Characteristics of Soil Water Utilization in Spring Wheat Field with Different Straw Retention Approaches in Dry Inland Irrigation Areas
YIN Wen, CHAI Qiang,, HU FaLong, FAN ZhiLong, FAN Hong, YU AiZhong, ZHAO CaiCollege of Agronomy, Gansu Agricultural University/Gansu Provincial Key Laboratory of Arid Land Crop Science, Lanzhou 730070通讯作者:
收稿日期:2018-09-6接受日期:2018-10-29网络出版日期:2019-04-01
基金资助: |
Received:2018-09-6Accepted:2018-10-29Online:2019-04-01
作者简介 About authors
殷文,E-mail:
摘要
关键词:
Abstract
Keywords:
PDF (465KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
殷文, 柴强, 胡发龙, 樊志龙, 范虹, 于爱忠, 赵财. 干旱内陆灌区不同秸秆还田方式下春小麦田土壤水分利用特征[J]. 中国农业科学, 2019, 52(7): 1247-1259 doi:10.3864/j.issn.0578-1752.2019.07.012
YIN Wen, CHAI Qiang, HU FaLong, FAN ZhiLong, FAN Hong, YU AiZhong, ZHAO Cai.
0 引言
【研究意义】土壤水分是作物生长发育及产量形成的关键限制因子,受土壤耕作方式[1]、覆盖措施[2]及种植方式[3]等因素影响,作物群体水分利用状况与其光合同化物累积、分配、产量形成密切相关[4]。而栽培措施是调控作物群体生长发育的重要途径[2],优化栽培措施,改善作物耗水特性,是提高水分利用效率的主要途径。研究特定栽培措施对土壤水分利用特性的影响,不仅是提高自然资源利用效率的重大需求,同时可为优化作物综合生产技术体系提供重要依据。因此,在资源性缺水地区,研发作物高产高效栽培技术具有重要意义。【前人研究进展】耕作措施、地表覆盖作为调控农田土壤水分环境的主要措施,可通过改善土壤蓄水供肥能力、增加土壤渗透性,实现土壤扩蓄增容[5,6],具有可操作性强、简捷等优点[7]。其中,秸秆还田具有抑制土壤蒸发、保墒蓄水、调节地温、提高肥力等多种优点[7,8],但也存在降低作物生长前期表层土壤温度,延缓出苗等缺点[9]。前人研究表明,长期单一免耕土壤压实程度加重,干土体积质量增加,土壤水分无效蒸发严重,不利于作物根系发育,显著降低产量[10,11]。旱作条件下,免耕结合秸秆覆盖可为作物生长创造良好的土壤结构条件,促进作物根系发育和土壤微生物活性,抑制土壤蒸发加强作物有效蒸腾耗水而提高作物产量和水分利用效率[12,13]。【本研究切入点】在灌溉农业区,集成少免耕、秸秆还田技术,能否通过秸秆还田的低温保墒效应,降低作物生育前期土壤水分无效蒸发,增加生育后期作物的有效蒸腾,使无效耗水转化为有效耗水,通过优化作物耗水特性而提高作物产量与水分利用效率的潜力尚未被挖掘。【拟解决的关键问题】本研究在干旱绿洲灌区,将少耕与秸秆还田技术同步集成在春小麦栽培模式中,有望通过优化耗水特性,提高春小麦生育期水分需求与农艺调控效应间的吻合度。阐明不同秸秆还田方式对土壤水分利用的调控机理,建立适用于绿洲灌区春小麦高效生产的秸秆还田技术,从而为试区土壤耕作技术的改进和作物高产、高效栽培提供科学依据和技术支撑。1 材料与方法
1.1 试验区概况
本研究于2014—2016年度在甘肃农业大学绿洲农业综合试验站(37°30′ N, 103°5′ E)实施。试验站位于甘肃河西走廊东端,属寒温带干旱气候区,多年平均降水低于200 mm、年蒸发量大于2 000 mm,灌溉水资源有限,作物种植须采用地膜覆盖、秸秆还田等高效简易节水措施。试验地土壤为砂壤土,0—30 cm 耕层土壤容重 1.53 g·cm-3,含有机质 14.30 g·kg-1、全氮0.67 g·kg-1、全磷 1.42 g·kg-1、铵态氮 1.87 mg·kg-1、硝态氮 12.51 mg·kg-1。3个试验年份,春小麦生育期内降雨量如表1。Table 1
表1
表1不同年份春小麦生育期内不同月份降雨量
Table 1
年份 Year | 月份 Month | |||||
---|---|---|---|---|---|---|
三月 March | 四月 April | 五月 May | 六月 June | 七月 July | 春小麦全生育期 Entire growing period of spring wheat | |
2014 | 0.3 | 19.6 | 17.9 | 23.7 | 39.4 | 100.9 |
2015 | 0 | 16.0 | 18.6 | 39.5 | 34.6 | 108.7 |
2016 | 0 | 19.3 | 23.2 | 33.2 | 31.2 | 106.9 |
新窗口打开|下载CSV
1.2 试验设计
2013年布设预备试验,在当季春小麦收获时为翌年试验所需建立4种秸秆还田方式,即春小麦25—30 cm 秸秆高留茬立茬免耕;25—30 cm 秸秆高留茬覆盖免耕;25—30 cm 秸秆高留茬翻耕;传统低茬收割翻耕,次年施基肥、旋耕(少耕)、耙耱后播种春小麦。形成4个处理,分别是少耕、25—30 cm秸秆高留茬立茬还田(NTSS);少耕、25—30 cm秸秆高留茬覆盖还田(NTS);翻耕、25—30 cm秸秆高留茬还田(TS);传统低茬收割翻耕(CT)。秸秆还田处理全年实施且还田量约为4 200 kg·hm-2。各处理 3 次重复,共12个小区,小区面积 48 m2,田间随机区组排列。3个试验年度(2014—2016年),春小麦播种日期分别为3月21日、3月29日、3月30 日,收获日期分别为7月24日、7月28日、7月21日。供试春小麦(Triticum aestivum L.)品种为宁春2号。播种密度为675万粒/ hm2。
灌溉及施肥制度同当地高产田,即灌溉制度为冬灌水120 mm,春小麦生育期内,按苗期、孕穗期、灌浆期分别补灌75、90、75 mm。所有处理施肥量一致,氮肥为尿素,磷肥为磷酸二铵,施225 kgN·hm-2, 150 kg P2O5·hm-2,全作基肥。
1.3 测定指标和计算方法
土壤含水量:0—30 cm土层每10 cm为一层,采用烘干法测定;30—120 cm土层采用水分中子仪(NMM503DR,CA,USA)测定,按30 cm为一层。春小麦播种前和收获后各测定一次,生育期内每约15 d测定一次,灌水前后分别加测一次。中子水分仪测定值与土壤含水量的拟合曲线如下:$\theta =(0.4023 \times \frac{R}{R_{0}}+0.0031)\times 100\%$;R2=0.9828
式中,θ 为土壤质量含水量,R为中子水分仪的实际测定值,R0为中子水分仪基础数值。
土壤贮水量:$SWS=\sum^{6}_{i=l}h\times a \times \theta \times 10$
式中,SWS为土壤贮水量(mm);h为土层厚度(cm);a为土壤容重(g·cm-3),θ为土壤质量含水量,10为单位换算系数。
作物耗水量(ET)及耗水模系数(CP):采用农田水分平衡法计算[14]。由于试区水资源短缺,节水灌溉灌水量相对较小,土层深度为1.2 m,试验小区平整且试区地下水埋深在30 m以下,故忽略了渗漏量和地下上升水的影响。因此,作物耗水量、阶段耗水量的计算方程为:ETi=Pi+ Ii - ?Si。式中,ETi为i时段作物耗水量;Pi为i阶段的降水量;Ii为i阶段灌水量;?Si为i时段末与时段初的土壤贮水量之差,单位为mm。
耗水模系数(CP)=各生育阶段耗水量/作物全生育期耗水量。
棵间蒸发量:采用微型蒸渗仪(Micro-lysimeter,ML,高 15 cm,直径 11 cm)自小麦出苗后至收获前每隔3—5 d测定,每小区安装1个微型蒸渗仪,土壤蒸发量为两次测量值间的差值,微型蒸发器中土样每降低1 g相当于蒸发水分0.1051 mm。为保证 ML 内土体水分含量和结构与大田相似,每隔 3—5 d 更换器内的原状土体,并且在下雨或灌水后加测。
蒸散比(E/ET):全生育期蒸散比为全生育期棵间蒸发量(E)与总耗水量(ET)之比;各生育阶段蒸散比为某生育阶段棵间蒸发量(E)与该生育阶段耗水量(ET)之比。
水分利用效率(WUE):WUE=Y/ET
式中,Y为春小麦籽粒产量(kg·hm-2);ET 为春小麦全生育期耗水量(mm)。
1.4 数据统计
数据采用Microsoft Excel 2016整理、汇总及图表绘制,利用SPSS 17.0软件进行方差分析。因为本研究属于田间定位试验,年份(时间)会对试验结果产生重大影响,即不同秸秆还田方式与年份之间会有交互效应,因此,本研究以年份(时间)作为一个因子,把文中测定数据进行重复测量方差分析,即采用two-way repeated measures ANOVA(二因子重复测量方差分析)进行显著性检验(P<0.05)。2 结果
2.1 不同秸秆还田方式下春小麦农田土壤含水量差异
2.1.1 全生育期土壤含水量动态 不同秸秆还田方式下春小麦农田0—120 cm土层土壤含水量在3个试验年度处理间差异均显著,且土壤含水量随灌溉及作物生育进程而有差异(图1)。秸秆还田具有提高春小麦播种时土壤含水量的优势,少耕秸秆还田处理(NTSS、NTS)较传统耕作无秸秆还田(CT)土壤含水量分别提高5.4%—6.9%、8.2%—9.0%,翻耕秸秆还田(TS)比CT提高3.4%—4.0%。播种至拔节期,随着时间的推进,土壤含水量依次降低,3个试验年度NTS较CT提高土壤含水量为5.8%—8.0%。春小麦拔节期之后灌水使得土壤含水量急剧增大,至春小麦孕穗期出现低谷,这一生育时期,NTSS、NTS、TS较CT土壤含水量分别提高7.9%—15.0%、12.3%—19.0%、4.7%—8.3%,3个秸秆还田处理以NTS提高比例较大,比TS高6.7%—9.9%。孕穗期补灌各处理获得较高的土壤含水量使得差异不显著,至开花期各处理土壤含水量均较低,此时NTSS、NTS、TS较CT处理土壤含水量分别提高8.4%—28.1%、15.4%—30.6%、4.6%—11.2%,NTSS、NTS较CT提高比例分别为4.6%—15.2%、10.1%—17.4%。春小麦灌浆初期补灌提高各处理土壤水分含量至收获期而降低,此时NTSS、NTS、TS较CT土壤含水量分别提高11.1%—21.1%、16.2%—29.0%、7.4%—11.1%,NTSS、NTS较CT分别提高4.8%—11.7%、8.2%—16.1%。图1
新窗口打开|下载原图ZIP|生成PPT图1不同秸秆还田方式下春小麦农田0—120 cm土层平均土壤含水量动态
图上方的误差线表示 LSD 值。下同
Fig. 1Dynamics of soil water content at 0-120 cm soil layer of spring wheat field with different straw retention approaches
Error bars above the curves indicate the value of LSD in the figure. The same as below
纵观全生育期内0—120 cm土层平均土壤含水量而言,NTSS、NTS较对照CT土壤含水量分别提高5.1%—8.8%、 8.1%—12.2%,以NTS提高土壤水分含量幅度较大,比TS高4.8%—7.0%。说明少耕、25—30 cm秸秆高留茬覆盖还田具有较好的保水效应,是试区春小麦栽培较好的秸秆还田方式。
2.1.2 不同生育阶段平均土壤含水量垂直变化 不同秸秆还田方式下春小麦播种、营养生长期、生殖生长期、收获时0—120 cm土层土壤含水量在3个试验年度差异均显著,且有少耕秸秆还田在各土层保持较高的土壤含水量,提高幅度随土层加深而降低(图2)。
图2
新窗口打开|下载原图ZIP|生成PPT图2不同秸秆还田方式下各测定阶段0—120 cm土层土壤含水量的垂直变化
2014年,小麦播种期、营养生长期、生殖生长期、收获期对应的日期为3月18日、4月22日至6月7日,6月19至7月14日、7月23日;2015年各生育时期对应的日期为3月28日、4月23日至6月5日、6月21日至7月15日、7月27日;2016年各测定时期对应的日期为3月29日、4月19日至6月5日、6月26日至7月12日、7月20日
Fig. 2Vertical changes of soil water content at 0-120 cm soil layer of various determining period under different straw retention approaches
The dates were 18 March, 22 April to 7 June, 19 June to 14 July, and 23 July in 2014, 28 March, 23 April to 5 June, 21 June to 15 July, and 27 July in 2015, and 29 March, 19 April to 5 June, 26 June to 12 July, and 20 July in 2016, the corresponding growing periods of wheat were sowing stage, vegetative growth period, reproductive growth stage, harvesting stage, respectively
春小麦播种时,耕层0—30 cm,NTSS、NTS较CT提高土壤含水量分别为6.5%—9.1%、9.3%—12.9%,NTS较TS提高5.2%—10.0%。30—90 cm土层,NTSS、NTS较CT土壤含水量分别提高4.1%—7.7%、7.2%—9.5%。深层90—120 cm土层年际间有差异,2016年春小麦播前土壤含水量明显高于2014与2015年,弱化了免耕还田的保水效应, 2014与2015年,NTSS、NTS较CT土壤含水量分别提高4.4%—6.3%、4.0%—6.9%。
春小麦营养生长期,耕层0—30 cm,NTSS、NTS较CT提高土壤含水量分别为3.2%—6.6%、5.9%—9.5%。30—90 cm土层,NTSS、NTS较CT分别提高4.0%—6.2%、5.9%—8.8%。深层90—120 cm土层年际间有差异,2014与2015年,NTSS较CT分别提高5.3%、5.7%,3个试验年度,NTS较CT分别提高5.2%—8.0%。
春小麦生殖生长期,耕层0—30 cm,NTSS、NTS较CT提高土壤含水量分别为4.1%—7.2%、6.4%—8.4%,NTS较TS提高4.2%—5.2%。30—90 cm土层,NTS较TS、CT提高土壤含水量分别为4.1%—5.0%、5.4%—8.6%。深层90—120 cm,3个试验年度,仅有NTS较CT分别提高4.7%、6.2%与5.8%。
春小麦收获时,耕层0—30 cm,NTSS、NTS较CT提高土壤含水量分别为16.4%—23.4%、24.4%—35.3%,较TS分别提高6.3%—9.7%、11.7%—20.3%。30—90 cm土层,NTSS、NTS、TS较CT提高土壤含水量分别为9.4%—27.4%、13.9%—27.8%、7.2%—11.5%,NTS较TS分别提高6.3%—14.6%。深层90—120 cm,2014与2015年,与CT相比,NTSS提高土壤含水量分别为8.7%、19.7%,NTS分别提高9.1%、17.1%,TS分别提高6.4%、7.2%。
不同秸秆还田处理中,春小麦播种期、营养生长期、生殖生长期、收获期0—120 cm 土层土壤水分含量随土层加深其变化减弱,但各土层均有少耕秸秆覆盖还田保持较高的土壤含水量,为小麦生长创造适宜的土壤水分环境。春小麦生育期内,营养生长期与生殖生长期,补灌弱化了同一秸秆还田方式下不同深度间土壤含水量差异,且与播种前相比,各处理各土层土壤含水量明显降低,尤其是春小麦旺盛生殖生长期降低幅度更大,以NTS处理缩小土壤水分降低比例。
2.2 不同小麦秸秆还田方式对春小麦各生育阶段耗水量、耗水模系数的影响
2016年,秸秆还田方式对春小麦全生育期耗水量无显著影响,而 2014与2015 年,NTSS耗水量较CT处理分别降低 3.1%、7.8%,NTS 较CT分别降低4.1%、7.7%(表2)。Table 2
表2
表2不同秸秆还田方式下春小麦各生育阶段的耗水量及耗水模系数
Table 2
年份 Year | 处理 Treatment | 播种—拔节期 Sowing—jointing | 拔节—孕穗期 Jointing—booting | 孕穗—灌浆初期 Booting—early-filling | 灌浆初期—收获期 Early-filling—harvesting | 全生育期 Entire growth period | ||||
---|---|---|---|---|---|---|---|---|---|---|
ET (mm) | CP (%) | ET (mm) | CP (%) | ET (mm) | CP (%) | ET (mm) | CP (%) | ET (mm) | ||
2014 | NTSS | 108a | 27.5a | 88b | 22.3b | 76d | 19.2d | 122a | 31.0a | 393ab |
NTS | 105a | 27.1a | 84b | 21.6c | 82c | 21.0c | 118ab | 30.4a | 389b | |
TS | 97b | 24.5b | 98a | 24.6a | 93b | 23.3b | 109c | 27.6b | 397ab | |
CT | 94b | 23.2c | 101a | 24.8a | 99a | 24.3a | 112bc | 27.7b | 406a | |
2015 | NTSS | 103a | 25.8a | 94c | 23.6bc | 87c | 21.8b | 115a | 28.8a | 399b |
NTS | 100ab | 25.2a | 93c | 23.2c | 90c | 22.6b | 116a | 29.0a | 399b | |
TS | 98b | 23.4b | 103b | 24.4ab | 111b | 26.5a | 108b | 25.7b | 421a | |
CT | 98b | 22.6b | 108a | 25.1a | 119a | 27.5a | 107b | 24.7b | 432a | |
2016 | NTSS | 113b | 27.6bc | 95b | 23.1a | 98b | 23.9a | 105b | 25.5b | 411a |
NTS | 119a | 29.1a | 89c | 21.7b | 90c | 21.8b | 113a | 27.5a | 411a | |
TS | 118ab | 28.4ab | 97ab | 23.3a | 103a | 24.7a | 98c | 23.6c | 416a | |
CT | 113b | 26.8c | 100a | 23.8a | 102a | 24.2a | 106b | 25.2b | 422a |
新窗口打开|下载CSV
春小麦不同生育阶段耗水量及耗水模系数在3个试验年度差异显著。春小麦播种至拔节期耗水量较大,占总耗水量22.6%—29.1%,不同处理年际间有差异,2014与2015年,NTSS较CT耗水量分别提高15.1%、5.0%,耗水模系数分别提高18.7%、14.0%;2014与2016年,NTS较CT耗水量分别增大12.0%、5.6%,3个试验年份NTS较CT耗水模系数分别提高8.4%—16.8%。随着生育期的推进,在春小麦拔节至孕穗期,NTSS、NTS处理耗水量及耗水模系数均小于 CT,耗水量分别降低5.6%—13.4%、11.3%—16.7%,耗水模系数分别减小3.1%—10.1%、7.5%—13.1%,以NTS降低耗水量及耗水模系数幅度较大,比TS分别低8.2%—14.2%、5.1%—12.4%。与前一生育阶段相似,春小麦孕穗至灌浆初期,3个试验年度,少耕秸秆还田均具有降低耗水量及耗水模系数的作用,以NTS降低作用较大。相反,灌浆期,春小麦处于旺盛生殖生长期,耗水量总体增大,致使灌浆初期至收获期,NTSS、NTS 处理耗水量及耗水模系数均高于 TS 和 CT,NTSS、NTS 较TS处理耗水量分别增大5.9%—11.3%、6.6%—14.8%,耗水模系数分别提高7.9%—12.3%、10.3%—16.2%,NTSS、NTS较CT增大耗水量分别为7.4%—8.3%、5.1%—8.1%,耗水模系数分别提高11.7%—16.5%、9.1%—17.1%。
总体来说,少耕、25—30 cm秸秆覆盖还田减小了春小麦生育前期(灌浆期之前)的耗水,增大了生育后期(灌浆期)的耗水量,有效协调春小麦前后生育时期耗水互补、竞争关系。
2.3 不同秸秆还田方式下春小麦全生育期棵间蒸发量动态差异
不同秸秆还田方式下春小麦全生育期棵间蒸发量在3个试验年度差异不显著,但均表现为秸秆还田(NTSS、NTS、TS)具有抑制春小麦全生育期内土壤蒸发的效应,较传统无秸秆还田翻耕对照处理 (CT)相比,全生育期棵间蒸发量分别降低9.3%—17.4%、10.8%—23.3%与 4.3%—13.4% (图3),3个秸秆还田处理中,秸秆覆盖还田配合少耕(NTS)降低土壤蒸发效应更好,比TS降低5.6%—11.4%。图3
新窗口打开|下载原图ZIP|生成PPT图3不同秸秆还田方式下春小麦农田土壤蒸发量动态
Fig. 3Dynamics of soil evaporation of spring wheat field with different straw retention approaches
不同秸秆还田方式下春小麦各生育阶段农田棵间蒸发量在3个试验年度差异显著,主要由不同年份不同生育阶段降雨量差异所致。春小麦苗期至拔节期,NTSS、NTS、TS较CT处理土壤蒸发分别降低9.9%—36.9%、7.8%—40.5%、5.0%—26.2%,NTSS、NTS较TS分别降低4.6%—14.5%、4.1%—19.4%(图3)。相反,春小麦拔节至孕穗期,2015与2016年度,NTSS、NTS较CT土壤蒸发分别提高8.4%—10.2%、10.1%—10.9%,NTSS、NTS较TS土壤蒸发分别提高5.8%—6.3%、6.4%—8.0%,2017年,NTS、TS较CT 分别降低5.9%、4.7%。春小麦生殖生长期(开花期至收获期),均为秸秆还田降低棵间蒸发量,NTSS、NTS、TS较CT土壤蒸发分别降低18.4%—25.7%、21.4%—34.7%、5.6%—17.1%,秸秆还田处理中,NTSS、NTS较TS降低土壤蒸发分别达到6.6%—17.5%、12.0%—27.5%。
纵观春小麦全生育期棵间蒸发量动态发现,春小麦开花至成熟期,少耕秸秆还田降低土壤蒸发效应较好,说明少耕秸秆还田对土壤无效蒸发耗水的抑制作用主要体现在开花至成熟期,以25—30 cm秸秆高茬覆盖还田结合少耕措施抑制土壤蒸发相对较好。
2.4 不同秸秆还田方式对春小麦全生育期蒸散比(E/ET)的动态影响
不同秸秆还田方式下春小麦全生育期E/ET在3个试验年度差异不显著,但均表现为少耕秸秆还田降低了春小麦全生育期E/ET(图4)。3个年度,NTSS与NTS较CT处理E/ET降低分别为6.4%—15.2%、6.9%—21.3%。图4
新窗口打开|下载原图ZIP|生成PPT图4不同秸秆还田方式下春小麦农田蒸散比(E/ET)动态
图中不同小写字母表示处理间在 0.05 水平上差异显著。下同
Fig. 4Dynamics of evaporation/evapotranspiration (E/ET) of spring wheat field with different straw retention approaches
Different letters represent the significant difference between treatments at 0.05 level in the figure. The same as below
不同秸秆还田方式下春小麦各生育阶段E/ET在3个试验年度差异显著,均有少耕秸秆还田降低了春小麦各生育阶段E/ET (图4)。春小麦播种后至拔节期,3个试验年份,NTSS、NTS较TS分别降低6.8%—8.5%、5.3%—16.0%,较CT降低E/ET分别达到10.5%—30.7%、5.8%—36.4%。拔节至孕穗期,年际间有差异,2014年,少耕秸秆还田与传统翻耕无秸秆还田处理E/ET差异不显著,TS较CT处理E/ET降低6.9%;2015与2016年度,秸秆还田具有较高E/ET,NTSS、NTS、TS较CT处理提高E/ET分别为19.4%—35.2%、23.5%—30.6%、6.0%—15.9%,NTSS、NTS较TS分别提高12.6%—16.6%、12.7%—16.4%。春小麦孕穗至灌浆初期,2014与2015年,NTSS较TS、CT提高E/ET分别为10.0%—14.7%、9.9%—14.7%;相反,2016年,NTSS、NTS、TS较CT分别降低E/ET为9.9%、15.8%、10.5%,NTS较TS降低5.9%。春小麦灌浆初期至收获期,秸秆还田因旺盛的生殖生长期,增大有效耗水而降低E/ET,NTSS、NTS、TS较CT降低E/ET分别为22.0%—30.8%、25.9%—39.5%、7.5%—11.1%,NTSS、NTS较TS分别降低12.8%—22.1%、20.0%—32.0%,与NTSS相比,NTS降低E/ET为12.7%—16.3%。以上结果表明少耕秸秆还田水分高效利用主要是减少了灌浆初期至收获期土壤的无效耗水,提高了土壤水分利用的有效性,以少耕25—30 cm秸秆高留茬覆盖还田效应突出。
2.5 春小麦产量及水分利用效率对秸秆还田方式的响应
2.5.1 产量表现 3个试验年度,不同秸秆还田方式对春小麦籽粒产量具有显著影响,均表现出秸秆还田具有增产效应(图5-A)。与传统低茬收割翻耕(CT)相比,少耕秸秆还田(NTSS、NTS)分别增产16.6%—24.9%、18.6%—27.3%,翻耕秸秆还田(TS)增产10.2%—18.7%。3个秸秆还田处理中,以少耕秸秆还田增产效应明显,NTSS、NTS较TS分别增产5.2%—5.9%、7.2%—9.5%,以NTS籽粒产量最大,达到7 203—8 035 kg·hm-2。由此说明,25—30 cm秸秆高留茬立茬与覆盖还田结合少耕有利于提高春小麦籽粒产量。图5
新窗口打开|下载原图ZIP|生成PPT图5春小麦籽粒产量(A)与水分利用效率(B)对不同秸秆还田方式的响应
图中每一试验年份各处理间进行统计分析
Fig. 5Responses of grain yield (A) and water use efficiency (B) for spring wheat to different straw retention approaches
The statistical analysis was performed in each treatment in each testing year
2.5.2 水分利用效率(WUE) 3个试验年份,不同秸秆还田方式下春小麦WUE差异显著,秸秆还田较传统低茬收割翻耕具有提高春小麦农田WUE的作用,秸秆还田结合少耕进一步增强了提高水分利用效率的优势(图5-B)。与CT相比,NTSS、NTS、TS处理提高WUE分别为21.1%—28.3%、26.6%—30.6%、13.1%—20.3%,以NTSS、NTS提高春小麦农田WUE幅度较大,比TS高6.7%—11.9%、8.6%—13.7%。
3 讨论
3.1 少耕及秸秆还田与耗水特性的关系
近年来,随着水资源的日趋紧缺,干旱环境条件下,农业生产必须以水分的高效利用为重心,而控制土壤蒸发是提高作物水分利用效率的重要途径之一[14]。秸秆还田作为一项简易节水生产技术广泛地应用于农业生产。采用秸秆覆盖技术可以有效地保持土壤水分,降低无效耗水而提高水分利用的有效性[15,16]。本研究表明,春小麦不同生育时期,0—120 cm各土层土壤含水量均有秸秆还田高于传统耕作,而3个秸秆还田处理中,少耕秸秆覆盖还田土壤含水量明显高于立茬、翻耕秸秆还田措施,而立茬、翻耕秸秆还田处理土壤含水量在不同生育阶段差异不同,这是因为翻耕还田弱化了秸秆还田保持土壤水分的优势,立茬还田不能在地表或表土层直接形成秸秆物理隔层,较覆盖还田弱化其保水效应[7]。春小麦生育期结束时,少耕秸秆覆盖保持较高的土壤水分含量,这可能是由于其土壤界面具有良好的导水蓄水保墒能力[17]。秸秆覆盖具有降低土壤蒸发及耗水的效应已被研究所证实[18,19]。本研究中,与传统耕作无秸秆还田处理相比,少耕秸秆覆盖还田显著抑制土壤蒸发,抑制效应主要体现在气温较高的春小麦孕穗至成熟期,主要因为:第一,秸秆覆盖是在土壤表面,减少土壤与大气间水热交换的物理阻隔层,阻碍土壤与大气层间的水分和能量交换,显著降低土壤蒸发[20];第二,覆盖还田减少生育前期的土壤水分散失,春小麦生长缓慢,消耗水分与养分较少,随着气温回升,生育前期剩余的土壤水分与养分促使春小麦生长发育旺盛,在孕穗至成熟期保持较大的冠层,遮阴面积大,抑制土壤蒸发相对较好。相对于覆盖秸秆还田,立茬秸秆还田不能在地表或表土层直接形成秸秆物理隔层,对春小麦生育前期土壤温度的降低作用不及覆盖还田,生育前期生长较快,给予生育后期的养分与水分少[7],因此立茬秸秆还田生育后期生长弱于秸秆覆盖还田,冠层相对小,遮阴面积小,抑制土壤蒸发效应较弱。同样,通过分析春小麦播种时、营养生长期、生殖生长期及收获时0—120 cm土层土壤含水量发现,随着土层加深其变化减弱,但每一土层均有少耕秸秆覆盖还田保持较高的土壤含水量,为春小麦生长创造适宜的土壤水分环境。秸秆、地膜覆盖具有降低耗水的效应已被研究证实[7,15]。本研究中,少耕秸秆还田对春小麦田耗水量的影响表现出年际间差异,2014与2015 年,少耕秸秆还田的耗水量均低于传统耕作;2016年,秸秆还田与传统耕作处理春小麦农田耗水量无显著差异,这是因为此年春小麦播种时的土壤储水量明显高于2014与2015年,弱化了少耕秸秆还田的保水及有效利用土壤水分的效应。另一方面,秸秆还田也可因为其调控土壤水热特性而优化作物生长发育动态,特别是少耕秸秆覆盖还田作物生长前期的低温效应与较好抑制土壤蒸发的效应,更多水分用于热量适宜的生育后期[7],即降低了春小麦营养生长期的无效蒸发耗水,增强了其生殖生长期的有效耗水。因此,少耕秸秆覆盖还田通过减小春小麦生育前期(灌浆期之前)的耗水,增大了生育后期(灌浆初期至成熟期)的耗水量,有效协调春小麦前后生育时期需水矛盾。降低土壤无效蒸发耗水占总耗水模系数(E/ET)是提高水分有效利用的主要途径之一[21]。本研究中少耕秸秆还田降低了春小麦全生育期E/ET,且降低作用主要体现在春小麦旺盛生长的灌浆初期至收获期,以少耕秸秆覆盖还田降低作用较大,这是因为该措施此生育阶段春小麦旺盛生长期较高的蒸腾耗水与较小的蒸发耗水所致。因此,少耕秸秆覆盖还田措施可优化干旱灌区春小麦农田的耗水特性,在农田作物耗水与调控领域值得进一步试验探讨。
3.2 少耕及秸秆还田对作物产量的影响
耕作及覆盖措施是调控作物群体生长发育的重要因素,通过优化耕作方式及覆盖措施,调控作物生长发育动态,改善作物对资源利用的竞争与互补关系,有效提高作物产量[5]。秸秆还田结合少免耕因较好的保水效应及改善土壤理化性质被广泛应用于干旱雨养农业区作物生产,在干旱绿洲灌区秸秆还田技术尚未成熟,有待进一步研发适宜于干旱灌区秸秆还田技术。大量研究证实,长期单一免耕因根冠早衰而具有减产效应 [10,11]。秸秆还田较传统耕作具有较高的增产潜力,其增产机理在于秸秆还田降低土壤容重,提高土壤速效养分含量促进作物对养分的吸收和利用,为高产奠定了物质基础[22,23]。有研究表明,可通过优化耕作及覆盖措施促进作物各器官光合同化物向籽粒的运转而增产[24]。本研究秸秆立茬与覆盖还田结合少耕的具有显著增产优势,其原因在于,第一,少耕结合秸秆覆盖还田为作物生长创造良好的耕层土壤结构[12,13];第二,少耕秸秆覆盖还田延缓春小麦生育前期地上部生长发育,造成较小的光合源,对水分养分等资源消耗较少,同时抑制土壤蒸发而提高土壤蓄水纳墒能力,为作物生育后期(旺盛生长期)遗留更多的土壤水分和养分[25],满足作物适宜环境条件下生育后期旺盛生长的资源需求,延缓地上部的衰老,改善功能叶片的光合特性,促使籽粒灌浆而实现高产[25];第三,秸秆覆盖还田配合少耕技术利于光合产物向籽粒的转移,较高的分蘖数及分蘖成穗率与较多的穗粒数[26]。因此,在干旱绿洲灌区集成应用基于保护性耕作理论的少耕秸秆覆盖还田技术是可行的,值得大面积推广应用。3.3 作物水分利用效率对少耕秸秆还田的响应
提高产量、降低耗水是提高农田水分利用效率的两个主要途径。优化耕作及秸秆还田方式通过降低农田土壤水分无效蒸发,提高作物有效蒸腾耗水而提高农田水分利用效率[27,28]。已有研究表明,在作物生育期内,降水较多的丰水年份,秸秆覆盖还田结合免耕通过降低农田总耗水量而提高水分利用效率,在降水相对较少的贫水年份,免耕秸秆覆盖还田主要因提高作物产量而提高水分利用效率[5]。当然,免耕秸秆覆盖还田也可通过提高土壤水分入渗率及贮水量[17]、有效降低作物生育前期无效蒸发水分,增加生育后期作物的有效蒸腾,使无效耗水转化为有效耗水、提高作物产量与水分利用效率[5]。本研究得出相似结果,与传统无秸秆还田翻耕处理相比,秸秆还田提高了水分利用效率,以少耕秸秆覆盖还田提高幅度相对较大,主要是因为少耕秸秆覆盖还田降低了春小麦全生育期棵间蒸发量,减小了总耗水量而提高了籽粒产量,特别是在春小麦旺盛生长的灌浆初期至收获期,降低土壤蒸发而提高有效蒸腾耗水作用最显著,为春小麦籽粒灌浆提供充足的水分需求,而增强籽粒灌浆,提高籽粒产量,进而增大水分利用效率。因此,在资源性缺水的干旱内陆灌区,在春小麦生产中集成免耕秸秆还田技术有望缓解作物需水与供水矛盾,为试区作物高效生产提供理论与实践依据。4 结论
与传统低茬收割翻耕处理(CT)相比,少耕秸秆还田处理(NTSS、NTS)可提高春小麦全生育期内土壤含水量,降低耗水量,通过减少生育前期(灌浆期之前)耗水,增大生育后期(灌浆初期至成熟期)耗水量,有效协调春小麦前后生育时期需水矛盾,以少耕秸秆覆盖还田(NTS)调控效应更为突出。少耕秸秆还田降低了春小麦全生育期棵间蒸发量,降低了蒸散比(E/ET),主要体现在春小麦灌浆初期至收获期。与CT相比,NTSS、NTS具有明显的增产及提高水分利用效率的作用。因此,在水资源短缺的干旱内陆绿洲灌区,集成应用少耕25—30 cm秸秆立茬与覆盖还田技术是实现春小麦高产、稳产、水分高效利用的理想耕作措施。(责任编辑 李云霞)
参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
,
DOI:10.3864/j.issn.0578-1752.2017.06.004URL [本文引用: 1]
[目的]探讨耕作方式与施肥措施对陇东黄土旱塬黑垆土冬小麦-春玉米轮作农田冬小麦产量、水分利用效率及耗水特性的影响.[方法]以设在半湿润偏旱区甘肃省镇原县连续12年的耕作与肥料长期定位试验为平台,采用裂区设计,以传统耕作和免耕为主处理,CK、N、P、M、NP、NMP为副处理,栽培制度为1年春玉米-3年冬小麦轮作,研究了不同耕作方式及施肥措施条件下的冬小麦产量、水分利用效率、耗水特性及产量与耗水量的关系.[结果]在产量方面,相同耕作方式以有机无机肥配施或无机肥配施高于有机肥或无机肥单施,有机肥单施优于化肥单施,磷肥单施优于氮肥单施;耕作方式间为传统耕作高于免耕.在水分利用特性方面,无论何种耕作方式及降雨年型,不同施肥措施在不同年份均以NMP水分利用效率最高,显著高于CK和其他处理,平均水分利用效率大小顺序为NMP>NP>M>P>CK>N,传统耕作和免耕NMP较CK分别增加84.0%和84.1%;相同施肥措施中传统耕作高于免耕,NMP传统耕作较免耕增加13.6%.不同耕作方式及施肥措施冬小麦阶段耗水量与降雨量密切相关,其中NMP总耗水量相对较高,传统耕作干旱年、平水年、丰水年较CK分别增加了3.0%、4.4%、31.4%,免耕分别增加了10.2%、1.5%、25.7%,且NMP明显降低了播种—返青阶段耗水量及占总耗水量的比例,增加了返青—成熟阶段耗水量.耕作方式间总耗水量变化趋势基本为干旱年传统耕作高于免耕,丰水年和平水年免耕高于传统耕作,而降雨年型间总耗水量变化不一致.另外,无论何种降雨年型,不同耕作方式及施肥措施均在60 cm土层含水量呈拐点变化趋势,但拐点处含水量变化不同,其中NMP低于CK及其他施肥处理,变化顺序为丰水年>平水年>干旱年.不同施肥措施的边际水分利用效率以NMP最高,耕作方式为传统耕作高于免耕.[结论]无论何种耕作方式及降雨年型,不同年份NMP冬小麦产量、水分利用效率及边际水分利用效率均最高,收获期60 cm土层处含水量出现低值.总耗水量以NMP相对较高,且NMP有利于降低播种—返青阶段耗水量及其占总耗水量的比例,增加返青—成熟阶段耗水量和0-200 cm土层贮水量的消耗.耕作方式及施肥措施间冬小麦水分利用效率、边际水分利用效率均为传统耕作高于免耕.因此,综合考虑冬小麦产量、水分利用效率及耗水特性,认为无论何种降雨年型,采用传统耕作结合有机无机肥配施是本试验条件下的最优耕作施肥组合模式.
DOI:10.3864/j.issn.0578-1752.2017.06.004URL [本文引用: 1]
[目的]探讨耕作方式与施肥措施对陇东黄土旱塬黑垆土冬小麦-春玉米轮作农田冬小麦产量、水分利用效率及耗水特性的影响.[方法]以设在半湿润偏旱区甘肃省镇原县连续12年的耕作与肥料长期定位试验为平台,采用裂区设计,以传统耕作和免耕为主处理,CK、N、P、M、NP、NMP为副处理,栽培制度为1年春玉米-3年冬小麦轮作,研究了不同耕作方式及施肥措施条件下的冬小麦产量、水分利用效率、耗水特性及产量与耗水量的关系.[结果]在产量方面,相同耕作方式以有机无机肥配施或无机肥配施高于有机肥或无机肥单施,有机肥单施优于化肥单施,磷肥单施优于氮肥单施;耕作方式间为传统耕作高于免耕.在水分利用特性方面,无论何种耕作方式及降雨年型,不同施肥措施在不同年份均以NMP水分利用效率最高,显著高于CK和其他处理,平均水分利用效率大小顺序为NMP>NP>M>P>CK>N,传统耕作和免耕NMP较CK分别增加84.0%和84.1%;相同施肥措施中传统耕作高于免耕,NMP传统耕作较免耕增加13.6%.不同耕作方式及施肥措施冬小麦阶段耗水量与降雨量密切相关,其中NMP总耗水量相对较高,传统耕作干旱年、平水年、丰水年较CK分别增加了3.0%、4.4%、31.4%,免耕分别增加了10.2%、1.5%、25.7%,且NMP明显降低了播种—返青阶段耗水量及占总耗水量的比例,增加了返青—成熟阶段耗水量.耕作方式间总耗水量变化趋势基本为干旱年传统耕作高于免耕,丰水年和平水年免耕高于传统耕作,而降雨年型间总耗水量变化不一致.另外,无论何种降雨年型,不同耕作方式及施肥措施均在60 cm土层含水量呈拐点变化趋势,但拐点处含水量变化不同,其中NMP低于CK及其他施肥处理,变化顺序为丰水年>平水年>干旱年.不同施肥措施的边际水分利用效率以NMP最高,耕作方式为传统耕作高于免耕.[结论]无论何种耕作方式及降雨年型,不同年份NMP冬小麦产量、水分利用效率及边际水分利用效率均最高,收获期60 cm土层处含水量出现低值.总耗水量以NMP相对较高,且NMP有利于降低播种—返青阶段耗水量及其占总耗水量的比例,增加返青—成熟阶段耗水量和0-200 cm土层贮水量的消耗.耕作方式及施肥措施间冬小麦水分利用效率、边际水分利用效率均为传统耕作高于免耕.因此,综合考虑冬小麦产量、水分利用效率及耗水特性,认为无论何种降雨年型,采用传统耕作结合有机无机肥配施是本试验条件下的最优耕作施肥组合模式.
,
DOI:10.1016/j.agwat.2018.01.021URL [本文引用: 2]
A field experiment was conducted in the Loess Plateau of Northwest China to study the effects of plastic film mulching and straw mulching on soil water, soil organic carbon (SOC), total nitrogen (TN), microbial biomass carbon (MBC) and nitrogen (MBN), dissolved organic carbon (DOC) and nitrogen (DON), crop yield and water use efficiency under winter wheat (Tricicum aestivum L.)—summer maize (Zea mays L.) double-cropping system conditions using the following three cultural practices: (i) traditional plough with no mulching (CK), (ii) traditional plough with plastic film mulching (PM), and (iii) traditional plough with straw mulching (SM). Soil water contents were measured by the gravimetric method. SOC was determined using the dichromate oxidation method. TN was analyzed by the Kjeldahl method. MBC and MBN were determined using the chloroform fumigation extraction method. DOC and TDN were determined following Jones’ procedures proposed by Jones and Willett (2006). The results showed that soil water was higher under the PM treatment than under the SM treatment and mainly changed in the upper 60 cm soil layer. Compared with the CK treatment, the concentrations of SOC and TN under the SM treatment were increased by 16.9% and 7.7% at the 0–10 cm soil depth, respectively, and the PM treatment had the similar SOC and TN concentrations. Compared with the CK treatment, soil C:N ratio was increased under the SM treatment by 6.2% (P < 0.05), and that under the PM treatment was decreased by 5.2% (P < 0.05) after three years. The concentrations of MBC under the PM and SM treatments were significantly increased by 42.0% and 24.1%, respectively, and MBN under the PM treatment was significantly increased by 5.6% at 0–10 cm soil depth after the maize season. Compared with the CK treatment, DOC was significantly increased by 21.0% under the SM treatment and decreased by 13.1% under the PM treatment, and DON was significantly increased by 10.5% under the SM treatment and decreased by 4.3% under the PM treatment at the 0–10 cm soil depth after the maize season. Relative changes of labile soil organic carbon and nitrogen fractions were more sensitive than that of SOC and TN. The relative decline or increase of labile soil organic carbon and nitrogen fractions was on average almost 13.6% for the mulching practices. Compared with the CK treatment, the average maize yields under the PM and SM treatments were increased by 26.4% and 9.8%, and the average wheat yields under the PM and SM treatments were increased by 21.3% and 7.4%, respectively. The average water use efficiencies under the PM and SM treatments were 24.5%, 8.8% in winter wheat and 22.9%, 6.3% in summer maize higher than that under the CK treatment, respectively. Our results suggested that plastic film mulching could be used as an effective practice to improve low soil quality with adequate nitrogen and increase crop yield and water use efficiency in the Loess Plateau, China.
,
DOI:10.3864/j.issn.0578-1752.2016.06.005URL [本文引用: 1]
【目的】探索不同集雨种植方式春玉米旱作田土壤水分转运、分配、土壤温度的时空变化特征及其对玉米产量和水分利用效率的影响,为试区玉米高产、水分高效持续利用型种植模式提供理论依据。【方法】2013—2014年在宁夏彭阳区设置传统露地平作(CK)为对照,分析4种不同集雨覆膜种植方式下春玉米各生育期的土壤水分、土壤温度、水分利用效率及产量变化。4种集雨覆膜种植方式分别为双垄沟全覆膜种植(D)、半膜平铺种植(F)、沟播垄膜双行种植(R1)、沟播垄膜单行种植(R2)。沟播垄膜双行处理和半膜平铺处理覆膜宽度均为60 cm,沟播垄膜单行处理垄宽50 cm、沟宽10 cm,双垄沟全覆膜大垄宽70 cm,垄高15 cm、小垄宽50 cm,垄高10 cm。播种密度均为75 000株/hm2。播前基施化肥102 kg N·hm-2和90 kg P2O5·hm-2,拔节期追施153 kg N·hm-2,试验为随机区组设计,3次重复。【结果】各覆膜处理较CK可明显改善土壤水温条件,在玉米苗期(0—30 d),D、F、R1、R2处理0—200 cm土层的贮水量比CK分别增加了10%、8.9%、10.9%和14.4%。在玉米生长中后期(90—120 d),受降雨量与不同覆膜种植方式下玉米耗水量不同,各覆膜处理0—200 cm土层贮水量表现出差异,2013年(前期降水为309.4 mm)各覆膜处理显著低于CK,覆膜处理间无显著差异,2014年(前期降水为104.9 mm)R1、R2处理贮水量均显著高于其他覆膜处理。2年试验中,R1处理0—40 cm土层贮水量显著高于其他处理,平均增加了5%;D、F、R1、R2处理0—25 cm土层土壤温度在玉米苗期较CK分别增加了3.5、2.3、0.9和1.1℃;玉米全生育期总干物质积累量呈"S"型曲线,在0—60 d,积累量较小,各处理仅占整个生育期的4.3%-15.4%,各处理大小顺序为:D〉R2〉F〉R1〉CK;在60—120 d(大喇叭口期至灌浆期),积累了玉米干物质的74.5%,此期D、R2的干物质积累速率达309.3和
DOI:10.3864/j.issn.0578-1752.2016.06.005URL [本文引用: 1]
【目的】探索不同集雨种植方式春玉米旱作田土壤水分转运、分配、土壤温度的时空变化特征及其对玉米产量和水分利用效率的影响,为试区玉米高产、水分高效持续利用型种植模式提供理论依据。【方法】2013—2014年在宁夏彭阳区设置传统露地平作(CK)为对照,分析4种不同集雨覆膜种植方式下春玉米各生育期的土壤水分、土壤温度、水分利用效率及产量变化。4种集雨覆膜种植方式分别为双垄沟全覆膜种植(D)、半膜平铺种植(F)、沟播垄膜双行种植(R1)、沟播垄膜单行种植(R2)。沟播垄膜双行处理和半膜平铺处理覆膜宽度均为60 cm,沟播垄膜单行处理垄宽50 cm、沟宽10 cm,双垄沟全覆膜大垄宽70 cm,垄高15 cm、小垄宽50 cm,垄高10 cm。播种密度均为75 000株/hm2。播前基施化肥102 kg N·hm-2和90 kg P2O5·hm-2,拔节期追施153 kg N·hm-2,试验为随机区组设计,3次重复。【结果】各覆膜处理较CK可明显改善土壤水温条件,在玉米苗期(0—30 d),D、F、R1、R2处理0—200 cm土层的贮水量比CK分别增加了10%、8.9%、10.9%和14.4%。在玉米生长中后期(90—120 d),受降雨量与不同覆膜种植方式下玉米耗水量不同,各覆膜处理0—200 cm土层贮水量表现出差异,2013年(前期降水为309.4 mm)各覆膜处理显著低于CK,覆膜处理间无显著差异,2014年(前期降水为104.9 mm)R1、R2处理贮水量均显著高于其他覆膜处理。2年试验中,R1处理0—40 cm土层贮水量显著高于其他处理,平均增加了5%;D、F、R1、R2处理0—25 cm土层土壤温度在玉米苗期较CK分别增加了3.5、2.3、0.9和1.1℃;玉米全生育期总干物质积累量呈"S"型曲线,在0—60 d,积累量较小,各处理仅占整个生育期的4.3%-15.4%,各处理大小顺序为:D〉R2〉F〉R1〉CK;在60—120 d(大喇叭口期至灌浆期),积累了玉米干物质的74.5%,此期D、R2的干物质积累速率达309.3和
,
DOI:10.3724/SP.J.1006.2011.01049URLMagsci [本文引用: 1]
2008—2010年连续2个小麦生长季,选用高产小麦品种济麦22,采用测墒补灌的方法,研究土壤水分对不同密度小麦旗叶光合性能、干物质积累与分配、籽粒产量及水分利用效率的影响。第一年在150株 m<sup>−2 </sup>(M1)和225株 m<sup>−2 </sup>(M2)两个密度下设置3个土壤含水量处理,即拔节期65%+开花期60%(W0)、拔节期75%+开花期75%(W1)和拔节后7 d 75%+开花后7 d 75%(W2);第二年选用第一年的节水高产密度处理M1,但土壤含水量调整为拔节期75%+开花期60% (W’0)、拔节期85%+开花期75%(W’1)和拔节后7 d 85%+开花后7 d 75%(W’2)。两种基本苗密度相比较,M1处理灌浆中后期的旗叶最大光化学效率(<em>F</em><sub>v</sub>/<em>F</em><sub>m</sub>)、实际光化学效率(<em>Φ</em><sub>PSII</sub>)和开花后干物质积累量和干物质向籽粒转运量显著高于M2处理。W2处理灌浆中后期的旗叶<em>F</em><sub>v</sub>/<em>F</em><sub>m</sub>和<em>Φ</em><sub>PSII</sub>显著高于W1处理,而W’2处理灌浆中后期的旗叶光合速率(<em>P</em><sub>n</sub>)、蒸腾速率(<em>T</em><sub>r</sub>)、单叶水分利用效率(<em>WUE</em><sub>L</sub>)和气孔导度(<em>G</em><sub>s</sub>)均显著高于W’1处理。在M1密度下,W2处理的干物质向籽粒的转运量,开花后干物质积累量及其对籽粒的贡献率显著高于W1处理,获得了较高的籽粒产量和水分利用效率,且干物质积累与分配、籽粒产量和水分利用效率在两年中结果趋势一致。在150株m<sup>−2</sup>密度下,0~140 cm土层平均土壤相对含水量拔节后7 d和开花后7 d均为75%和75%,是本试验条件下节水高产的最佳处理。
DOI:10.3724/SP.J.1006.2011.01049URLMagsci [本文引用: 1]
2008—2010年连续2个小麦生长季,选用高产小麦品种济麦22,采用测墒补灌的方法,研究土壤水分对不同密度小麦旗叶光合性能、干物质积累与分配、籽粒产量及水分利用效率的影响。第一年在150株 m<sup>−2 </sup>(M1)和225株 m<sup>−2 </sup>(M2)两个密度下设置3个土壤含水量处理,即拔节期65%+开花期60%(W0)、拔节期75%+开花期75%(W1)和拔节后7 d 75%+开花后7 d 75%(W2);第二年选用第一年的节水高产密度处理M1,但土壤含水量调整为拔节期75%+开花期60% (W’0)、拔节期85%+开花期75%(W’1)和拔节后7 d 85%+开花后7 d 75%(W’2)。两种基本苗密度相比较,M1处理灌浆中后期的旗叶最大光化学效率(<em>F</em><sub>v</sub>/<em>F</em><sub>m</sub>)、实际光化学效率(<em>Φ</em><sub>PSII</sub>)和开花后干物质积累量和干物质向籽粒转运量显著高于M2处理。W2处理灌浆中后期的旗叶<em>F</em><sub>v</sub>/<em>F</em><sub>m</sub>和<em>Φ</em><sub>PSII</sub>显著高于W1处理,而W’2处理灌浆中后期的旗叶光合速率(<em>P</em><sub>n</sub>)、蒸腾速率(<em>T</em><sub>r</sub>)、单叶水分利用效率(<em>WUE</em><sub>L</sub>)和气孔导度(<em>G</em><sub>s</sub>)均显著高于W’1处理。在M1密度下,W2处理的干物质向籽粒的转运量,开花后干物质积累量及其对籽粒的贡献率显著高于W1处理,获得了较高的籽粒产量和水分利用效率,且干物质积累与分配、籽粒产量和水分利用效率在两年中结果趋势一致。在150株m<sup>−2</sup>密度下,0~140 cm土层平均土壤相对含水量拔节后7 d和开花后7 d均为75%和75%,是本试验条件下节水高产的最佳处理。
,
DOI:10.1016/j.still.2006.05.005URL [本文引用: 4]
Dryland regions in northern China account for over 50% of the nation's total area, where farming development is constrained by adverse weather, topography and water resource conditions, low fertility soils, and poor soil management. Conservation tillage research and application in dryland regions of northern China has been developed since the 1970s. Demonstration and extension of conservation tillage practices is actively stimulated by the Chinese government since 2002, following the recognition of the increased rate of degradation of the environment due to erosion and water shortage in North China. This paper reviews the research conducted on conservation tillage in dryland regions of northern China, and discusses the problems faced with the introduction and application of conservation tillage practices.Most of the studies reported have shown positive results of soil and water conservation tillage practices. These practices generally involve a reduction in the number and intensity of operations compared to conventional tillage, with direct sowing or no-till as the strongest reduction. Crop yields and water use efficiency have increased (with up to 35%) following the implementation of reduced tillage practices. Under no-till, crop yields are equivalent to or higher than those from conventional tillage methods, especially in dry years. However, during wet years yields tend to be lower (10鈥15%) with no-till. Other benefits are an increased fallow water storage and reductions in water losses by evaporation. In order to fully exploit the advantages of conservation tillage, systems have to be adapted to regional characteristics. Farmers鈥 adoption of conservation tillage is still limited.
,
DOI:10.1016/j.still.2006.01.012URL [本文引用: 1]
No-tillage (NT) is becoming increasingly attractive to farmers because it clearly reduces production costs relative to conventional tillage (CT). However, many producers in southern Italy are reluctant to adopt this practice because NT can have contrasting consequences on grain yield depending on weather conditions. The effect of NT and CT on continuous durum wheat ( Triticum durum Desf.) under rainfed Mediterranean conditions was studied, over a 3-year period (2000–2002) at two locations (Foggia and Vasto) in southern Italy. Yield, grain quality [thousand kernel weight (TKW), test weight (TW) and protein content (PC)] and soil water content were assessed. Higher yield was obtained with NT than CT in the first 2 years at Foggia. In contrast, mean yield and quality parameters at Vasto were similar for the two treatments, except in the third year in which CT produced more than NT (4.6 Mg ha 611 versus 2.9 Mg ha 611). At Foggia, TW and TKW were higher in NT than CT in all years. Highest PC was obtained under CT (19.6% and 15.5% for CT versus 14.7% and 11.4% for NT, respectively, in the growing season 2000–2001 and 2001–2002) indicating that grain was shriveled with low starch accumulation. At Foggia, where this study was part of a long-term experiment started in 1995, a strong correlation was observed between yield and rainfall during the wheat growing season. The coefficient of determination ( R 2) values for CT and NT were 0.69 * and 0.31 ns, respectively, and the regression straight line crossed around 300 mm of rainfall. These results indicate that NT was superior below this rainfall value, whereas more rainfall enhanced yield in CT. We conclude that NT performed better at Foggia with limited rainfall during the durum wheat growing season. The superior effect of NT in comparison to CT, was due to lower water evaporation from soil combined with enhanced soil water availability.
,
URL [本文引用: 6]
URL [本文引用: 6]
,
DOI:10.1111/j.1744-7348.2007.00144.xURL [本文引用: 1]
Straw mulching is an effective measure to conserve soil moisture. However, the existence of straw on the soil surface also affects soil temperature, which in turn influences crop growth, especially of winter crops. Five-year field experiments (2000–2005) investigated the effects of straw mulching and straw mass on soil temperature, soil evaporation, crop growth and development, yield and water use efficiency (WUE) of winter wheat ( Triticum aestivum L.) at Luancheng Station on the North China Plain. Soil is a moderately well-drained loamy soil with a deep profile at the station. Two quantities of mulch were used: 3000 kg ha 611 [less mulching (LM)] and 6000 kg ha 611 [more mulching (MM)], representing half and all of the straw from the previous crop (maize). In the control (CK), the full quantity of mulch was ploughed into the top 20 cm of soil. The results showed that the existence of straw on the soil surface reduced the maximum, but increased the minimum diurnal soil temperature. When soil temperature was decreasing (from November to early February the next year), soil temperature (0–10 cm) under straw mulching was on average 0.3°C higher for LM and 0.58°C higher for MM than that without mulching (CK). During the period when soil temperature increased (from February to early April, the recovery and jointing stages of winter wheat), average daily soil temperature of 0–10 cm was 0.42°C lower for LM and 0.65°C lower for MM than that of CK. With the increase in leaf area index, the effect of mulching on soil temperature gradually disappeared. The lower soil temperature under mulch in spring delayed the development of winter wheat up to 7 days, which on average reduced the final grain yield by 5% for LM and 7% for MM compared with CK over the five seasons. Mulch reduced soil evaporation by 21% under LM and 40% under MM compared with CK, based on daily measuring of microlysimeters. However, because yield was reduced, the overall WUE was not improved by mulch.
,
DOI:10.3321/j.issn:1002-6819.2005.07.004URLMagsci [本文引用: 1]
结合多年的田间试验研究,对中国旱地秸秆覆盖的方法、效果、减产现象及其原因进行了总结和分析,结果表明:虽然绝大多数资料显示秸秆覆盖能明显改善土壤水分状况、提高作物产量,但覆盖条件下作物不增产甚至减产的现象不容忽视,其原因可能与覆盖导致土壤水分、温度和供肥状况等因素的变化有关,作用机理尚需深入探讨,并提出了进一步研究的思路。
DOI:10.3321/j.issn:1002-6819.2005.07.004URLMagsci [本文引用: 1]
结合多年的田间试验研究,对中国旱地秸秆覆盖的方法、效果、减产现象及其原因进行了总结和分析,结果表明:虽然绝大多数资料显示秸秆覆盖能明显改善土壤水分状况、提高作物产量,但覆盖条件下作物不增产甚至减产的现象不容忽视,其原因可能与覆盖导致土壤水分、温度和供肥状况等因素的变化有关,作用机理尚需深入探讨,并提出了进一步研究的思路。
,
DOI:10.1016/S0378-4290(00)00130-1URL [本文引用: 2]
An experiment was conducted on two soils in a semiarid area in the Spain’s Ebro valley. Soil A was a Fluventic Xerochrept of 120 cm depth and Soil B was a Lithic Xeric Torriorthent of 30 cm depth. Three tillage systems were compared in Soil A: subsoiler tillage, minimum tillage and no-tillage, and two (minimum tillage and no-tillage) in Soil B. The experiment was repeated for 5 years on Soil A and 3 years on Soil B. Root length density, volumetric water content and dry matter were measured at important developmental stages. Yield was determined at harvest. In Soil A, root length density and volumetric water content were significantly greater for no-tillage than for subsoiler or minimum tillage (up to 1.4 cm cm 613 and 5%, respectively), mainly in the upper part of the soil profile. At lower depths, differences as great as 0.8 cm cm 613 and 6% were also found. Mean yield (4 years) was similar between no-tillage (3608 kg ha 611) and minimum tillage (3508 kg ha 611), and significantly smaller for subsoiler tillage (3371 kg ha 611). In Soil B, no differences were observed between tillage systems for volumetric water content. Significant interactions between tillage and year were found for root length density, dry matter and yield. Mean yield (3 years) was not significantly different for minimum tillage (1806 kg ha 611) and no-tillage (1867 kg ha 611). The results in Soil A showed that surface conditions are of major importance in the water content of the soil and determined the differences among tillage systems. No-tillage favoured greater and deeper water accumulation in the soil profile and greater root growth. This makes this system potentially better for years of low rainfall. In Soil B no tillage system proved to be better because of the low water-holding capacity of this soil (56 mm).
,
DOI:10.1016/S0167-1987(01)00190-8URL [本文引用: 2]
In order to evaluate the impact of no-tillage (NT) against conventional-tillage (CT), or the effect of different fertilizers and herbicides, soils recently incorporated to agriculture from the El Salado basin river (Buenos Aires, Argentina) under a corn (1996/1998)-pasture (1998-)rotation were monitored for several soil (micro)biological, physical and chemical properties during the second (1997) to fourth (1999) years from the beginning of the experiment (1996). The rates of exchange of O 2 and CO 2 expressed in terms of kg O 2 or CO 2 per hectare per day, are denoted as qO 2 and qCO 2. They decreased at the end of the corn growth cycle (T2) along with an increase of the respiratory quotient (RQ= qCO 2/ qO 2), when compared to the time of land preparation (T0), irrespective of the management system. Both, qO 2 and qCO 2, increased 8 months after the mixed-grass-legume pasture planting (T3) keeping similar RQs with values slightly higher for NT than CT. At T4 (after 20 months of pasture), a 22 and 21% decrease of organic carbon was registered for NT and CT, respectively, with respect to the beginning of the experiment. A 22% (not significative) and a significative 31% diminish of total nitrogen was observed in the NT and CT systems, respectively. The results obtained are discussed in terms of soil function and sustainability in both management systems tested.
,
DOI:10.2135/cropsci2008.10.0590URL [本文引用: 2]
Studies on root development, soil physical properties, and yield are important for identifying suitable soil management practices for sustainable crop production. Field experiments with winter wheat (Triticum aestivum L.) were conducted in silt loam soil from 2005 through 2007 in arid northwestern China to determine the effects of five tillage systems on soil strength, soil moisture, crop root development, grain yield, and yield components. The five treatments were conventional tillage without wheat stubble (T), conventional tillage with wheat stubble incorporated (TSI), no-tillage without wheat stubble mulching (NT), no-tillage with wheat stubble standing (NTSS), and no-tillage with wheat stubble mulching (NTS). Compared with the T treatment, the NTSS and NTS treatments improved soil water content in the 0- to 130-cm soil depth by 10 to 17% and 15 to 25%, respectively (P < 0.05). The NTSS treatment also increased mean root length density (RLD) by 8 to 40% and crop yield by 13 to 24%, and NTS by 17 to 48% and 17 to 31%, compared with the T treatment. Yield components analysis indicated that thousand-grain weight and spike density considerations helped explain the grain yield increases under conservation tillage systems (NT, NTSS, NTS), while spike length, number of grains per spike, and grain weight per spike failed to contribute to the model. Our results suggest that Chinese farmers should consider adopting conservation tillage practices in arid northwestern China because of benefits to soil strength, water storage, RLD, and wheat yield.
,
DOI:10.1016/j.soilbio.2003.10.026URL [本文引用: 2]
The long-term impact of tillage and residue management on soil microorganisms was studied over the growing season in a sandy loam to loamy sand soil of southwestern Quebec, growing maize ( Zea mays L.) monoculture. Tillage and residue treatments were first imposed on plots in fall 1991. Treatments consisted of no till, reduced tillage, and conventional tillage with crop residues either removed from (61R) or retained on (+R) experimental plots, laid out in a randomized complete block design. Soil microbial biomass carbon (SMB-C), soil microbial biomass nitrogen (SMB-N) and phospholipid fatty acid (PLFA) contents were measured four times, at two depths (0–10 and 10–20 cm), over the 2001 growing season. Sample times were: May 7 (preplanting), June 25, July 16, and September 29 (prior to corn harvest). The effect of time was of a greater magnitude than those attributed to tillage or residue treatments. While SMB-C showed little seasonal change (160 μg C g 611 soil), SMB-N was responsive to post-emergence mineral nitrogen fertilization, and PLFA analysis showed an increase in fungi and total PLFA throughout the season. PLFA profiles showed better distinction between sampling time and depth, than between treatments. The effect of residue was more pronounced than that of tillage, with increased SMB-C and SMB-N (61 and 96%) in +R plots compared to 61R plots. This study illustrated that measuring soil quality based on soil microbial components must take into account seasonal changes in soil physical and chemical conditions.
,
DOI:10.1016/B978-0-12-800132-5.00002-XURL [本文引用: 2]
,
DOI:10.3864/j.issn.0578-1752.2014.17.004URLMagsci [本文引用: 2]
【目的】黄淮海地区是中国粮食主产区之一,但农业生产中旱涝频繁发生,同时还存在土壤紧实、耕层变浅和土壤蓄水保墒能力低等问题,严重影响了该区的粮食生产。耕作方式和秸秆还田作为农业生产中两项重要的技术措施,对改善土壤结构、提高土壤蓄水能力和水分利用效率有显著作用。本文旨在探索耕作方式、秸秆还田以及二者交互对冬小麦-夏玉米耗水特性和水分利用效率的影响,为优化黄淮海地区的土壤耕作方式提供依据。【方法】采用土壤耕作方式与秸秆还田相结合的方法,设置常规耕作+秸秆还田、常规耕作+无秸秆还田、深耕+秸秆还田、深耕+无秸秆还田、深松+秸秆还田、深松+无秸秆还田6个处理,研究耕作方式与秸秆还田对冬小麦-夏玉米一年两熟农田耗水量、耗水模系数、土壤贮水消耗量、株间蒸发量、籽粒产量和水分利用效率的影响,分析不同耕作方式、秸秆还田以及二者交互对冬小麦-夏玉米耗水特性和水分利用效率的影响。【结果】耕作方式、秸秆还田对土壤容重、农田耗水量、土壤贮水消耗量、株间蒸发量、籽粒产量和水分利用效率均存在显著或极显著影响。与常规耕作相比,深耕和深松主要降低了20—40 cm土层的土壤容重,增加了冬小麦、夏玉米和周年总农田耗水量,提高了0—100 cm土层的土壤贮水消耗量,同时降低了休闲期无效农田耗水量。此外,深耕和深松还降低了夏玉米的株间蒸发量,但深耕显著增加了冬小麦的株间蒸发量,深松则相反。秸秆还田也可以降低土壤容重,提高土壤贮水消耗量,增加冬小麦农田耗水量,降低夏玉米和休闲期农田耗水量,增加冬小麦的株间蒸发量,降低夏玉米的株间蒸发量。与常规耕作相比,深耕和深松处理的周年作物产量分别提高了10.7%和9.8%,周年水分利用效率分别提高了8.8%和6.3%。秸秆还田处理的周年作物产量和水分利用效率分别比秸秆不还田处理提高了6.3%和7.6%。耕作方式与秸秆还田对冬小麦-夏玉米的耗水特性、籽粒产量和水分利用效率存在显著交互作用。与常规耕作+无秸秆还田处理相比,深耕+秸秆还田和深松+秸秆还田处理的周年农田耗水量分别提高3.3%和2.4%,冬小麦-夏玉米的农田耗水量分别提高了4.2%和3.3%,休闲期的农田耗水量分别降低了7.0%和9.9%,周年作物产量分别提高了18.0%和19.3%,水分利用效率分别提高了15.9%和15.1%。【结论】在几种耕作模式中,深耕+秸秆还田、深松+秸秆还田的周年作物产量和水分利用效率最高,且二者无显著性差异,表明深耕或深松结合秸秆还田有利于作物产量和水分利用效率的提高。因此,在本试验条件下,在秸秆还田的基础上深松或深耕是黄淮海地区适宜的耕作方式。
DOI:10.3864/j.issn.0578-1752.2014.17.004URLMagsci [本文引用: 2]
【目的】黄淮海地区是中国粮食主产区之一,但农业生产中旱涝频繁发生,同时还存在土壤紧实、耕层变浅和土壤蓄水保墒能力低等问题,严重影响了该区的粮食生产。耕作方式和秸秆还田作为农业生产中两项重要的技术措施,对改善土壤结构、提高土壤蓄水能力和水分利用效率有显著作用。本文旨在探索耕作方式、秸秆还田以及二者交互对冬小麦-夏玉米耗水特性和水分利用效率的影响,为优化黄淮海地区的土壤耕作方式提供依据。【方法】采用土壤耕作方式与秸秆还田相结合的方法,设置常规耕作+秸秆还田、常规耕作+无秸秆还田、深耕+秸秆还田、深耕+无秸秆还田、深松+秸秆还田、深松+无秸秆还田6个处理,研究耕作方式与秸秆还田对冬小麦-夏玉米一年两熟农田耗水量、耗水模系数、土壤贮水消耗量、株间蒸发量、籽粒产量和水分利用效率的影响,分析不同耕作方式、秸秆还田以及二者交互对冬小麦-夏玉米耗水特性和水分利用效率的影响。【结果】耕作方式、秸秆还田对土壤容重、农田耗水量、土壤贮水消耗量、株间蒸发量、籽粒产量和水分利用效率均存在显著或极显著影响。与常规耕作相比,深耕和深松主要降低了20—40 cm土层的土壤容重,增加了冬小麦、夏玉米和周年总农田耗水量,提高了0—100 cm土层的土壤贮水消耗量,同时降低了休闲期无效农田耗水量。此外,深耕和深松还降低了夏玉米的株间蒸发量,但深耕显著增加了冬小麦的株间蒸发量,深松则相反。秸秆还田也可以降低土壤容重,提高土壤贮水消耗量,增加冬小麦农田耗水量,降低夏玉米和休闲期农田耗水量,增加冬小麦的株间蒸发量,降低夏玉米的株间蒸发量。与常规耕作相比,深耕和深松处理的周年作物产量分别提高了10.7%和9.8%,周年水分利用效率分别提高了8.8%和6.3%。秸秆还田处理的周年作物产量和水分利用效率分别比秸秆不还田处理提高了6.3%和7.6%。耕作方式与秸秆还田对冬小麦-夏玉米的耗水特性、籽粒产量和水分利用效率存在显著交互作用。与常规耕作+无秸秆还田处理相比,深耕+秸秆还田和深松+秸秆还田处理的周年农田耗水量分别提高3.3%和2.4%,冬小麦-夏玉米的农田耗水量分别提高了4.2%和3.3%,休闲期的农田耗水量分别降低了7.0%和9.9%,周年作物产量分别提高了18.0%和19.3%,水分利用效率分别提高了15.9%和15.1%。【结论】在几种耕作模式中,深耕+秸秆还田、深松+秸秆还田的周年作物产量和水分利用效率最高,且二者无显著性差异,表明深耕或深松结合秸秆还田有利于作物产量和水分利用效率的提高。因此,在本试验条件下,在秸秆还田的基础上深松或深耕是黄淮海地区适宜的耕作方式。
,
DOI:10.1079/SUM2005356URL [本文引用: 1]
Abstract. The favoured temperature range for soyabean seed germination is 25–30 °C and the crop is sensitive to water stress. In northern India, the crop is sown in the hot-dry months of May–June. Straw mulching can alter the soil's hydrothermal regime by lowering the temperature and reducing evaporation losses. A field experiment was conducted from 1999 to 2002 at the Research Farm of Punjab Agricultural University, Ludhiana on a loamy sand soil to evaluate the effect of wheat straw mulch on soil temperature, soyabean seed yield and crop growth. Maximum soil temperatures at sowing depth, recorded during the 1-month period after sowing (seed germination to seedling establishment stage), were high under no-mulch, ranging from 30.6 to 48.6 °C, while mulching substantially reduced these temperatures by 1.4 to 12.7 °C. Mulching increased soyabean seed yield by 4.4 to 68.3% in different cropping seasons; it also increased plant biomass by 17 to 122% and nodule mass by 8 to 220%. Leaf area index, chlorophyll content of leaves and number of pods per plant were all increased. Seed yield improvement under mulch was negatively correlated with rainfall distribution (number of rainy days) and amount during the whole cropping season. The percentage increase in seed yield with mulching was regressed against the total number of rainy days and total rainfall in millimetres in the cropping season. Thereby 93% of the variation in response to mulching in different cropping seasons was explained by the distribution and amount of rainfall.
,
URLMagsci [本文引用: 2]
通过定西市安定区的中长期保护性耕作试验,对连续6 a不同耕作措施后0~30 cm土层土壤的水分特征曲线、土壤容重、孔隙度、土壤饱和导水率进行了测定。结果表明,两种轮作序列下,不同耕作措施0~30 cm土壤水分特征曲线在水吸力为5 bar和15 bar时几近重合,在3 bar、1 bar和0.5 bar时出现差异;Gardner模型拟合的结果显示在0.5~15 bar吸力范围内,其水吸力与含水量之间的关系符合幂函数式S=Aθ-B这一关系式,且相关系数均达极显著水平。免耕秸秆覆盖和免耕地膜覆盖的两个处理较传统耕作改善了土壤持水性能;传统耕作秸秆还田和免耕秸秆覆盖处理较传统耕作处理显著降低了0~5 cm土层容重,增加了土壤总孔度;免耕秸秆覆盖可以显著提高土壤饱和导水率。
URLMagsci [本文引用: 2]
通过定西市安定区的中长期保护性耕作试验,对连续6 a不同耕作措施后0~30 cm土层土壤的水分特征曲线、土壤容重、孔隙度、土壤饱和导水率进行了测定。结果表明,两种轮作序列下,不同耕作措施0~30 cm土壤水分特征曲线在水吸力为5 bar和15 bar时几近重合,在3 bar、1 bar和0.5 bar时出现差异;Gardner模型拟合的结果显示在0.5~15 bar吸力范围内,其水吸力与含水量之间的关系符合幂函数式S=Aθ-B这一关系式,且相关系数均达极显著水平。免耕秸秆覆盖和免耕地膜覆盖的两个处理较传统耕作改善了土壤持水性能;传统耕作秸秆还田和免耕秸秆覆盖处理较传统耕作处理显著降低了0~5 cm土层容重,增加了土壤总孔度;免耕秸秆覆盖可以显著提高土壤饱和导水率。
,
URL [本文引用: 1]
以秸秆为材料,利用微型蒸发器,分析了不同秸秆粉碎添加量及不同秸秆覆盖度对土壤蒸发特性的影响。结果表明:粉碎秸秆施入到土壤中能促进土壤蒸发,但添加粉碎秸秆处理间对土壤蒸发影响不显著。秸秆覆盖土壤能有效抑制土壤蒸发,且高覆盖度抑制效果显著。F4(100%覆盖)累积土壤蒸发量最少,为40.8mm,与其他处理差异显著(P0.05)。试验阶段土壤蒸发作用强于降水补充,高秸秆覆盖度土壤贮水能力高于对照,添加粉碎秸秆土壤贮水量比对照减少幅度大。秸秆覆盖处理土壤蓄水保墒、抑制蒸发能力显著优于秸秆粉碎添加处理。图5,表3,参16。
URL [本文引用: 1]
以秸秆为材料,利用微型蒸发器,分析了不同秸秆粉碎添加量及不同秸秆覆盖度对土壤蒸发特性的影响。结果表明:粉碎秸秆施入到土壤中能促进土壤蒸发,但添加粉碎秸秆处理间对土壤蒸发影响不显著。秸秆覆盖土壤能有效抑制土壤蒸发,且高覆盖度抑制效果显著。F4(100%覆盖)累积土壤蒸发量最少,为40.8mm,与其他处理差异显著(P0.05)。试验阶段土壤蒸发作用强于降水补充,高秸秆覆盖度土壤贮水能力高于对照,添加粉碎秸秆土壤贮水量比对照减少幅度大。秸秆覆盖处理土壤蓄水保墒、抑制蒸发能力显著优于秸秆粉碎添加处理。图5,表3,参16。
,
DOI:10.1016/j.agwat.2011.07.002URL [本文引用: 1]
Soil evaporation (Es) is considered to be a non-productive component of evapotranspiration (ET). So, measures which moderate Es may influence the amount of water available for transpiration (T), the productive component of ET. Field experiments investigating the effects of rice straw mulch on components of the water balance of irrigated wheat were conducted during 2006–2007 and 2007–2008 in Punjab, India, on a clay loam soil. Daily Es was measured using mini-lysimeters, and total seasonal ET was estimated as the missing term in the water balance equation. Mulch lowered total Es over the crop growth season by 35 and 40 mm in relatively high and low rainfall years, respectively. Much of this “saved water” was partitioned into T, which increased by 30 and 37 mm in the high and low rainfall years, respectively. As a result, total ET was not affected by mulch in either year. In both years, there was a trend for higher biomass production and grain yield with mulch, but with significant differences only in 2006–2007. Transpiration efficiency (TE) with respect to grain yield was 18.8–19.1 kg ha 611 mm 611 in 2006–2007, and 14.6–16.4 kg ha 611 mm 611 in 2007–2008. While wheat grown in the presence of mulch tended to lower TE, this was only significant in 2007–2008. The results suggest that while mulching of well-irrigated wheat reduces Es, it does not “save” water because the crop compensates by increased T and reduced TE.
,
URLMagsci [本文引用: 1]
该文从目前中国干旱半干旱地区发展起来的较为成熟的保墒技术得到启迪,提出了“保墒灌溉”这一新理念。重点通过小区试验研究了免耕条件下秸秆覆盖保墒灌溉的农田效应。结果表明,覆盖处理0~50 cm土壤含水率明显高于对照,地表温度日变化趋势缓和,日最高最低温度差为12.43℃,而对照则高达50.03℃。覆盖处理耕层土壤细菌、放线菌、真菌分别是对照的1.63倍、1.68倍和1.07倍,玉米株高、茎粗和叶面积均明显大于对照,相对于覆盖处理和对照本身而言,各指标均有随灌水量的增加呈上升的趋势。覆盖处理后,玉米的光合作用速率、蒸腾速率等均大于对照,但是单叶水分利用效率却相差不大。玉米产量随灌溉水量的增加较对照平均增加22.16%、20.28%和12.75%,且基本随灌溉量的增加呈上升趋势。
URLMagsci [本文引用: 1]
该文从目前中国干旱半干旱地区发展起来的较为成熟的保墒技术得到启迪,提出了“保墒灌溉”这一新理念。重点通过小区试验研究了免耕条件下秸秆覆盖保墒灌溉的农田效应。结果表明,覆盖处理0~50 cm土壤含水率明显高于对照,地表温度日变化趋势缓和,日最高最低温度差为12.43℃,而对照则高达50.03℃。覆盖处理耕层土壤细菌、放线菌、真菌分别是对照的1.63倍、1.68倍和1.07倍,玉米株高、茎粗和叶面积均明显大于对照,相对于覆盖处理和对照本身而言,各指标均有随灌水量的增加呈上升的趋势。覆盖处理后,玉米的光合作用速率、蒸腾速率等均大于对照,但是单叶水分利用效率却相差不大。玉米产量随灌溉水量的增加较对照平均增加22.16%、20.28%和12.75%,且基本随灌溉量的增加呈上升趋势。
,
DOI:10.3724/SP.J.1011.2011.01307URLMagsci [本文引用: 1]
在甘肃河西走廊区, 通过大田试验, 研究了不同供水水平下小麦间作玉米与单作小麦、单作玉米的耗水量和棵间蒸发量差异, 探讨了影响作物棵间蒸发量的关键因子。结果表明, 小麦间作玉米的耗水量较单作小麦、单作玉米耗水量的平均值增加了41.44%~47.15%; 间作全生育期的总棵间蒸发量显著大于单作, 但间作的日均棵间蒸发量显著低于单作玉米、高于单作小麦; 间作的棵间蒸发量占总耗水量的比重显著低于单作玉米, 说明间作可提高农田水分利用的有效性。随灌水水平的提高,间作总耗水量显著增加,单作相邻灌水处理间的差异不显著;灌水水平对单作玉米、间作棵间蒸发量的影响不显著,说明间作耗水量增加主要是由蒸腾作用造成的。作物的日均棵间蒸发量与0~30 cm的土壤含水量、0~25 cm的土壤温度、全生育期的平均叶面积指数均呈显著正相关关系。单作玉米日均棵间蒸发量较大的主要原因是0~30 cm的土壤含水量、0~25 cm的土壤温度均相对较高。小麦间作玉米可提高作物的土地利用率, 其水分利用效率较单作平均提高25%以上。
DOI:10.3724/SP.J.1011.2011.01307URLMagsci [本文引用: 1]
在甘肃河西走廊区, 通过大田试验, 研究了不同供水水平下小麦间作玉米与单作小麦、单作玉米的耗水量和棵间蒸发量差异, 探讨了影响作物棵间蒸发量的关键因子。结果表明, 小麦间作玉米的耗水量较单作小麦、单作玉米耗水量的平均值增加了41.44%~47.15%; 间作全生育期的总棵间蒸发量显著大于单作, 但间作的日均棵间蒸发量显著低于单作玉米、高于单作小麦; 间作的棵间蒸发量占总耗水量的比重显著低于单作玉米, 说明间作可提高农田水分利用的有效性。随灌水水平的提高,间作总耗水量显著增加,单作相邻灌水处理间的差异不显著;灌水水平对单作玉米、间作棵间蒸发量的影响不显著,说明间作耗水量增加主要是由蒸腾作用造成的。作物的日均棵间蒸发量与0~30 cm的土壤含水量、0~25 cm的土壤温度、全生育期的平均叶面积指数均呈显著正相关关系。单作玉米日均棵间蒸发量较大的主要原因是0~30 cm的土壤含水量、0~25 cm的土壤温度均相对较高。小麦间作玉米可提高作物的土地利用率, 其水分利用效率较单作平均提高25%以上。
,
DOI:10.1007/s00374-013-0805-7URL [本文引用: 1]
Proper rice straw management in paddy fields is necessary in order to sustain soil productivity and reduce greenhouse gas emissions. A field experiment was carried out from 2008 to 2011 in subtropical China: (1) to monitor rice yield, soil available nutrients, CH4, and N2O emissions and (2) to evaluate the effects of timing of rice straw incorporation and joint N application rate in a double rice cropping system. The total amount of rice straw from one cropping season was incorporated in winter (W-S) or in spring (S-S) and mineral N was jointly applied with rice straw incorporation at rates of 0, 30, and 60 % of the basal fertilization rate (N-0B, N-30B, and N-60B) for the first rice crop. Soil water was naturally drained during the period of winter fallow (P-WF) and controlled under intermittent irrigation during the period of first rice growth (P-FR). Compared with S-S, W-S significantly (P < 0.05) increased the first rice yield only in the flooding year (2010), and increased the soil available K concentration after P-WF and P-FR in 2008-2009 and the hydrolysable N concentration after P-WF in 2010-2011. Meanwhile, W-S significantly decreased the total CH4 emission by about 12 % in 2009-2010 and 2010-2011, but increased the total N2O emission by 15-43 % particularly during P-WF in all 3 years, resulting in a lower GWP in W-S in the flooding year and no differences in the nonflooding years. Compared with N-0B, joint N application (N-60B and N-30B) increased the soil hydrolysable N after P-WF in all 3 years. Meanwhile, it decreased the total CH4 emissions by 21 % and increased the N2O emissions during P-WF by 75-150 % in the nonflooding years, but the net GWP was lower in N-60B than in N-0B. The results suggested that the rice straw incorporation with joint N application in winter is more sustainable compared with the local practices such as rice straw incorporation in spring or open-field burning.
,
DOI:10.7505/j.issn.1007-9084.2017.06.015URL [本文引用: 1]
在徐州麦豆一年两熟区进行田间定位试验(2012-2016年),采用两因素试验设计,研究了不同耕作方式(免耕和旋耕)和小麦秸秆还田量(不还田、半量还田和全量还田)对大豆产量和土壤理化性状的影响。结果表明:与旋耕处理相比较,免耕处理对大豆产量、土壤有机质含量和土壤速效K含量没有影响,但减少了土壤NO3^--N含量,增加了土壤NH4^+-N含量、土壤速效P含量和播种期至苗期的土壤容重。与不还田处理相比较,秸秆还田处理提高了大豆单株荚数、百粒重和产量以及土壤有机质含量和土壤速效K含量,降低了土壤NO3^--N含量、NH4^+-N含量和初花期至初熟期土壤容重。免耕和秸秆还田均降低了土壤p H值、播种期至初花期土壤温度,增加了播种期至初花期土壤湿度。秸秆不还田下免耕处理大豆单株荚数、百粒重、产量、土壤有机质含量、土壤p H值和土壤NO3^--N含量较旋耕处理显著下降。与之不同,秸秆还田下免耕处理土壤湿度、土壤有机质含量、土壤速效P含量高于旋耕处理,土壤温度、土壤NO3^--N含量和土壤NH4^+-N含量低于旋耕处理,而免耕处理与旋耕处理间大豆产量和土壤速效K含量差异均不显著。其中,免耕+秸秆全量还田处理土壤温度、土壤p H值最低,土壤湿度、土壤有机质含量最高。因此,在黄淮海夏大豆区推广免耕技术时,应与秸秆覆盖,尤其是秸秆全量覆盖相结合,同时,在生产中需要注意N肥的补充。
DOI:10.7505/j.issn.1007-9084.2017.06.015URL [本文引用: 1]
在徐州麦豆一年两熟区进行田间定位试验(2012-2016年),采用两因素试验设计,研究了不同耕作方式(免耕和旋耕)和小麦秸秆还田量(不还田、半量还田和全量还田)对大豆产量和土壤理化性状的影响。结果表明:与旋耕处理相比较,免耕处理对大豆产量、土壤有机质含量和土壤速效K含量没有影响,但减少了土壤NO3^--N含量,增加了土壤NH4^+-N含量、土壤速效P含量和播种期至苗期的土壤容重。与不还田处理相比较,秸秆还田处理提高了大豆单株荚数、百粒重和产量以及土壤有机质含量和土壤速效K含量,降低了土壤NO3^--N含量、NH4^+-N含量和初花期至初熟期土壤容重。免耕和秸秆还田均降低了土壤p H值、播种期至初花期土壤温度,增加了播种期至初花期土壤湿度。秸秆不还田下免耕处理大豆单株荚数、百粒重、产量、土壤有机质含量、土壤p H值和土壤NO3^--N含量较旋耕处理显著下降。与之不同,秸秆还田下免耕处理土壤湿度、土壤有机质含量、土壤速效P含量高于旋耕处理,土壤温度、土壤NO3^--N含量和土壤NH4^+-N含量低于旋耕处理,而免耕处理与旋耕处理间大豆产量和土壤速效K含量差异均不显著。其中,免耕+秸秆全量还田处理土壤温度、土壤p H值最低,土壤湿度、土壤有机质含量最高。因此,在黄淮海夏大豆区推广免耕技术时,应与秸秆覆盖,尤其是秸秆全量覆盖相结合,同时,在生产中需要注意N肥的补充。
,
DOI:10.3724/SP.J.1006.2016.00751URLMagsci [本文引用: 1]
<p><span>研究茬口对轮作</span><span><span><span>作物的产量贡献及干物质积累与分配规律的</span></span></span><span><span>影响,对于<span>优化作物高产高效栽培理论和技术具有重要意义。</span></span></span><span><span>本研究在甘肃河西绿洲灌区,通过田间试验,研究了前茬小麦不同秸秆还田方式</span></span><span><span>(25 cm</span></span><span><span>高茬收割免耕</span></span><span><span>, NTSS; 25 cm</span></span><span><span>高茬等量秸秆覆盖免耕</span></span><span><span>, NTS; 25 cm</span></span><span><span>高茬等量秸秆翻压</span></span><span><span>, TIS; </span></span><span><span>低茬收割翻耕</span></span><span><span>, CT)</span></span><span><span>对轮作玉米干物质积累和分配及产量的影响,以期为该区前茬小麦轮作玉米生产模式提供优化依据。</span></span><span>结果表明,</span><span>与</span><span>CT</span><span>相比,</span><span>NTSS</span><span>、</span><span>NTS</span><span>、</span><span>TIS</span><span>提高了玉米抽穗后干物质的积累量,两年平均高</span><span>4.8%~12.7%</span><span>,</span><span>NTS</span><span>较</span><span>NTSS</span><span>、</span><span>TIS</span><span>具有更高的干物质累积作用</span><span>;</span><span>NTSS</span><span>、</span><span>NTS</span><span>、</span><span>TIS</span><span>可提高玉米叶、茎、鞘对籽粒的贡献率,</span><span>提高幅度平均为</span><span>12.8%~25.0%</span><span>、</span><span>6.3%~11.3%</span><span>、</span><span>18.3%~78.4%</span><span>,其中</span><span>NTS</span><span>较</span><span>NTSS</span><span>、</span><span>TIS</span><span>提高作用更突出。</span><span>NTSS</span><span>、</span><span>NTS</span><span>、</span><span>TIS</span><span>提高了</span><span>玉米的籽粒产量,增幅为</span><span>11.3%~17.5%</span><span>,其中</span><span>NTS</span><span><span>两年籽粒产量最高,分别达到</span></span><span><span>13 470 kg hm<sup>-2</sup></span></span><span><span>和</span></span><span><span>13 274 kg hm<sup>-2</sup></span></span><span>,较</span><span>TIS</span><span>高</span><span>5.6%~9.0%</span><span>;穗粒数增加是小麦秸秆还田提高轮作玉米产量的主要原因。</span><span>同时</span><span><span>NTS</span></span><span><span>获得</span></span><span><span>较高的收获指数,提高比例为</span></span><span><span>6.4%~8.4%</span></span><span>,说明</span><span>NTS</span><span>较其他处理增产的另一原因是提高了收获指数</span><span>。本研究表明,其前茬小麦秸秆覆盖结合免耕</span><span>(NTS)</span><span>可作为绿洲灌区优化后茬玉米干物质累积规律及获得高产的理想耕作措施。</span></p>
DOI:10.3724/SP.J.1006.2016.00751URLMagsci [本文引用: 1]
<p><span>研究茬口对轮作</span><span><span><span>作物的产量贡献及干物质积累与分配规律的</span></span></span><span><span>影响,对于<span>优化作物高产高效栽培理论和技术具有重要意义。</span></span></span><span><span>本研究在甘肃河西绿洲灌区,通过田间试验,研究了前茬小麦不同秸秆还田方式</span></span><span><span>(25 cm</span></span><span><span>高茬收割免耕</span></span><span><span>, NTSS; 25 cm</span></span><span><span>高茬等量秸秆覆盖免耕</span></span><span><span>, NTS; 25 cm</span></span><span><span>高茬等量秸秆翻压</span></span><span><span>, TIS; </span></span><span><span>低茬收割翻耕</span></span><span><span>, CT)</span></span><span><span>对轮作玉米干物质积累和分配及产量的影响,以期为该区前茬小麦轮作玉米生产模式提供优化依据。</span></span><span>结果表明,</span><span>与</span><span>CT</span><span>相比,</span><span>NTSS</span><span>、</span><span>NTS</span><span>、</span><span>TIS</span><span>提高了玉米抽穗后干物质的积累量,两年平均高</span><span>4.8%~12.7%</span><span>,</span><span>NTS</span><span>较</span><span>NTSS</span><span>、</span><span>TIS</span><span>具有更高的干物质累积作用</span><span>;</span><span>NTSS</span><span>、</span><span>NTS</span><span>、</span><span>TIS</span><span>可提高玉米叶、茎、鞘对籽粒的贡献率,</span><span>提高幅度平均为</span><span>12.8%~25.0%</span><span>、</span><span>6.3%~11.3%</span><span>、</span><span>18.3%~78.4%</span><span>,其中</span><span>NTS</span><span>较</span><span>NTSS</span><span>、</span><span>TIS</span><span>提高作用更突出。</span><span>NTSS</span><span>、</span><span>NTS</span><span>、</span><span>TIS</span><span>提高了</span><span>玉米的籽粒产量,增幅为</span><span>11.3%~17.5%</span><span>,其中</span><span>NTS</span><span><span>两年籽粒产量最高,分别达到</span></span><span><span>13 470 kg hm<sup>-2</sup></span></span><span><span>和</span></span><span><span>13 274 kg hm<sup>-2</sup></span></span><span>,较</span><span>TIS</span><span>高</span><span>5.6%~9.0%</span><span>;穗粒数增加是小麦秸秆还田提高轮作玉米产量的主要原因。</span><span>同时</span><span><span>NTS</span></span><span><span>获得</span></span><span><span>较高的收获指数,提高比例为</span></span><span><span>6.4%~8.4%</span></span><span>,说明</span><span>NTS</span><span>较其他处理增产的另一原因是提高了收获指数</span><span>。本研究表明,其前茬小麦秸秆覆盖结合免耕</span><span>(NTS)</span><span>可作为绿洲灌区优化后茬玉米干物质累积规律及获得高产的理想耕作措施。</span></p>
,
DOI:10.13930/j.cnki.cjea.160639URL [本文引用: 2]
产量性能是决定作物生长发育和产量形成的关键因素,研究前茬秸秆处理方式对后茬作物产量性能指标的影响,对于建立高效种植制度、优化栽培措施具有重要指导意义。2009—2012年,在甘肃河西绿洲灌区,通过田间定位试验,研究了前茬小麦不同秸秆还田和耕作措施(NTSS:25 cm高茬收割立茬免耕;NTS:25 cm高茬等量秸秆覆盖免耕;TIS:25 cm高茬等量秸秆翻耕;CT:不留茬翻耕对照)对后作玉米产量性能指标的影响,以期为优化试区玉米种植模式提供依据。结果表明,与CT相比,前茬小麦秸秆还田降低了后作玉米大喇叭口期之前的叶面积指数(LAI)与光合势(LAD),但增大了吐丝期之后的LAI与LAD,延缓了衰老,以NTSS、NTS延缓衰老作用突出;NTSS、NTS和TIS处理玉米全生育期的平均叶面积指数(MLAI)比CT分别提高12.8%、19.1%和7.0%,总光合势分别提高12.9%、18.6%和6.8%,免耕秸秆还田(NTSS和NTS)提高MLAI和LAD的效果最好。免耕秸秆还田提高了玉米全生育期的平均净同化率(MNAR),以NTSS提高作用明显,较CT高10.7%;但净同化率(NAR)表现为吐丝期之前增大,吐丝期之后降低。NTSS、NTS提高了后作玉米的籽粒产量,比CT分别高13.0%、15.6%,TIS比CT提高7.9%,NTS增产效应最大。不同秸秆还田及耕作方式下,玉米籽粒产量与MLAI、穗数(EN)、穗粒数(KNE)呈极显著正相关性,与收获指数(HI)呈显著正相关性,但与MNAR无显著相关性。MLAI、EN、KNE增加、HI提高是前茬小麦免耕秸秆还田提高后作玉米产量的主要原因。前茬秸秆免耕还田优化后茬玉米主要产量性能指标的效果最好。因此,前茬小麦25 cm秸秆覆盖免耕还田是绿洲灌区优化后作玉米产量性能指标及获得高产的可行栽培措施。
DOI:10.13930/j.cnki.cjea.160639URL [本文引用: 2]
产量性能是决定作物生长发育和产量形成的关键因素,研究前茬秸秆处理方式对后茬作物产量性能指标的影响,对于建立高效种植制度、优化栽培措施具有重要指导意义。2009—2012年,在甘肃河西绿洲灌区,通过田间定位试验,研究了前茬小麦不同秸秆还田和耕作措施(NTSS:25 cm高茬收割立茬免耕;NTS:25 cm高茬等量秸秆覆盖免耕;TIS:25 cm高茬等量秸秆翻耕;CT:不留茬翻耕对照)对后作玉米产量性能指标的影响,以期为优化试区玉米种植模式提供依据。结果表明,与CT相比,前茬小麦秸秆还田降低了后作玉米大喇叭口期之前的叶面积指数(LAI)与光合势(LAD),但增大了吐丝期之后的LAI与LAD,延缓了衰老,以NTSS、NTS延缓衰老作用突出;NTSS、NTS和TIS处理玉米全生育期的平均叶面积指数(MLAI)比CT分别提高12.8%、19.1%和7.0%,总光合势分别提高12.9%、18.6%和6.8%,免耕秸秆还田(NTSS和NTS)提高MLAI和LAD的效果最好。免耕秸秆还田提高了玉米全生育期的平均净同化率(MNAR),以NTSS提高作用明显,较CT高10.7%;但净同化率(NAR)表现为吐丝期之前增大,吐丝期之后降低。NTSS、NTS提高了后作玉米的籽粒产量,比CT分别高13.0%、15.6%,TIS比CT提高7.9%,NTS增产效应最大。不同秸秆还田及耕作方式下,玉米籽粒产量与MLAI、穗数(EN)、穗粒数(KNE)呈极显著正相关性,与收获指数(HI)呈显著正相关性,但与MNAR无显著相关性。MLAI、EN、KNE增加、HI提高是前茬小麦免耕秸秆还田提高后作玉米产量的主要原因。前茬秸秆免耕还田优化后茬玉米主要产量性能指标的效果最好。因此,前茬小麦25 cm秸秆覆盖免耕还田是绿洲灌区优化后作玉米产量性能指标及获得高产的可行栽培措施。
,
DOI:10.13930/j.cnki.cjea.160788URL [本文引用: 1]
出苗率及出苗整齐度在很大程度上决定了作物生长状况和产量丰欠,针对不同耕作措施结合秸秆还田对绿洲灌区小麦出苗及群体动态影响研究薄弱问题,研究不同秸秆还田与耕作方式对小麦出苗与产量的影响,以及二者的相关关系,对于优化耕作措施具有重要指导意义。2014—2015年,在甘肃河西绿洲灌区,通过田间定位试验,研究了不同秸秆还田和耕作措施[少耕25-30 cm高茬收割秸秆立茬还田(NTSS)、少耕25-30 cm高茬收割秸秆覆盖还田(NTS)、翻耕25-30 cm高茬收割秸秆还田(TS)和不留茬翻耕(CT)]对小麦出苗状况及产量、产量构成因素的影响,以期为优化试区小麦栽培技术提供依据。结果显示,与CT相比,NTSS、NTS降低了小麦出苗率以及出苗整齐度,TS则提高了小麦出苗率以及出苗整齐度。NTSS、NTS较CT的分蘖数分别高7.4%-10.5%、14.6%-19.1%,分蘖成穗率分别高13.5%-20.1%、33.0%-34.7%,有效穗数分别高7.5%-9.3%、10.3%-11.2%,穗粒数分别高15.7%-16.1%、18.5%-22.6%,千粒重分别高7.2%-8.9%、13.9%-14.2%,但TS与CT在以上指标间没有显著差异。NTSS、NTS与CT相比较,分别增产16.6%-17.4%、18.6%-21.4%,以NTS增产幅度较大,比TS高10.3%-11.0%。穗数和穗粒数的增加是少耕秸秆还田获得高产的主要原因,出苗率及整齐度对产量影响不显著。同时NTSS和NTS均获得较高的收获指数,提高比例分别为9.4%-10.7%与10.5%-11.1%,说明少耕秸秆还田提高籽粒产量的另一原因是提高了光合产物向籽粒中的转化。本研究表明,少耕秸秆还田是适用于试区小麦高产的理想耕作措施。
DOI:10.13930/j.cnki.cjea.160788URL [本文引用: 1]
出苗率及出苗整齐度在很大程度上决定了作物生长状况和产量丰欠,针对不同耕作措施结合秸秆还田对绿洲灌区小麦出苗及群体动态影响研究薄弱问题,研究不同秸秆还田与耕作方式对小麦出苗与产量的影响,以及二者的相关关系,对于优化耕作措施具有重要指导意义。2014—2015年,在甘肃河西绿洲灌区,通过田间定位试验,研究了不同秸秆还田和耕作措施[少耕25-30 cm高茬收割秸秆立茬还田(NTSS)、少耕25-30 cm高茬收割秸秆覆盖还田(NTS)、翻耕25-30 cm高茬收割秸秆还田(TS)和不留茬翻耕(CT)]对小麦出苗状况及产量、产量构成因素的影响,以期为优化试区小麦栽培技术提供依据。结果显示,与CT相比,NTSS、NTS降低了小麦出苗率以及出苗整齐度,TS则提高了小麦出苗率以及出苗整齐度。NTSS、NTS较CT的分蘖数分别高7.4%-10.5%、14.6%-19.1%,分蘖成穗率分别高13.5%-20.1%、33.0%-34.7%,有效穗数分别高7.5%-9.3%、10.3%-11.2%,穗粒数分别高15.7%-16.1%、18.5%-22.6%,千粒重分别高7.2%-8.9%、13.9%-14.2%,但TS与CT在以上指标间没有显著差异。NTSS、NTS与CT相比较,分别增产16.6%-17.4%、18.6%-21.4%,以NTS增产幅度较大,比TS高10.3%-11.0%。穗数和穗粒数的增加是少耕秸秆还田获得高产的主要原因,出苗率及整齐度对产量影响不显著。同时NTSS和NTS均获得较高的收获指数,提高比例分别为9.4%-10.7%与10.5%-11.1%,说明少耕秸秆还田提高籽粒产量的另一原因是提高了光合产物向籽粒中的转化。本研究表明,少耕秸秆还田是适用于试区小麦高产的理想耕作措施。
,
URLMagsci [本文引用: 1]
利用田间定位试验研究了绿洲灌区不同耕作措施下冬小麦蒸发蒸腾特性及产量表现。结果表明,免耕秸秆覆盖(NTS)及免耕立茬(NTSS)能提高冬小麦产量,降低土壤水分蒸发量(E),提高水分利用效率(WUE)。与传统耕作(TT)相比,NT(免耕)、NTS、NTSS与TIS(秸秆翻埋)的产量分别提高27.27%、30.60%、24.31%和18.58%。WUE顺序为NTS〉TIS〉NT〉NTSS〉TT。当裸露土壤水分过度蒸发耗损使0~10cm土壤含水量低于13%时,覆盖处理(NTS、NTSS)的E高于无覆盖处理(TT、TIS及NT),叶面蒸腾量也相对较高,植物生长状况较好。
URLMagsci [本文引用: 1]
利用田间定位试验研究了绿洲灌区不同耕作措施下冬小麦蒸发蒸腾特性及产量表现。结果表明,免耕秸秆覆盖(NTS)及免耕立茬(NTSS)能提高冬小麦产量,降低土壤水分蒸发量(E),提高水分利用效率(WUE)。与传统耕作(TT)相比,NT(免耕)、NTS、NTSS与TIS(秸秆翻埋)的产量分别提高27.27%、30.60%、24.31%和18.58%。WUE顺序为NTS〉TIS〉NT〉NTSS〉TT。当裸露土壤水分过度蒸发耗损使0~10cm土壤含水量低于13%时,覆盖处理(NTS、NTSS)的E高于无覆盖处理(TT、TIS及NT),叶面蒸腾量也相对较高,植物生长状况较好。
,
DOI:10.1007/s13593-015-0286-1URL [本文引用: 1]