Functional Analysis of Burkholderia pyrrocinia WY6-5 on Phosphate Solubilizing, Antifungal and Growth-Promoting Activity of Maize
GONG AnDong, ZHU ZiYu, LU YaNan, WAN HaiYan, WU NanNan, Cheelo Dimuna, GONG ShuangJun, WEN ShuTing, HOU XiaoCollege of Life Science, Xinyang Normal University/Henan Key Laboratory of Tea Plant Biology, Xinyang 464000, Henan
Abstract 【Objective】 The study was carried out to screen microbe with phosphate solubilizing (P-solubilizing) and antagonistic activity, to evaluate their efficacies for P-solubilizing, fungal inhibition and plant growth promoting, and to identify antifungal compounds, so as to provide new resources for the development of microbial fertilizers. 【Method】 Rhizosphere soil samples of tea trees were collected from Cheyun mountain factory in Xinyang, Henan, China. Each sample was diluted, and spread onto the surface of insoluble organic and inorganic media. The diameter of P-solubilizing zone was measured after 5 days of incubation. The strain WY6-5 was chosen for further studies because it showed the highest P-solubilizing activity on insoluble phosphate. Additionally, the strain WY6-5 was inoculated in liquid medium and soil for 20 days to test P-solubilizing activity, and inoculated in maize grown soil to test plant growth promoting effects. Moreover, strain WY6-5 was co-cultured with eight different fungi to determine antagonistic activity by using a two dish face-to-face cultural method. The volatiles were characterized and identified with gas chromatography-tandem mass spectrometry (GC-MS/MS). 【Result】 Three strains with P-solubilizing activity were isolated from rhizosphere soils of tea trees, and which were capable of dissolving insoluble organic and inorganic phosphorus medium. The strain WY6-5 demonstrated the highest P-solubilizing activity with the solubilizing halo up to 2.3 cm on insoluble organic medium, and 3.6 cm on insoluble and inorganic phosphorus medium. The ratios of the P-solubilizing halo diameter to the colony diameter on both media were 4.6 and 7.2, respectively. Based on morphological characteristics, physiological, biochemical and phylogenetic analyses, the strain WY6-5 was identified to be Burkholderia pyrrocinia. P-solubilizing activity of WY6-5 was also observed in the liquid medium or in soil after 20 days of incubation. The concentration of soluble phosphate in liquid medium was up to 520.4 mg·L -1, which was 176 times higher than that in control treatment. During 3-20 d, the phosphate concentrations in soil under WY6-5 treatments were constantly higher than that under control treatment. In addition, the strain WY6-5 significantly promoted the growth of maize seedling in terms of the number, length, width and area of leaf as well as plant height and fresh weight. Moreover, the volatile compounds produced from the WY6-5 inhibited the growth of all eight different fungi, with the mycelium inhibition rate up to 100%. The antifungal volatile was subsequently identified as dimethyl disulfide through GC-MS/MS. 【Conclusion】 The Burkholderia pyrrocinia strain WY6-5 isolated from rhizosphere soils of a tea tree was found to be able to dissolve insoluble phosphate in both liquid medium and soil, to promote the growth of maize seedlings, and to produce volatile dimethyl disulfide with broad antifungal activity, implying an important biological functions. Keywords:phosphate solubilizing;volatile antifungal activity;Burkholderia pyrrocinia;dimethyl disulfide;microbial fertilizer;maize
PDF (2543KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 宫安东, 朱梓钰, 路亚南, 万海燕, 吴楠楠, CheeloDimuna, 龚双军, 文淑婷, 侯晓. 吡咯伯克霍尔德菌WY6-5的溶磷、抑菌与 促玉米生长作用研究[J]. 中国农业科学, 2019, 52(9): 1574-1586 doi:10.3864/j.issn.0578-1752.2019.09.009 GONG AnDong, ZHU ZiYu, LU YaNan, WAN HaiYan, WU NanNan, Cheelo Dimuna, GONG ShuangJun, WEN ShuTing, HOU Xiao. Functional Analysis of Burkholderia pyrrocinia WY6-5 on Phosphate Solubilizing, Antifungal and Growth-Promoting Activity of Maize[J]. Scientia Acricultura Sinica, 2019, 52(9): 1574-1586 doi:10.3864/j.issn.0578-1752.2019.09.009
1.4.3 生理生化鉴定 将菌株WY6-5在NA培养基上进行划线活化,12 h后挑取单菌落接种至IF-A GEN III inoculating fluid培养液混合均匀,并转接至Biolog Gen III 培养板中,37℃下培养10—20 h,BIOLOG MicroStation? System微生物鉴定系统进行生理生化特性分析,与数据库中已鉴定模式菌株进行比对分析,选取生理生化反应相似度最高的种,确定同源菌种。
GC-MS/MS检测过程中,进样口温度250℃;离子源为EI源,温度为230℃,轰击能量为70 eV,四极杆温度150℃,采用不分流进样,全扫描的模式进行检测。载气为氦气,柱流速1 mL·min-1。气相色谱采用程序升温:起始温度60℃,保持2 min;以5℃·min-1的速度升温至150℃,保持2 min;以10℃·min-1速率升至280℃,保持2 min。检出所有物质进行谱库检索National Institute of Standards and Technology(NIST 17)。每个处理检测两次,两次重复中微生物组均出现,且对照组中未检出的物质,确定为WY6-5产挥发性物质。
A:液体摇培条件下的溶磷作用分析B:土壤接种环境中的溶磷作用分析。*表示与对照组相比,在 P<0.05 水平上具有差异显著 Fig. 3P-solubilizing activity of the strain WY 6-5 in water and soil
A: P-solubilizing activity of WY6-5 under liquid condition;B: P-solubilizing activity of WY6-5 in soil. *Means significant difference at P<0.05 level compared to control treatment, respectively
供试菌株为禾谷镰刀菌(Fg)、禾谷炭疽菌(Cg)、链格孢菌(Aa)、稻瘟病菌(Mo)、烟曲霉菌(Afu)、黄曲霉菌(AF)、黑曲霉菌(An)和灰霉菌(Bc) Fig. 5Inhibitory effect of strain WY6-5 against the growth of different fungal pathogens
The fungal strains used in the tests include Fusarium graminearum (Fg), Colletotrichum graminicola (Cg), Alternaria alternata (An), Magnaporthe oryzae (Mo), Aspergillus fumigatus (Afu), Aspergillus flavus (Afl), Aspergillus niger (An) and Botrytis cinerea (Bc)
SONGY L, YUJ, CHENS G, XIAOC Z, LIY H, SUX R, DINGF J . Effects of reduced chemical fertilizer with application of bio-organic fertilizer on rape growth, microorganism and enzymes activities in soil Journal of Soil and Water Conservation, 2018,32(1):352-360. (in Chinese) [本文引用: 1]
XINGX M, WANGH M, ANT T, LIS Y, PEIJ B, LIANGW J, WANGJ K . Effects of long-term fertilization on distribution of aggregate size and main nutrient accumulation in brown earth Journal of Soil and Water Conservation, 2015,29(2):267-273. (in Chinese) [本文引用: 1]
WEIH K . Action plans for reducing fertilizer and pesticide use need to be accelerated .The People’s Congress of China, 2018(9):46. (in Chinese) [本文引用: 1]
ZHANGM Y, ZHANGJ G, SHENG M, ZHANGZ F, CAIX J, XUEL . Present research status and prospects of microbial communities structure and functional microorganisms in tobacco-planting soil Journal of Agricultural Science and Technology, 2014,16(5):115-122. (in Chinese) [本文引用: 1]
史国英, 莫燕梅, 岑贞陆, 曾泉, 余功明, 杨丽涛, 胡春锦 . 一株高效解无机磷细菌BS06的鉴定及其解磷能力分析 微生物学通报, 2015,42(7):1271-1278. DOI:10.13344/j.microbiol.china.140721Magsci [本文引用: 2] 【目的】对一株来源于广西甘蔗根际土壤的高效解无机磷细菌BS06的分类和解磷能力进行探讨,以期为解磷微生物在广西甘蔗生产上的开发和应用提供理论依据。【方法】通过形态观察、生理生化测定及16S rRNA基因序列同源性分析,进一步结合种特异的recA基因序列分析对解磷菌BS06进行分类鉴定;通过改变无机磷培养基中的碳源、氮源对菌株解磷能力的影响,分析菌株的解磷特性;通过盆栽试验了解菌株对甘蔗品种粤糖00236、桂糖28磷素吸收的影响。【结果】分类鉴定结果表明菌株BS06属于洋葱伯克霍尔德菌(Burkholderia cepacia);菌株在以乳糖为碳源条件下具有较强的解磷能力,其发酵液中水溶性磷含量为262.71 mg/L;在以硝酸钠为氮源条件下有较强解磷能力,其发酵液中水溶性磷含量达到305.85 mg/L;接种BS06菌株显著促进甘蔗组培苗的生长并提高甘蔗植株的含磷量。【结论】解磷细菌BS06具有较大的开发利用潜力。 SHIG Y, MOY M, CENZ L, ZENGQ, YUG M, YANGL T, HUC J . Identification of an inorganic phosphorus-dissolving bacterial strain BS06 and analysis on its phosphate solubilization ability Microbiology China, 2015,42(7):1271-1278. (in Chinese) DOI:10.13344/j.microbiol.china.140721Magsci [本文引用: 2] 【目的】对一株来源于广西甘蔗根际土壤的高效解无机磷细菌BS06的分类和解磷能力进行探讨,以期为解磷微生物在广西甘蔗生产上的开发和应用提供理论依据。【方法】通过形态观察、生理生化测定及16S rRNA基因序列同源性分析,进一步结合种特异的recA基因序列分析对解磷菌BS06进行分类鉴定;通过改变无机磷培养基中的碳源、氮源对菌株解磷能力的影响,分析菌株的解磷特性;通过盆栽试验了解菌株对甘蔗品种粤糖00236、桂糖28磷素吸收的影响。【结果】分类鉴定结果表明菌株BS06属于洋葱伯克霍尔德菌(Burkholderia cepacia);菌株在以乳糖为碳源条件下具有较强的解磷能力,其发酵液中水溶性磷含量为262.71 mg/L;在以硝酸钠为氮源条件下有较强解磷能力,其发酵液中水溶性磷含量达到305.85 mg/L;接种BS06菌株显著促进甘蔗组培苗的生长并提高甘蔗植株的含磷量。【结论】解磷细菌BS06具有较大的开发利用潜力。
FANL, YEX M, HEJ J, ZHANGJ Y . Research progress on the effect of phosphate-releasing microorganisms on soil phosphorus .Jiangsu Agricultural Sciences, 2008(5):261-263. (in Chinese) [本文引用: 1]
LUR K, SHIZ Y, GUY C . Study on soil phosphorus accumulationⅡ. Apparent accumulation and utilization rate of phosphate fertilizer .Soils, 1995(6):286-289. (in Chinese) [本文引用: 1]
YANGY, RUANX H . Soil circulation of phosphosrus and its effects on the soil loss of phosphorus Soil and Environmental Sciences, 2001,10(3):256-258. (in Chinese) [本文引用: 1]
LINQ M, ZHAOX R, SUNY X, YAOJ . Community characters of soil phosphobacteria in four ecosystems Soil and Environmental Sciences, 2000,9(1):34-37. (in Chinese) [本文引用: 1]
ZAIDIA, KHANM S, AMILM . Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea ( Cicer arietinum L.) European Journal of Agronomy, 2003,19(1):15-21. [本文引用: 1]
ZENGG Q, LIUR C, ZHANGA M, LIF T . Application of phosphorous bacteria in wheat .Journal of the Hebei Academy of Sciences, 1997(3):26-29, 34. (in Chinese) [本文引用: 1]
HAOJ, HONGJ P, LIUB, ZHANGJ, LIN . Effect of different phosphate-solubilizing microorganisms on grow and yield of field-grown pea .Crops, 2006(1):73-76. (in Chinese) [本文引用: 1]
ZHANGB H, LIH Q, LUOJ Y, YANGJ Y, SHIH Q, SUNF Z . Influences of actinomycete strain JXJ-0136 on the growth of Brassica chinensis and Vigna unguiculata and its phosphate solubilization Scientia Agricultura Sinica, 2016,49(16):3152-3161. (in Chinese) [本文引用: 1]
DASILVA CEROZI B, FITZSIMMONSK . Use of Bacillus spp. to enhance phosphorus availability and serve as a plant growth promoter in aquaponics systems Scientia Horticulturae, 2016,211:277-282. [本文引用: 1]
GILESC D, HSUP C, RICHARDSONA E, HURSTM R H, HILLJ E . Plant assimilation of phosphorus from an insoluble organic form is improved by addition of an organic anion producing Pseudomonas sp Soil Biology & Biochemistry, 2014,68:263-269. [本文引用: 1]
LUDUENAL M, ANZUAYM S, MAGALLANES-NOGUERAC, TONELLIM L, IBANEZF J, ANGELINIJ G, FABRAA, MCINTOSHM, TAURIANT . Effects of P limitation and molecules from peanut root exudates on pqqE gene expression and pqq promoter activity in the phosphate-solubilizing strain Serratia sp.S119 Research in Microbiology, 2017,168(8):710-721. [本文引用: 1]
CHENX X, LUOY X, TANGH, LIY Z, FANX W . Effect of Enterobacter sp. NG-33 strain on root and the nitrogen, phosphorus and potassium content in plant of maize Genomics and Applied Biology, 2017,36(8):3273-3277. (in Chinese) [本文引用: 1]
YANGL, LIUY Q, CAOX Y, ZHOUZ J, WANGS Y, XIAOJ, SONGC L, ZHOUY Y . Community composition specificity and potential role of phosphorus solubilizing bacteria attached on the different bloom-forming cyanobacteria Microbiological Research. 2017,205:59-65. [本文引用: 1]
LIUY H, WUY X, YANGS C, HEP F, HEY Q . Screening of phosphorus-solubilizing strain Burkholderia cenocepacia and optimizing of phosphate-dissolving culture condition Journal of South China Agricultural University, 2015,36(3):78-82. (in Chinese) [本文引用: 1]
GONGA D, LIH P, YUANQ S, SONGX S, YAOW, HEW J, ZHANGJ B, LIAOY C . Antagonistic mechanism of Iturin A and Plipastatin A from bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum PLoS ONE, 2014,10(2):e0116871. [本文引用: 1]
WUS P, LVL Z, JINK M, ZHAOF H, ZHENGJ, ZHAOH L . Study on soil nutrient status of tea plantations in main producing areas in Xinyang City Shandong Agricultural Sciences, 2014,46(10):11-80. (in Chinese) [本文引用: 1]
XIEX H, WANGX H, LIANGY J, WANGJ, JIANGP . Research on correlation of three analytic methods of soil available phosphorus Journal of Jilin Agricultural Sciences, 2015,40(3):30-32. (in Chinese) [本文引用: 1]
GONGA D . Isolation and antagonistic mechanism analyses of biocontrol agents against fusarium and aspergillus species [D]. Wuhan: Huazhong Agricultural University, 2015. ( in Chinese) [本文引用: 1]
GONGA D, LIH P, SHENL, ZHANGJ B, WUA B, HEW J, YUANQ S, HEJ D, LIAOY C . The Shewanella algae strain YM8 produces volatiles with strong inhibition activity against Aspergillus pathogens and aflatoxins Frontiers in Microbiology, 2015,6:1091. [本文引用: 2]
TAYEBL A, LEFEVREM, PASSETV, DIANCOURTL, BRISSES, GRIMONTP A D . Comparative phylogenies of Burkholderia, Ralstonia, Comamonas, Brevundimonas and related organisms derived from rpoB, gyrB and rrs gene sequences Research in Microbiology, 2008,159:169-177. [本文引用: 1]
BAOP, XUZ F . Research status and development trend of giant bacillus on biological fertilizer Agricultural extension service, 2013,30(6):601-602. (in Chinese) [本文引用: 1]
AHUJAA, GHOSHS B, D’SOUZAS F . Isolation of a starch utilizing, phosphate solubilizing fungus on buffered medium and its characterization Bioresource Technology, 2007,98(17):3408-3411. DOI:10.1016/j.biortech.2006.10.041URL [本文引用: 1]
ZHANGY X, LEIP, XUZ Q, FENGX H, XUH, XUX J . Screening of a high-efficiency phosphate solubilizing bacterium Bacillus subtilis JT-1 and its effects on soil microecology and wheat growth Jiangsu Journal of Agricultural Sciences, 2016,32(5):1073-1080. (in Chinese) [本文引用: 1]
余贤美, 王义, 沈奇宾, 李炳龙, 贺春萍, 郑服丛 . 解磷细菌PSB3的筛选及拮抗作用的研究 微生物学通报, 2008,35(9):1398-1403. Magsci [本文引用: 1] 利用有机磷细菌液体培养基进行生物富集, 无机磷细菌固体培养基通过平板稀释法进行分离筛选, 建立了土壤解磷细菌的筛选体系。扩增菌株PSB3的16S rDNA序列, 序列测定结果显示, 该片段长度为1525 bp, 经Blastn搜索进行序列比对, 该细菌为洋葱伯克霍尔德氏菌(Burkholderia cepacia)。对该菌株与供试的12个炭疽菌和镰刀菌菌株进行室内拮抗试验, 结果显示, 该菌株对Fusarium solani等6个菌株有不同程度的拮抗作用。 YUX M, WANGY, SHENQ B, LIB L, HEC P, ZHENGF C . The screening of phosphorus solubilizing Bacteria PSB3 and the study of its antagonism Microbiology, 2008,35(9):1398-1403. (in Chinese) Magsci [本文引用: 1] 利用有机磷细菌液体培养基进行生物富集, 无机磷细菌固体培养基通过平板稀释法进行分离筛选, 建立了土壤解磷细菌的筛选体系。扩增菌株PSB3的16S rDNA序列, 序列测定结果显示, 该片段长度为1525 bp, 经Blastn搜索进行序列比对, 该细菌为洋葱伯克霍尔德氏菌(Burkholderia cepacia)。对该菌株与供试的12个炭疽菌和镰刀菌菌株进行室内拮抗试验, 结果显示, 该菌株对Fusarium solani等6个菌株有不同程度的拮抗作用。
DAIS Y, SHENW S, HEY J, CHENW W, ZHONGW H . Screening of ef?cient phosphate-solubilizing bacterial strain and its application in red paddy soil to rice cultivation Chinese Journal of Applied & Environmental Biology, 2011,17(5):678-683. (in Chinese) [本文引用: 1]
ZHANGA M . Screening of the specific solubilizin phosphate and poassium CX-7 strain and research on its applying experiment [D]. Hebei: Hebei Agricultural University, 2014. ( in Chinese) [本文引用: 1]
WANGY . Study on isolation of Phosphate-solubilizing Bacillus and their impact of growth-promoting for maize [D]. Guangzhou: South China Agricultural University, 2016. ( in Chinese) [本文引用: 1]
SHIJ F, SUNC Q, ZHANGJ T . Effects of preharvest spraying of Burkholderia contaminans on postharvest decay and quality of strawberry Journal of Plant Protection, 2018,45(2):382-388. (in Chinese) [本文引用: 1]
YEJ R, RENJ H, LIH, WUX Q . Application and its prospect analysis for Burkholderia cepacia in forest disease control Journal of Nanjing Forestry University( Natural Sciences Edition) , 2013,37(4):149-155. (in Chinese) [本文引用: 1]
ZHAOK, PENTTINENP, ZHANGX P, AOX L, LIUM K, YUX M, CHENQ . Maize rhizosphere in Sichuan, China, hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities Microbiological Research, 2013,7:3. [本文引用: 1]
LEMTUKEID, TAMURAT, NGUYENQ T, UENOM . Inhibitory activity of Burkholderia sp. isolated from soil in Gotsu City, Shimane, against Magnaporthe oryzae Advances in Microbiology, 2017,7:137-148. [本文引用: 1]
BACHE, SEGERG D D S, FEMANDESG D C, LISBOA B B, PASSAGLIAL M P . Evaluation of biological control and rhizosphere competence of plant growth promoting bacteria Applied Soil Ecology, 2016,99:141-149. DOI:10.1016/j.apsoil.2015.11.002URL [本文引用: 1]
ROJAS-ROJASF U, SALAZAR-GóMEZA, VARGAS-DíAZM E, VáSQUEZ-MURRIETAM S, HIRSCHA M, DEMOT R, GHEQUIREM G K, IBARRAJ A, ESTRADA-DELOS SANTOS P . Broad-spectrum antimicrobial activity by Burkholderia cenocepacia TAtl-371, a strain isolated from the tomato rhizosphere Microbiology, 2018,164(9):377. [本文引用: 1]
ZHOUL, JIANGH X, JINK M, SUNS, ZHANGW, ZHANGX H, HEY W . Isolation, identification and characterization of rice rhizobacterium Pseudomonas aeruginosa PA1201 producing high level of biopesticide “Shenqinmycin” and phenazine-1-carboxamide Acta Microbiologica Sinica, 2015,55(4):401-411. (in Chinese) [本文引用: 1]
ZHAOH . Screening and identification of nematicidal bacteria and preliminary separation of lipopeptide [D]. Shenyang: Shenyang Agricultural University, 2018. ( in Chinese) [本文引用: 1]
HUANGC J, TSAYJ F, CHANGS Y, YANGH P, WUW S, CHENC Y . Dimethyl disulfide is an induced systemic resistance elicitor produced by Bacillus cereus C1L Pest Management Science, 2012,68(9):1306-1310. [本文引用: 2]
BRIARDB, HEDDERGOTTC, LATGEJ P . Volatile compounds emitted bypseudomonas aeruginosa stimulate growth of the fungal pathogen Aspergillus fumigatus mBio, 2016,7(2):e00219-16. [本文引用: 1]
KAIM, PIECHULLAB . Impact of volatiles of the rhizobacteria Serratia odorifera on the moss Physcomitrella patens Plant Signaling & Behavior, 2010,231(4):444-446. [本文引用: 1]
WANGD, ROSENC, KINKELL, CAOA, THARAYILN, GERIKJ . Production of methyl sulfide and dimethyl disulfide from soil- incorporated plant materials and implications for controlling soilborne pathogens Plant and Soil, 2009,324(1/2):185-197. DOI:10.1007/s11104-009-9943-yURL [本文引用: 1]
SéBASTIEND, ERICT, AHMEDA G, JACQUESH . How a specialist and a non‐specialist insect cope with dimethyl disulfide produced by Allium porrum Entomologia Experimentalis et Applicata, 2004,113(3):173-179. [本文引用: 1]
PAPAZLATANIC, ROUSIDOUC, KATSOULAA, KOLYVASM, GENITSARISS, PAPADOPOULOUK K, KARPOUZASD G . Assessment of the impact of the fumigant dimethyl disulfide on the dynamics of major fungal plant pathogens in greenhouse soils European Journal of Plant Pathology, 2016,146(2):391-400. DOI:10.1007/s10658-016-0926-6URL [本文引用: 1]
PIECHULLAB, LEMFACKM C, KAIM . Effects of discrete bioactive microbial volatiles on plants and fungi Plant, Cell & Environment, 2017,40(10):2042-2067. [本文引用: 1]