Effect of exogenous plant growth regulators on carbon-nitrogen metabolism and flower-pod abscission of relay strip intercropping soybean
LUO Kai,1, XIE Chen1, WANG Jin1, WANG Tian1, HE Shun2, YONG Tai-Wen,1,*, YANG Wen-Yu1通讯作者:
收稿日期:2020-06-16接受日期:2020-10-14网络出版日期:2021-04-12
基金资助: |
Received:2020-06-16Accepted:2020-10-14Online:2021-04-12
Fund supported: |
作者简介 About authors
E-mail:
摘要
关键词:
Abstract
Keywords:
PDF (303KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
罗凯, 谢琛, 汪锦, 王甜, 何舜, 雍太文, 杨文钰. 外源喷施植物生长调节剂对套作大豆碳氮代谢和花荚脱落的影响[J]. 作物学报, 2021, 47(4): 752-760. doi:10.3724/SP.J.1006.2021.04129
LUO Kai, XIE Chen, WANG Jin, WANG Tian, HE Shun, YONG Tai-Wen, YANG Wen-Yu.
在大豆生产中, 环境因素和种植模式影响大豆花荚脱落率, 决定大豆产量构成因素和产量的形成[1,2]; 过高的花荚脱落率降低大豆单株有效荚数和单株粒数, 是限制大豆发挥产量潜力的主要因素[3]。研究表明, 大豆花荚的形成与脱落受植物内源激素信号水平变化和同化物供应有效性的协同调控[4,5]; 碳、氮代谢是植物体内重要的代谢途径, 调控不同时期的养分供应水平, 决定作物生长发育, 影响大豆花荚形成与脱落[6]。栽培措施的优化和化控技术的应用能促进植株生长、提高作物产量, 是发掘大豆产量潜力的重要途径[7,8,9]。
调节剂能影响作物在不同生育时期的生长发育, 协调不同器官间的养分分配状况, 提高对环境的适应性[10,11,12]。烯效唑(S3307)是一种能抑制赤霉素生物合成的高效植物生长延缓剂[8]; 闫艳红等[13]发现, 叶面喷施S3307能通过改善大豆叶片碳氮代谢水平, 增加大豆的单株有效荚数与百粒重。2-N,N-二乙氨基乙基乙酸酯(diethyl aminoethyl hexanoate, DTA-6)作为一种新型的植物生长调节剂, 可有效提高作物的品质和产量, 已广泛应用于玉米、大豆、花生等作物[14,15]。6-苄基腺嘌呤(6-benzylaminopurine, 6-BA)通过促进细胞分裂素的生物合成调节植物细胞的增殖和分化[16], 具有延缓叶片衰老和保绿等作用[17]。
玉米-大豆带状套作模式是我国西南地区的主推模式, 能提高复种指数和土地利用率, 实现对自然资源的充分利用[18]。套作大豆因苗期受玉米荫蔽影响处于生长劣势, 营养生长期间干物质积累不足, 营养生长与生殖生长之间的平衡被打破[19]; 养分供应失衡加剧花、荚器官间养分竞争, 促使花败育与荚脱落, 减少开花结荚数与单株有效荚数, 降低大豆产量[20,21,22]。为充分挖掘套作大豆的产量潜力, 本研究以玉米-大豆带状套作模式为对象, 通过初花期叶面喷施6BA、DTA-6、S3307, 研究其对套作大豆叶片碳氮代谢、花荚脱落和产量形成的影响, 旨在为完善植物生长调节剂在套作大豆中的调控技术应用提供理论支撑。
1 材料与方法
1.1 试验材料
选用紧凑型玉米品种‘登海605’和耐荫型大豆品种‘南豆25’为试验材料, 分别由山东登海种业股份有限公司和四川省南充市农业科学院提供。6-苄基腺嘌呤(6-BA, 含量≥98%)和2-N,N-二乙氨基乙基己酸酯(DTA-6, 含量≥98%)为促进型调节剂, 购自生工生物工程(上海)股份有限公司; 烯效唑(S3307, 5%可湿性粉剂)为延缓型调节剂, 购自四川国光农化股份有限公司。1.2 试验设计
试验于2018年和2019年分别在四川省现代粮食产业仁寿示范基地(30°02'N, 104°15'E)和四川省崇州现代农业研发基地(30°56'N, 103°64'E)进行。采用单因素随机区组设计, 以清水为对照(CK), 在套作大豆初花期叶面喷施20 mg L-1 6-BA、60 mg L-1 DTA-6、50 mg L-1 S3307, 用水量为450 kg hm-2。种植方式采用玉米-大豆宽窄行种植, 玉米窄行行距40 cm, 宽行行距160 cm, 宽行内种植2行大豆, 大豆带内行距40 cm, 玉米、大豆间距60 cm, 带宽2 m, 带长6 m。分别于2018年4月8日和2019年4月15日播种玉米, 株距17 cm, 密度58,500株 hm-2。分别于2018年6月18日和2019年6月19日播种大豆, 株距8.5 cm, 密度为117,000株 hm-2。每个小区内种植3带, 小区面积36 m2。大豆底肥施用P2O5 63 kg hm-2, K2O 52.5 kg hm-2。玉米底肥施N 120 kg hm-2, P2O5 105 kg hm-2, K2O 112.5 kg hm-2; 大喇叭口期追施N 120 kg hm-2, 施肥方式为行间开沟施肥。在整个生育期间, 适时除草和防治病虫。1.3 测定项目与方法
1.3.1 大豆植株可溶性糖、总碳和总氮含量的测定于大豆初花期(R1)、始荚期(R3)、始粒期(R5)、成熟期(R8)各小区随机选取长势一致植株3株, 按茎、叶、柄、荚分别装袋, 与105℃下杀青30 min后, 在80℃下烘干至恒重, 粉碎后过100目筛后存放于干燥器中。R8期测定的叶片采用倒置网袋法从初熟期(R7)开始收集。参照硫酸-苯酚定糖法[23]测定R1、R5、R8期大豆叶片可溶性糖含量。使用Elementar vario MICRO cube元素分析仪(Elementar公司, 德国)测定R3、R5期大豆各器官中总碳和总氮含量, 碳氮比即总碳含量/总氮含量[24]。
1.3.2 大豆叶片中糖代谢相关酶活性测定 于大豆盛花期(R2)、盛荚期(R4)、鼓粒期(R6)各小区随机选择长势一致3株大豆, 取其倒三叶中间叶, 清洗干净去除叶脉, 用液氮处理后, 放在-80℃超低温中保存。参照Chopra等[25]的方法测定蔗糖合成酶(sucrose synthetase, SS)、蔗糖磷酸合成酶(sucrose phosphate synthase, SPS)、转化酶(invertase, Inv)活性。
1.3.3 大豆花荚脱落调查 于大豆R1期前, 每小区选取4株长势一致植株, 在地上铺设尼龙网, 以备准确调查花荚脱落数目。自R1期后, 每7 d记录1次落花数和落荚数, 在R8期考察单株成荚数。
单株结荚数(个 株-1)=单株成荚数+单株落荚数
单株开花数(朵 株-1)=单株结荚数+单株落花数
单株落花率(%)=单株落花数/单株开花数×100%
单株落荚率(%)=单株落荚数/单株结荚数×100%
花荚脱落率(%)=(单株落花数+单株落荚数)/单株开花数×100%
1.3.4 产量相关参数测定 2018年和2019年间, 于大豆R8期, 各小区随机选取15株植株, 调查大豆单株有效荚数、单株粒数及百粒重; 选取长6 m的未取样大豆带测产, 在脱粒并晒干至籽粒含水量约为13.5%时, 测定籽粒产量。
1.4 数据分析
本研究所列结果为3次重复测定值的平均值, 使用Microsoft Excel 2016处理和分析数据, 采用统计分析软件SPSSv.22软件对数据进行方差分析和差异显著性测验(ANOVA, LSD, 显著性水平为α=0.05)。利用Origin作图。图表中数据为平均值±标准误。2 结果与分析
2.1 外源植物生长调节对大豆碳代谢的影响
2.1.1 套作大豆茎、叶、荚果中可溶性糖含量 大豆茎秆、叶片可溶性糖含量随着生育时期呈先增后减趋势, 荚果可溶性糖含量呈连续增加趋势(表1)。R5期, 调节剂处理下大豆茎秆、叶片可溶性糖含量显著高于CK; 分别在6-BA和S3307处理下最高, 较CK分别增加28.8%和19.2%; 调节剂处理下荚果可溶性糖含量较CK呈增加趋势。R8期, 调节剂处理下茎秆、叶片中的可溶性糖含量显著低于CK, 分别在DTA-6和6-BA处理下最低, 较CK分别降低29.3%和20.2%; 调节剂处理下荚果可溶性糖含量显著高于CK, 在DTA-6处理下最高, 较CK增加19.7%。Table 1
表1
表1外源喷施植物生长调节剂对套作大豆可溶性糖含量的影响
Table 1
处理 Treatment | R1 | R5 | R8 | |||||
---|---|---|---|---|---|---|---|---|
茎秆Stem | 叶Leaf | 茎秆Stem | 叶Leaf | 荚果Pod | 茎秆Stem | 叶Leaf | 荚果Pod | |
CK | 12.72±1.17 a | 11.32±1.23 a | 13.23±0.13 b | 11.56±0.74 b | 8.56±0.92 a | 8.33±0.92 a | 9.82±0.67 a | 20.76±1.84 b |
6-BA | 12.73±1.15 a | 12.03±0.98 a | 17.04±0.21 a | 13.56±0.69 a | 8.84±1.09 a | 6.14±0.73 b | 7.84±0.33 b | 24.23±1.68 a |
S3307 | 12.84±1.42 a | 12.04±1.77 a | 16.03±0.10 a | 13.78±1.48 a | 9.56±1.47 a | 6.32±1.44 b | 8.13±0.51 b | 24.79±1.72 a |
DTA-6 | 11.93±1.34 a | 11.34±1.03 a | 16.64±0.11 a | 13.33±0.22 a | 9.53±1.73 a | 5.89±1.09 b | 8.22±0.29 b | 24.86±1.23 a |
新窗口打开|下载CSV
2.1.2 套作大豆叶片蔗糖代谢相关酶活性 随生育期变化, 大豆叶片中SS、SPS、Inv酶活性的变化呈先上升后下降的趋势, 并在R4期达到峰值(图1)。R2期, DTA-6处理下大豆叶片SS、SPS、Inv酶活性显著高于CK, 较CK分别增加22.9%、54.3%和20.4%, 与S3307差异不显著。R4期, 调节剂处理下SS和SPS酶活性显著高于CK, 分别在6-BA和S3307处理下最高, 较CK分别显著增加25.0%和33.0%; 调节剂处理增加Inv酶活性, 在S3307处理下最高, 较CK增加55.7%, 各调节剂处理间差异不显著。R6期, 调节剂处理下SS和SPS酶活性显著高于CK, 分别在DTA-6、6-BA处理下最高, 较CK分别增加33.3%和41.1%; 调节剂处理增加Inv酶活性, 在6-BA处理下达到显著水平, 较CK增加41.1%, 与DTA-6差异不显著。
图1
新窗口打开|下载原图ZIP|生成PPT图1外源喷施植物生长调节剂对套作大豆叶片蔗糖合成酶(SS)、蔗糖磷酸合成酶(SPS)、转化酶(Inv)的影响
不同小写字母表示处理在0.05水平下差异显著。R2: 盛花期; R4: 盛荚期; R6: 鼓粒期。处理同
Fig. 1Effects of spraying plant growth regulators on the activities of SS, SPS, and Inv in relay intercropping soybean leaves
Different lowercase letters indicate significant differences among different regulator treatments at the 0.05 probability level. R2: blooming flower stage; R4: blooming pod stage; R6: full seed stage. Treatments are the same as those given in
2.2 外源植物生长调节对大豆植株各器官碳、氮含量, 碳/氮比值的影响
2.2.1 各器官总碳含量 从R3到R5期, 各器官中碳含量逐渐增加(表2)。R3期, 调节剂处理增加大豆茎秆、荚中的碳含量, 在S3307达到显著水平, 较CK分别增加3.7%和3.5%; 调节剂处理下叶片碳含量较CK呈增加趋势。R5期, 调节剂处理下大豆叶片氮素含量显著高于CK, 在DTA-6处理下最高, 较CK增加1.3%; 调节剂处理下大豆茎秆、荚皮碳含量较CK呈增加趋势。Table 2
表2
表2外源喷施植物生长调节剂对套作大豆茎、叶、荚皮和籽粒的碳素含量的影响
Table 2
处理 Treatment | R3 | R5 | |||||
---|---|---|---|---|---|---|---|
茎秆 Stem | 叶 Leaf | 荚皮 Pod husks | 茎秆 Stem | 叶 Leaf | 荚皮 Pod husks | 籽粒 Grain | |
CK | 422.22±2.67 b | 442.86±6.73 a | 416.86±6.91 b | 457.93±3.11 a | 458.71±1.33 b | 440.56±6.93 a | 506.22±1.44 b |
6-BA | 427.67±4.78 b | 444.24±5.59 a | 417.56±5.12 b | 446.59±8.03 a | 461.89±6.04 a | 441.22±1.12 a | 507.74±0.53 b |
S3307 | 437.87±2.33 a | 448.18±6.72 a | 431.33±4.28 a | 453.73±6.36 a | 463.03±2.44 a | 442.71±2.37 a | 510.90±2.64 a |
DTA-6 | 428.94±6.64 b | 445.80±2.44 a | 421.04±4.13 ab | 451.74±8.86 a | 464.53±3.24 a | 443.42±1.76 a | 509.71±4.62 ab |
新窗口打开|下载CSV
2.2.2 各器官总氮含量 大豆茎秆、叶片、荚皮中的氮素含量随生育时期逐渐下降, 籽粒中氮素含量逐渐增加(表3)。R3期, 6-BA和DTA-6处理下叶片氮含量显著高于CK, 较CK分别增加7.8%和8.0%, 与S3307差异不显著; 调节剂处理后的大豆茎秆、荚皮中的氮含量较CK呈下降趋势。R5期, 6-BA和DTA-6处理下大豆茎秆氮含量显著高于CK, 较CK分别增加25.8%和24.8%; S3307处理下大豆叶片氮含量显著低于CK, 较CK降低23.2%, 各调节剂处理间差异不显著; 调节剂处理下大豆荚皮氮含量显著高于CK, 在S3307最高, 较CK增加28.0%。
Table 3
表3
表3外源喷施植物生长调节剂对大豆茎、叶、荚皮和籽粒的氮素含量的影响
Table 3
处理 Treatment | R3 | R5 | |||||
---|---|---|---|---|---|---|---|
茎秆 Stem | 叶 Leaf | 荚皮 Pod husks | 茎秆 Stem | 叶 Leaf | 荚皮 Pod husks | 籽粒 Grain | |
CK | 20.69±0.23 a | 49.87±2.03 b | 45.71±0.12 a | 13.38±0.02 b | 42.16±2.03 a | 25.83±1.68 b | 77.05±2.11 b |
6-BA | 20.60±1.04 a | 53.78±1.19 a | 44.22±0.88 a | 18.04±0.16 a | 37.37±6.84 ab | 32.66±3.03 a | 77.64±2.13 ab |
S3307 | 19.79±1.22 a | 52.54±2.36 ab | 44.51±1.57 a | 13.73±0.15 b | 32.38±3.03 b | 33.06±3.43 a | 79.58±4.76 ab |
DTA-6 | 19.89±2.23 a | 53.84±0.67 a | 43.94±1.83 a | 16.70±0.19 a | 40.36±5.44 ab | 31.72±1.58 a | 81.68±1.26 a |
新窗口打开|下载CSV
2.2.3 大豆各器官碳/氮比值 调节剂处理增加R3期大豆茎秆和荚果中的C/N比值, 降低大豆叶片中的C/N比值; 在R5期呈现出相反变化趋势(表4)。R3期, S3307处理下大豆茎秆C/N比值显著高于CK, 较CK增加7.8%, 与6-BA和DTA-6处理差异不显著; 6-BA和DTA-6处理下大豆叶片中C/N比值显著低于CK, 较CK分别降低7.0%和6.8%, 与S3307差异不显著; 调节剂处理下大豆荚果C/N比值较CK呈增加趋势。R5期, 6-BA和DTA-6处理下大豆茎秆C/N比值显著低于CK和S3307, 较CK分别降低27.7%和21.0%; S3307处理下大豆叶片C/N比值显著高于CK, 较CK增加31.4%, 与6-BA和DTA-6处理差异不显著; 调节剂处理下大豆荚皮C/N比值显著低于CK, 在6-BA最小, 较CK降低20.8%; 调节剂处理下大豆籽粒C/N比值较CK呈降低趋势。
Table 4
表4
表4外源喷施植物生长调节剂对大豆茎、叶和荚果的C/N的影响
Table 4
处理 Treatment | R3 | R5 | |||||
---|---|---|---|---|---|---|---|
茎秆 Stem | 叶 Leaf | 荚皮 Pod husks | 茎秆 Stem | 叶 Leaf | 荚皮 Pod husks | 籽粒 Grain | |
CK | 20.40±0.11 b | 8.88±0.38 a | 9.12±0.15 a | 34.23±0.22 a | 10.88±0.48 b | 17.06±0.84 a | 6.57±0.17 a |
6-BA | 20.76±0.86 b | 8.26±0.23 b | 9.44±0.11 a | 24.76±2.08 b | 12.36±2.36 ab | 13.51±1.28 b | 6.54±0.18 a |
S3307 | 22.12±0.47 a | 8.53±0.11 ab | 9.69±0.28 a | 33.05±3.99 a | 14.30±1.39 a | 13.39±1.45 b | 6.42±0.35 a |
DTA-6 | 21.57±0.43 a b | 8.28±0.38 b | 9.58±0.19 a | 27.05±3.08 b | 11.51±1.57 ab | 13.98±0.77 b | 6.24±0.21 a |
新窗口打开|下载CSV
2.3 外源植物生长调节剂对大豆花荚脱落的影响
外源调节剂处理会提高大豆的开花数和结荚数, 降低花荚脱落率, 以DTA-6效果最佳, 且不同年份大豆开花数、结荚数、落花数之间存在差异(表5)。DTA-6处理下大豆开花数、结荚数显著高于CK, 2年较CK分别增加10.4%、15.0%和5.2%、8.1%, 与6-BA、S3307处理差异不显著。调节剂处理下大豆落花数、落荚数(6-BA除外)和落花率较CK呈下降趋势。DTA-6处理下大豆落荚率、花荚脱落率显著低于CK, 2年较CK分别降低15.0%、7.1%和29.4%、10.8%, 与S3307处理差异不显著。Table 5
表5
表5外源喷施植物生长调节剂对套作大豆花荚脱落数及脱落率的影响
Table 5
年份 Year | 处理 Treatment | 开花数 Number of flowers | 结荚数 Number of pods | 落花数 Number of abscission flowers | 落荚数 Number of abscission pods | 落花率 Flower abscission rate (%) | 落荚率 Pod abscission rate (%) | 花荚脱落率 Flower and pod abscission rate (%) |
---|---|---|---|---|---|---|---|---|
2018 | CK | 137.93±5.020 b | 75.60±5.03 b | 62.33±4.74 a | 30.33±4.16 a | 45.19±1.79 a | 40.12±3.68 a | 67.18±2.73 a |
6-BA | 147.82±5.00 ab | 83.82±6.00 ab | 64.00±3.00 a | 33.00±6.00 a | 43.29±1.69 a | 39.37±1.48 a | 65.62±1.37 ab | |
S3307 | 149.97±6.69 a | 82.64±6.07 ab | 67.33±3.79 a | 28.33±4.51 a | 44.90±2.63 a | 34.28±1.99 b | 63.79±1.72 b | |
DTA-6 | 152.28±5.79 a | 86.95±7.77 a | 65.33±1.81 a | 29.67±2.08 a | 42.90±1.27 a | 34.12±1.83 b | 62.39±1.90 b | |
2019 | CK | 161.36±3.85 b | 83.40±2.61 b | 77.96±0.64 a | 36.55±3.48 a | 48.31±1.88 a | 43.82±2.58 a | 70.97±1.88 a |
6-BA | 166.00±5.42 ab | 89.85±3.27 a | 76.15±2.21 a | 36.64±1.31 a | 45.87±2.22 a | 40.77±0.59 a | 67.95±1.62 ab | |
S3307 | 162.76±4.45 ab | 85.32±4.24 ab | 77.44±0.39 a | 29.02±4.06 b | 47.58±1.96 a | 34.01±2.85 b | 65.41±1.76 bc | |
DTA-6 | 169.69±2.85 a | 90.17±3.39 a | 79.52±2.95 a | 27.91±4.56 b | 46.86±1.59 a | 30.95±2.75 b | 63.31±1.45 c | |
F值 F-value | ||||||||
年份 Years (Y) | 125.07** | 8.85* | 50.96* | 1.26 | 8.72* | 0.01 | 3.40 | |
调节剂Regulators (R) | 10.48* | 4.91 | 0.22 | 2.11 | 1.16 | 1.81 | 4.53 | |
年份×调节剂 Y×R | 1.38 | 0.32 | 0.37 | 0.51 | 0.78 | 0.11 | 0.41 |
新窗口打开|下载CSV
2.4 外源植物生长调节剂对大豆产量及产量构成的影响
调节剂处理对大豆单株有效荚数、单株粒数、产量有极显著影响, 对大豆百粒重有显著影响, 不同年份下大豆单株有效荚数、产量有差异(表6)。DTA-6处理下2年大豆单株有效荚数、单株粒数显著高于CK, 较CK分别增加25.4%、35.6%和32.9%、33.2%, 显著高于6-BA处理。调节剂处理下2年大豆百粒重显著高于CK, 在S3307处理下最大, 较CK分别增加3.6%和2.1%。调节剂处理下2年大豆产量显著高于CK, 在DTA-6处理下最大, 较CK分别增加41.3%和37.6%, 显著高于6-BA和S3307处理。Table 6
表6
表6外源喷施植物生长调节剂对大豆产量与产量构成的影响
Table 6
年份 Year | 处理 Treatment | 单株有效荚数 Pods number per plant | 单株粒数 Grains number per plant | 百粒重 100-grain weight (g) | 产量 Yield (kg hm-2) |
---|---|---|---|---|---|
2018 | CK | 45.27±1.98 c | 76.25±3.76 c | 24.78±0.19 b | 1752.25±86.36 c |
6-BA | 50.82±2.31 b | 87.52±2.41 b | 25.42±0.16 a | 2117.40±99.12 b | |
S3307 | 54.31±2.19 ab | 89.13±3.32 b | 25.66±0.11 a | 2093.64±68.45 b | |
DTA-6 | 56.77±2.31 a | 103.37±4.45 a | 25.54±0.23 a | 2475.65±89.56 a | |
2019 | CK | 46.85±2.62 c | 78.89±4.50 c | 25.25±0.10 b | 1886.82±108.03 c |
6-BA | 53.21±3.07 b | 90.72±5.69 b | 25.52±0.11 a | 2231.02±99.53 b | |
S3307 | 56.30±2.99 ab | 93.48±4.36 b | 25.78±0.12 a | 2281.38±93.31 b | |
DTA-6 | 62.26±3.12 a | 105.05±7.14 a | 25.56±0.12 a | 2597.13±106.94 a | |
F值 F-value | |||||
年份 Years (Y) | 16.33** | 3.95 | 1.64 | 13.38* | |
调节剂 Regulators (R) | 39.73** | 71.12** | 7.24* | 61.45** | |
年份×调节剂 Y×R | 2.53 | 0.12 | 0.52 | 0.18 |
新窗口打开|下载CSV
3 讨论
3.1 植物生长调节剂对大豆花荚脱落的影响
在本研究中, 调节剂处理对大豆单株荚数、单株粒数、产量的影响达到极显著水平, 调节剂处理下大豆单株有效荚数、单株粒数、百粒重、产量显著高于CK。玉米-大豆带状套作复合种植模式中, 受玉米荫蔽影响, 大豆群体处于光能截获劣势, 光合作用减弱, 叶片碳代谢受到抑制, 作物整体代谢能力较弱[27], 大豆开花数结荚数减少, 且易出现荚而不实现象[28]。前人研究表明, 大豆单株有效荚数、单株粒数与大豆单株产量呈极显著正相关关系[8], 花荚脱落率与大豆单株荚数、单株粒数、单株产量呈显著负相关关系[2]。在开花期到始粒期期间, 大豆开花结荚数及其脱落率对大豆单株有效荚数的形成起决定性作用[26]。2年数据表明, 调节剂处理显著增加套作大豆开花数、结荚数, 降低大豆落荚数、落荚率、花荚脱落率, 显著提高大豆单株有效荚数与产量, 这与冯乃杰等[29]的研究结果相符合。3.2 植物生长调节剂对大豆糖代谢的影响
同化物供应的有效性, 决定了不同器官间的养分分配状况; 合理的养分分配有利于减少不同器官间的养分竞争, 对生殖器官的形成和发育起着重要的调控作用[15]。可溶性糖是典型的碳水化合物, 其含量水平能反映作物体内作为有效态营养物的碳水化合物和能量水平[30]。本试验结果表明, 调节剂处理提高R5期大豆叶片内可溶性糖的含量, 增强叶片内碳水化合物的供应; 促进后期茎、叶中碳水化合物向籽粒的转移, 这与闫艳红等[13]的研究结论相一致。糖的合成、水解与转移, 需要多种酶的共同参与; 蔗糖合成酶能够催化蔗糖的合成; 蔗糖磷酸合成酶调控光合产物向蔗糖和淀粉分配; 转化酶能将蔗糖水解为同等量的果糖和葡萄糖, 是参与蔗糖水解的关键酶[31]。叶片内蔗糖合成酶和蔗糖磷酸合成酶活性的增强, 有利于提高叶片可溶性糖、蔗糖和淀粉含量[25]。叶片内Inv酶活性提高有利于促进叶片内不同碳水化合物之间的相互转化, 增强碳水化合物的转运能力。本研究中, 调节剂处理提高各时期大豆叶片SS、SPS、Inv酶活性, 提高叶片内碳水化合的合成和向籽粒运输的能力, 为花荚的形成提供能量供应和物质基础, 这与赵黎明等[32]和宋春燕等[33]的研究结果相一致。3.3 碳氮协调与大豆花荚脱落
前人研究表明, 大豆开花结荚期间的养分比例失调, 器官间的养分竞争是诱导花荚脱落的重要原因[34]。营养生长时期积累足够的干物质, 是协调器官间养分比例、维持花荚正常发育的必要条件。蒋利[35]研究发现, 在玉米-大豆带状套作模式下, 花荚脱落率高的大豆品种, 盛花期到盛荚期仍有大量的干物质分配到茎秆和叶片的生长上, 增强了茎叶与花荚之间的养分竞争。本研究结果表明, R3期, 调节剂处理增加叶片和荚果碳、氮含量, 叶片C/N比值降低, 荚果C/N比值上升, 说明调节剂处理在维持叶片代谢强度的同时, 提高荚果代谢强度, 促进荚的形成, 降低荚的脱落。刘春娟等[36,37]研究发现, 叶面喷施DTA-6和S3307能延缓叶片衰老, 促进生育后期大豆叶片活性, 提高荚中碳、氮代谢强度, 促进叶片中蔗糖、果糖和淀粉向荚果的转移, 使更多的碳水化合物用于荚的形成, 进而提高大豆产量, 与本研究结果相一致。4 结论
外源喷施6-BA、DTA-6、S3307增强叶片SS、SPS、Inv酶的活性, 提高始粒期大豆茎、叶、荚中的可溶性糖含量, 增强后期籽粒中可溶性糖的积累, 优化叶片内碳水化合物的合成及转运; 调节剂处理下R3期叶片C/N比值降低, R5期叶片C/N比值增加, 维持不同时期碳氮代谢的动态平衡; 调节剂处理促进大豆开花结荚, 降低落荚率及花荚脱落率, 显著提高套作大豆的单株有效荚数与产量, 其中以DTA-6处理的增产效果最佳。参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
,
DOI:10.1016/j.scitotenv.2018.11.376URLPMID:30677964 [本文引用: 1]
Sustainable agricultural development is urgently required to satisfy future food demands while decreasing environmental costs. Intercropping can increase per-unit farmland productivity through a resource-efficient utilization. However, the fate of N in intercropping systems remains unclear. To study the yield advantages and the fate of N in additive maize-soybean relay intercropping (IMS) systems, we quantified crop yield, soil N transformation abilities, soil bacterial abundances, and the fate of (15)N. This study was conducted using three planting patterns, namely, monoculture maize (Zea mays L.) (MM), monoculture soybean (Glycine max L. Merr.) (MS), and IMS, and two N application rates, specifically, no N and applied N (N1, 45 and 135kgNha(-1) for MS and MM, correspondingly; and N for the IMS, which was the sum of the monocultures). Results showed that a higher per-unit farmland productivity and a lower land use intensity are attained in the intercropping system than in the corresponding monocultures. In addition, land equivalent ratio (LER) ranges from 1.85 to 2.20. Moreover, the fate of (15)N showed that the N uptake and residual are the highest, whereas N loss in the IMS is the lowest among all planting patterns. Intercropping had an increased N use efficiency by increasing N utilization efficiency, rather than N uptake efficiency. The abundance of ammonia oxidizer and denitrifier indicated that IMS improves the structure of soil microorganisms. Furthermore, the transformation abilities of soil N denoted that intercropping strengthens ammonifying and nitrifying capacities to increase soil N residual while decreasing ammonia volatilization and N2O emission. Finally, the greenhouse warming potential and gas intensity of N2O were significantly lower in the IMS than in the corresponding monocultures. In summary, the IMS system provides an environmentally friendly approach to increasing farmland productivity.
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 1]
,
DOI:10.3724/SP.J.1006.2016.00051URL [本文引用: 1]
叶面喷施生长调节剂(PGRs)可以调控大豆花荚脱落。2012—2013年在大庆林甸县黑龙江八一农垦大学试验基地采用大田小区试验,R1期对大豆绥农28(SN28)、垦丰16 (KF16)和合丰50 (HF50)分别叶面喷施DTA-6调节剂,对调控花荚离区脱落纤维素酶(GmAC)基因相对表达量、荚脱落纤维素酶(AC)活性、花荚脱落率和产量进行了研究。结果表明:DTA-6抑制大豆花荚离区GmAC基因相对表达量,最大可达51% (±CK%);大豆荚的AC活性能够在喷药后阶段性地被降低,在不同品种上增加和降低存在差异;能够显著降低花荚脱落率(P<0.05);能够显著增加产量(P<0.05)。植物生长调节剂DTA-6是通过降低花荚离区GmAC基因相对表达量,调节AC活性,从而减少植株的花荚脱落率,以实现对产量的调控。]]>
[本文引用: 1]
,
DOI:10.1590/1983-21252019v32n312rcURL [本文引用: 1]
,
DOI:10.1111/gcb.v26.4URL [本文引用: 1]
,
DOI:10.11913/PSJ.2095-0837.2016.30439URL [本文引用: 1]
Vigna unguiculata Linn.)品种‘鄂豇豆6号’、‘鄂豇豆2号’、‘鄂豇豆7号’和‘美国地豆’为材料,在现蕾期叶面喷施植物细胞分裂素(CTK),于喷施后第7、14、28、42d测定脱落花荚的多聚半乳糖醛酸酶(PG)和纤维素酶活性,并统计花荚脱落率和豇豆产量,研究CTK在豇豆生长发育过程中对花荚脱落的影响。结果显示,喷施CTK后,豇豆各品种的花荚脱落率均小于对照,豇豆产量均高于对照,且差异极显著(P<0.01);喷施CTK后第14、28、42d豇豆各品种脱落花荚的PG活性显著降低(P<0.05);喷施CTK后第7d各处理组脱落花荚的PG活性极显著降低(P<0.01);喷施CTK后第7d和第42d豇豆各品种脱落花荚的纤维素酶活性显著降低(P<0.05),喷施CTK后第14d和第28d各处理组脱落花荚的纤维素酶活性极显著降低(P<0.01)。研究结果表明喷施CTK可调节脱落花荚的PG活性和纤维素酶活性,从而降低花荚脱落率,实现对豇豆产量的调控。]]>
[本文引用: 1]
,
URL [本文引用: 3]
--N、NH4+-N含量、氨基酸总量以及天冬氨酸、苏氨酸等氨基酸含量上升,NH4+-N/NO3--N比值、谷氨酸、甘氨酸等氨基酸含量降低;在低氮肥水平(30 kg·hm-2)下以喷施60 mg·kg-1烯效唑,中氮肥水平(32.4 kg·hm-2)下喷施30 mg·kg-1烯效唑,高氮肥水平(64.8 kg·hm-2)下喷施60、90 mg·kg-1烯效唑效果较优,能有效控制植株地上部旺长和促进根系对氮素的吸收、同化能力、代谢能力,提高植株氮循环水平。]]>
[本文引用: 3]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.1016/j.jplph.2006.04.008URLPMID:16769153 [本文引用: 1]
This study investigated whether uniconazole confers drought tolerance to soybean and if such tolerance is correlated with changes in photosynthesis, hormones and antioxidant system of leaves. Soybean plants were foliar treated with uniconazole at 50 mg L-1 at the beginning of bloom and then exposed to water deficit stress at pod initiation for 7 d. Uniconazole promoted biomass accumulation and seed yield under both water conditions. Plants treated with uniconazole showed higher leaf water potential only in water-stressed condition. Water stress decreased the chlorophyll content and photosynthetic rate, but those of uniconazole-treated plants were higher than the stressed control. Uniconazole increased the maximum quantum yield of photosystemand ribulose-1,5-bisphosphate carboxylase/oxygenase activity of water-stressed plants. Water stress decreased partitioning of assimilated 14C from labeled leaf to the other parts of the plant. In contrast, uniconazole enhanced translocation of assimilated 14C from labeled leaves to the other parts, except stems, regardless of water treatment. Uniconazole-treated plants contained less GA3, GA4 and ABA under well-watered condition than untreated plants, while the IAA and zeatin levels were increased substantially under both water conditions, and ABA concentration was also increased under water stressed condition. Under water-stressed conditions, uniconazole increased the content of proline and soluble sugars, and the activities of superoxide dismutase and peroxidase in soybean leaves but not the malondialdehyde content or electrical conductivity. These results suggest that uniconazole-induced tolerance to water deficit stress in soybean was related to the changes of photosynthesis, hormones and antioxidant system of leaves.
,
DOI:10.1186/s12870-019-1925-5URLPMID:31324148 [本文引用: 1]
BACKGROUND: Diethyl aminoethyl hexanoate (DA-6), a plant growth regulator, has many beneficial effects on agricultural production. DA-6 has been applied to many plant species, but the molecular mechanism by which spraying DA-6 after anthesis regulates wheat grain filling is still unknown. RESULTS: In this study, we used four DA-6 concentrations: C0 (0 g/L), C2 (2 g/L), C4 (4 g/L), and C6 (6 g/L). The results showed that C4 and C6 led to a significantly higher 1000-grain weight and seed protein content than C0 during two wheat growing seasons. We then subjected samples at 24 days after anthesis (at which point the grain weight increased rapidly) to transcriptome analysis. Flag leaf (L), seed (S), and stem (T) samples under C6 and C0 were used for RNA-seq. The seed samples under C6 compared with C0 (S6vsS0) presented the most differentially expressed genes (DEGs; 2164). Plant hormone signal transduction (p = 1.97 x 10(- 4)), protein processing in the endoplasmic reticulum (ER; p = 9.04 x 10(- 11)) and starch and sucrose metabolism (p = 1.90 x 10(- 10)) pathways were the most markedly enriched pathways in the flag leaves, stems, and seeds, respectively. DEGs involved in sucrose synthesis in the flag leaves, protein processing in ER in the stems, and starch synthesis and protein processing in ER in the seeds were significantly upregulated under C6 compared with C0. CONCLUSIONS: Overall, we propose a model for spraying DA-6 after anthesis to regulate metabolic pathways in wheat, which provides new insights into wheat in response to DA-6.
,
DOI:10.1016/j.fcr.2011.03.014URL [本文引用: 1]
,
[本文引用: 2]
[本文引用: 2]
,
DOI:10.1093/jxb/ery247URLPMID:29982626 [本文引用: 1]
Soybean seeds contain higher concentrations of oil (triacylglycerol) and fatty acids than do cereal crop seeds, and the oxidation of these biomolecules during seed storage significantly shortens seed longevity and decreases germination ability. Here, we report that diethyl aminoethyl hexanoate (DA-6), a plant growth regulator, increases germination and seedling establishment from aged soybean seeds by increasing fatty acid metabolism and glycometabolism. Phenotypic analysis showed that DA-6 treatment markedly promoted germination and seedling establishment from naturally and artificially aged soybean seeds. Further analysis revealed that DA-6 increased the concentrations of soluble sugars during imbibition of aged soybean seeds. Consistently, the concentrations of several different fatty acids in DA-6-treated aged seeds were higher than those in untreated aged seeds. Subsequently, quantitative PCR analysis indicated that DA-6 induced the transcription of several key genes involved in the hydrolysis of triacylglycerol to sugars in aged soybean seeds. Furthermore, the activity of invertase in aged seeds, which catalyzes the hydrolysis of sucrose to form fructose and glucose, increased following DA-6 treatment. Taken together, DA-6 promotes germination and seedling establishment from aged soybean seeds by enhancing the hydrolysis of triacylglycerol and the conversion of fatty acids to sugars.
,
DOI:10.1002/jsfa.9243URLPMID:29999535 [本文引用: 2]
BACKGROUND: Uniconazole (S3307) and diethyl aminoethyl hexanoate (DA-6) are known plant growth regulators (PGRs). However, it is unknown if their regulation of sucrose and starch content can affect pod setting and yield in soybean. Herein, S3307 and DA-6 were foliar sprayed on soybean Hefeng50 and Kangxian6 at the beginning of the bloom cycle in field tests conducted over two years. RESULTS: PGRs promoted the accumulation and distribution of plant biomass and significantly improved leaf photosynthetic rates. Sucrose and starch content increased after PGR treatment across organs and varieties. Accumulation and allocation of sucrose and starch content in soybean source organs are enhanced by PGRs, which supply high levels of assimilate to sink organs. Moreover, sucrose and starch contents in source and sink organs are positively correlated. S3307 and DA-6 also significantly increased pod setting rates and reduced flower and pod abscission rates, leading to increased yield. CONCLUSION: S3307 and DA-6 promoted the accumulation and availability of sucrose and starch content in source organs and increased sucrose and starch content in flowers and pods or seeds, thereby maintaining the balance between source and sink organs and contributing to increased pod setting rates and soybean yield. (c) 2018 Society of Chemical Industry.
,
DOI:10.1023/A:1010781500705URL [本文引用: 1]
Many physiological effects of cytokinins are well established and are known to be involved in various aspects of the plant life cycle. In contrast, little is known about how these effects are evoked at the molecular level. Since cytokinins have been shown to play a major role in the regulation of various processes associated with active growth and thus an enhanced demand for carbohydrates, a link to the regulation of assimilate partitioning has been suggested. This review discusses the current knowledge of the role of cytokinins in the regulation of source-sink relations, based on the finding of the co-ordinated cytokinin induction of an extracellular invertase and a hexose transporter. The induction of these key enzymes of an apoplastic unloading mechanism may be one important molecular prerequisite for different cytokinin-mediated effects.]]>
,
DOI:10.1007/BF03030617URL [本文引用: 1]
Cytokinins are essential hormones for the proper growth and development of plants. They exert their actions through the phosphorylation of two-component signaling factors. The two-component elements in cytokinin signaling display not only overlapping, but also specific functions throughout a life cycle. These elements regulate the development of shoots, roots, and inflorescence meristems inArabidopsis; shoot meristems in rice; and nodule formation in the lotus. They are also involved in interactions between plants and pathogens. In this review, we examine the mechanism for signaling events initiated by cytokinins inArabidopsis.]]>
,
DOI:10.1016/S2095-3119(17)61789-1URL [本文引用: 1]
,
DOI:10.1080/01904167.2018.1476540URL [本文引用: 1]
,
DOI:10.1016/j.fcr.2013.08.011URL [本文引用: 1]
,
DOI:10.1016/j.fcr.2016.10.003URL [本文引用: 1]
,
DOI:10.1371/journal.pone.0184503URLPMID:28910355 [本文引用: 1]
The blind pursuit of high yields via increased fertilizer inputs increases the environmental costs. Relay intercropping has advantages for yield, but a strategy for N management is urgently required to decrease N inputs without yield loss in maize-soybean relay intercropping systems (IMS). Experiments were conducted with three levels of N and three planting patterns, and dry matter accumulation, nitrogen uptake, nitrogen use efficiency (NUE), competition ratio (CR), system productivity index (SPI), land equivalent ratio (LER), and crop root distribution were investigated. Our results showed that the CR of soybean was greater than 1, and that the change in root distribution in space and time resulted in an interspecific facilitation in IMS. The maximum yield of maize under monoculture maize (MM) occurred with conventional nitrogen (CN), whereas under IMS, the maximum yield occurred with reduced nitrogen (RN). The yield of monoculture soybean (MS) and of soybean in IMS both reached a maximum under RN. The LER of IMS varied from 1.85 to 2.36, and the SPI peaked under RN. Additionally, the NUE of IMS increased by 103.7% under RN compared with that under CN. In conclusion, the separation of the root ecological niche contributed to a positive interspecific facilitation, which increased the land productivity. Thus, maize-soybean relay intercropping with reduced N input provides a very useful approach to increase land productivity and avert environmental pollution.
,
URL [本文引用: 1]
本文在实验的基础上对硫酸-苯酚定糖法进行了改进。传统的硫酸-苯酚定糖法,平行样品间的吸光度值相差较大,使检测的重现性与准确性较差。我们对该方法进行改进后,并对新方法从检测波长、显色时间、显色温度、稳定性、重现性、回收率、线性范围以及最低检出限等方面进行了考查,并通过对纯化的银耳多糖、可溶性淀粉、猪苓多糖和海带多糖,以及对猪苓与海带水溶性混合物等多种样品的多糖含量测定,证明改进后的方法既简化了操作,提高了精密度和准确性;也具较宽的实用范围。
[本文引用: 1]
,
DOI:10.11686/cyxb20120407URL [本文引用: 1]
[本文引用: 1]
,
DOI:10.1016/s0031-9422(99)00545-2URLPMID:10724178 [本文引用: 2]
The content of free sugars and the activities of enzymes involved in carbon metabolism-sucrose synthase, acid and alkaline invertase, phosphoenol pyruvate carboxylase, malic enzyme and isocitrate dehydrogenase were determined during seed development in mungbean pods. A decrease in carbohydrate content of pod wall from 10 to 25 days after flowering (DAF) and a concomitant increase in the seed till 20 DAF was observed. Sucrose remained the dominant soluble sugar in the pod wall and seed. In the branch of inflorescence and pod wall, the activities of sucrose metabolizing enzymes, viz. acid and alkaline invertase, sucrose synthase (synthesis and cleavage) and sucrose phosphate synthase were higher at 5-10 DAF, whereas in seed the maximum activities of these enzymes were observed at the time of maximum seed filling stage (10-20 DAF). High activities of sucrose synthase at the time of rapid seed filling can be correlated to its sink strength. Higher activities of phosphoenol pyruvate carboxylase in the branch of inflorescence and pod wall than in seed may indicate the involvement of the fruiting structure for recapturing respired CO2. High activities of isocitrate dehydrogenase and malic enzyme in the seed at the time of rapid seed filling could provide NADPH and carbon skeletons required for the synthesis of various seed reserves.
,
DOI:10.1104/pp.84.2.240URLPMID:16665423 [本文引用: 1]
The previously reported activity of benzyladenine and selected other cytokinin analogs to increase pod set in soybean (Glycine max [L.] Merr.) was further investigated to define the structure-activity relationship and evaluate the effects of the cytokinins on yield parameters. Enhancement of pod set was found to be greatest with N-6 saturated alkyl substituted analogs, and was only weakly associated with activity in a callus growth bioassay. The response of yield parameters to increasing pod load was evaluated by applying various cytokinin analogs having a range of pod set enhancement activity. The increased pod load at the treated nodes was not compensated by a reduction in pod number on the remainder of the plant. However, there was a compensatory decrease in seed size. Overall, a significant trend to greater total seed weight per plant was associated with the increased pod number. Initial evaluations indicated that foliar applications of select cytokinins could temporarily increase pod number. However, the increases in pod number obtained with foliar treatments were too small to be of practical utility and were not maintained to maturity.
,
URL [本文引用: 1]
1), Chuandan 418 (RI2) or Yayu 13 (RI3), and the monocultured soybean was used as control. The results demonstrated that the dry matter accumulation rates of intercropped soybean in RI2 and RI3 treatments were lower than in RI1 treatment, and the leaf, stem and pod dry matter accumulation of intercropped soybean in RI1 treatment was 17.6%, 16.5% and 13.7% higher than that in RI2 treatment, and 34.6%, 33.1% and 28.4% higher than that in RI3 treatment, respectively. The distribution proportion of leaf and stem of intercropped soybean was in the order of RI1 > RI2 > RI3. However, the trend of the distribution proportion of pod was opposite. Compared with RI2 and RI3, the dry matter translocation amount, translocation proportion, contribution proportion of soybean vegetative organs to pod of soybean were improved in RI1 treatment, and the pod per plant, seeds per plant, seeds per pod, yield per plant and yield of soybean in RI1 were higher than RI2 and RI3 by 6.8%, 11.5%, 4.4%, 15.9%, 15.6% and 14.3%, 22.2%, 6.7%, 33.4%, 36.8%, respectively. The results showed that the yield was positively related with the accumulation rate of dry matter, dry matter translocation, dry matter translocation ratio and the contribution of dry matter accumulation, and these indices were highest in RI1 treatment. The results indicated that the compact maize relay intercropped with soybean could effectively regulate the dry matter accumulation, translocation and distribution, and improve the yield of soybean.]]>
,
DOI:10.1626/pps.18.295URL [本文引用: 1]
,
URL [本文引用: 1]
]]>
[本文引用: 1]
,
URL [本文引用: 1]
-2、120 kg(N) hm-2、180 kg(N) hm-2、240 kg(N) hm-2、360 kg(N) hm-2 5个氮肥水平下, 探讨了不同施氮水平对小麦植株可溶性糖含量、C/N以及小麦赤霉病发病率和病情指数的影响。结果表明: 两个品种小麦植株内的可溶性糖含量和C/N由越冬到开花期呈"V"形变化, 拔节期最低, 分别为80~200 mg g-1和3~10。开花期各处理间差异达到最大, 且施氮处理植株的可溶性糖含量和C/N比不施氮处理分别低15.4%~47.7%和24.5%~63.1%。植株全氮含量随施氮量的增加而增加, 各处理在小麦拔节期和开花期差异最大。两个品种小麦植株的可溶性糖和氮素的累积吸收量在小麦生育期内均呈增加趋势。相关分析表明, 植株全氮含量与小麦的可溶性糖含量在小麦拔节期和开花期显著负相关; 小麦拔节期和开花期的可溶性糖含量、C/N与小麦赤霉病的发病率和病情指数呈线性关系。说明小麦拔节期到开花期的碳氮代谢对赤霉病的发生影响较大。]]>
[本文引用: 1]
,
DOI:10.1007/s00344-013-9367-zURL [本文引用: 1]
Dwarf bamboo is an ecologically and economically important forest resource that is widespread in mountainous regions of eastern Asia and southern America. Fargesia denudata, one of the most important dwarf bamboos, is a staple food of the giant panda, but our knowledge about how F. denudata copes with drought stress is very limited. The objective of this study was to determine the responses of carbon (C) and nitrogen (N) metabolism to drought in leaves and roots of F. denudata plants. Plants were subjected to three water treatments, well-watered [WW, 85 % relative soil water content (RSWC)], moderate drought (MD, 50 % RSWC), and severe drought (SD, 30 % RSWC), for two consecutive years during the sprouting period. Plant growth parameters, levels of carbohydrates and N compounds, and activities of key enzymes involved in C and N metabolism were analyzed. In young leaves, C metabolism was in balance after drought stress, but nitrate (NO3-) reduction and ammonium (NH4+) assimilation were accelerated. In old leaves, drought stress decreased carbohydrate contents by spurring the activities of the main enzymes that participate in C metabolism, whereas N metabolism was enhanced only under SD. Roots showed unchanged C metabolism parameters under MD, together with stable NO3- reduction and the key enzymes related to NH4+ assimilation, whereas they were stimulated by SD. Hydrolysates of carbohydrates in old leaves could be transferred into roots, but only to meet MD. Meanwhile, roots could allocate more N nutrition to young leaves and less to old leaves. These changes regulated the overall metabolic balance of F. denudata. Consequently, the results indicate that different organs with various response strategies will be well adapted to different drought intensities for ensuring regular growth of F. denudata plants at the whole-plant level.
,
URL [本文引用: 1]
M)明显提高了荚皮中游离氨基酸的上升幅度,并与2-N,N-二乙氨基乙基己酸酯(DTA-6)共同提高了荚皮硝态氮含量。其中在喷药后10~30d,SODM增加了淀粉的输出量,且可溶糖和蔗糖的积累量明显高于对照,DTA-6次之。综合分析表明,叶面喷施SODM和DTA-6改善了荚皮内同化物代谢水平,增加了荚皮内碳水化合物的积累量,有效地调控了荚皮中淀粉含量的输出和积累过程。]]>
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.1093/jxb/ert138URLPMID:23740932 [本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.3864/j.issn.0578-1752.2016.04.005URL [本文引用: 1]
2013年和2014年在大田栽培条件下进行。以合丰50和垦丰16为材料,在始花期(R1期)叶面喷施60 mg·L-1促进型调节剂2–N,N–二乙氨基乙基己酸酯(DTA-6)和50 mg·L-1延缓型调节剂烯效唑(S3307),以喷施清水为对照(CK)。喷施调节剂后30 d开始第一次取样,以后每隔5 d取样一次,共取样5次。测定叶片和籽粒中蔗糖、淀粉、果糖含量及叶片中转化酶、蔗糖磷酸合酶(SPS)和蔗糖合酶(SS)活性。大豆成熟期测产。【结果】籽粒建成初期(喷施调节剂后30—35 d),S3307和DTA-6的叶片蔗糖、果糖和淀粉含量呈下降趋势;籽粒蔗糖、果糖和淀粉含量呈上升趋势,说明更多的碳水化合物用于籽粒的建成。籽粒建成中期(喷施调节剂后35—45 d),S3307的叶片蔗糖、果糖和淀粉含量一直呈上升趋势;S3307和DTA-6的籽粒蔗糖和果糖含量普遍高于CK,为籽粒灌浆提供了充分的物质保障。籽粒建成后期(喷施调节剂后50 d),S3307和DTA-6的叶片蔗糖含量达到最大,且与CK差异显著,S3307的叶片淀粉含量高于CK,DTA-6的叶片果糖含量高于CK;S3307和DTA-6显著提高了籽粒中蔗糖含量,S3307同时提高了2个品种籽粒果糖含量,而DTA-6降低了合丰50籽粒果糖含量;S3307和DTA-6提高了合丰50籽粒淀粉含量,降低了垦丰16籽粒淀粉含量,说明调节剂对不同的大豆品种调控效果存在差异。调节剂增加叶片蔗糖含量的同时,S3307和DTA-6提高了叶片SPS和SS活性;在多数测定时期内,显著降低了叶片转化酶活性。S3307和DTA-6协调了源库系统碳水化合物代谢的动态平衡。与清水对照(H-CK和K-CK)相比,调节剂处理H-S、H-D和K-S、K-D两年平均增产为20.07%、14.57%和10.54%、10.95%,增产极显著。相关分析得出,叶片蔗糖含量与叶片SPS、SS活性和淀粉含量呈正相关(0.893**、0.888**和0.981**),与叶片转化酶活性和果糖含量呈负相关(-0.872和-0.862);同时与籽粒蔗糖、果糖和淀粉含量成正相关(0.918**、0.832和0.810)。由此可知,蔗糖是碳水化合物代谢的中心枢纽。【结论】S3307和DTA-6通过提高源端叶片SPS和SS活性,降低叶片转化酶活性,调控了不同大豆品种源库碳水化合物的生理代谢,显著提高了大豆产量,其中S3307的作用效果较好。]]>
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]