm2,其中75.6%~90.0%由施氮造成。与常规氮用量相比,氮减量25%和50%处理的N2O排放量分别降低了40.4%和59.3%,总产量却增加4.9%和7.4%。综上所述,合理减少氮用量不仅可显著降低日光温室土壤N2O排放,而且不会引起产量的降低。该研究为日光温室蔬菜生产构建科学合理的施氮技术及估算中国设施农田温室气体排放量提供参考。 LI YK, WU XP, GUO WZ, XU XZ . N2O emission characteristics of cucumber-tomato-cultivated soil in greenhouse under different nitrogen levels Transaction of the Chinese Society of Agricultural Engineering, 2014,30(23):260-267. (in Chinese) Magsci [本文引用: 1] 为探讨日光温室黄瓜-番茄种植体系内N2O排放动态变化及其对不同氮水平的响应规律,采用密闭静态箱法,研究了常规氮量(黄瓜季1 200 kg/hm2,番茄季900 kg/hm2)、比常规氮量减25%(黄瓜季900 kg/hm2,番茄季675 kg/hm2)、减50%(黄瓜季600 kg/hm2,番茄季450 kg/hm2)以及不施氮对日光温室土壤N2O排放的影响。结果表明,温度是影响日光温室土壤N2O排放强度的重要因素,4-10月(平均气温为27.4℃)的N2O排放通量最高达818.4μg/(m2·h);而2-3月(平均气温15.1℃)以及11-12月(平均气温14.7℃)期间的N2O排放通量最高仅为464.5 μg/(m2·h),比4-10月的N2O排放峰值降低了43.2%。N2O排放峰值在氮肥追施后5 d内出现,N2O排放量集中在氮肥施用后7 d内,可占整个监测期(271 d)排放量的64.7%~67.8%。施氮因增加了土壤硝态氮含量而引起N2O排放爆发式增长,0~10 cm土壤硝态氮含量与N2O排放量呈指数函数关系(P<0.01)。日光温室黄瓜-番茄种植体系内的N2O排放量为0.99~9.92 kg/hm2,其中75.6%~90.0%由施氮造成。与常规氮用量相比,氮减量25%和50%处理的N2O排放量分别降低了40.4%和59.3%,总产量却增加4.9%和7.4%。综上所述,合理减少氮用量不仅可显著降低日光温室土壤N2O排放,而且不会引起产量的降低。该研究为日光温室蔬菜生产构建科学合理的施氮技术及估算中国设施农田温室气体排放量提供参考。
GUPTA AJ, AHMAD MF, BHAT FN . Studies on yield, quality, water and fertilizer use efficiency of capsium under drip irrigation and fertigation , 2010,67(2):213-218. [本文引用: 1]
ZHANG XJ, LI YL, WANG XJ, WANG KX, XIANG GC . Effects of different cultivation and irrigation methods on the growth and yield of celery in the facility China Rural Water and Hydropower, 2017(2):40-45. (in Chinese) [本文引用: 1]
JUM, XUZ, SHI WM, XING GX, ZHU ZL . Nitrogen balance and loss in a greenhouse vegetable system in southeastern China , 2011,21(4):464-472. [本文引用: 1]
XI YJ, WANG JY, LI YK, WU XP, LI XX, WANG BS, LI SP, SONG XJ, LIU CC, HUANG SW . Effects of drip irrigation water and fertilizer integration combined with organic fertilizers on soil N2O emission and enzyme activity Scientia Agricultura Sinica, 2019,52(20):3611-3624. (in Chinese) [本文引用: 1]
XI YJ, LIU DY, WANG JY, WU XP, LI XX, LI YK, WANG BS, ZHANG MN, SONG XJ, HUANG SW . Effect of organic partial replacement of inorganic fertilizers on N2O emission in greenhouse soil Scientia Agricultura Sinica, 2019,52(20):3625-3636. (in Chinese) [本文引用: 1]
LIU ZP, WU XP, LI RN, ZHENG FJ, ZHANG MN, LI SP, SONG XJ . Effect of applying chicken manure and phosphate fertilizer on soil phosphorus under drip irrigation in greenhouse Scientia Agricultura Sinica, 2019,52(20):3637-3647. (in Chinese) [本文引用: 1]
LI RN, HUANG SW, SHI JS, WANG LY, TANG JW, ZHANG HZ, YUANS, ZHAI FZ, REN YL, GUOL . Optimization management of water and fertilization for winter-spring cucumber under greenhouse drip irrigation condition Scientia Agricultura Sinica, 2019,52(20):3648-3660. (in Chinese) [本文引用: 1]